organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

6-Bromo­quinoline-8-carbo­nitrile

aDepartment of Physics, Faculty of Sciences, Cumhuriyet University, 58140 Sivas, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Maths and Science Education, Division of Science Education, Faculty of Education, Kırıkkale University, 71450, Yahşihan, Kırıkkale, Turkey, dDepartment of Nutrition and Dietetics, School of Health Sciences, İstanbul Gelişim University, 34315 Avcılar, İstanbul, Turkey, and eDepartment of Physics, Faculty of Arts and Sciences, Sinop University, 57010 Sinop, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 11 June 2017; accepted 20 June 2017; online 7 July 2017)

In the title compound, C10H5BrN2, the whole mol­ecule is essentially planar (r.m.s. deviation = 0.005 Å). The crystal packing features face-to-face ππ stacking inter­actions [centroid–centroid distance = 3.755 (3) Å] between the pyridine and benzene rings of the quinoline ring systems of adjacent mol­ecules, along the a-axis direction. Short Br⋯Br contacts of 3.5908 (12) Å (compared to a van der Waals separation of 3.70 Å) are also observed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The asymmetric syntheses of 2-cyano-substituted di­hydro and tetra­hydro­quinolines have been achieved using the Reissert reaction (Pauvert et al., 2005[Pauvert, M., Collet, S. C., Bertrand, M., Guingant, A. Y. & Evain, M. (2005). Tetrahedron Lett. 46, 2983-2987.]) while 8-cyano substituted quinolines have been prepared by the treatment of cyano substituted aniline with several ketones in polar solvents (Ekiz et al., 2016[Ekiz, M., Tutar, A. & Ökten, S. (2016). Tetrahedron, 72, 5323-5330.]). As the cyclization methods using cyano-substituted benzene or cyclo­hexane allow only the synthesis of mono cyano-substituted quinolines, the synthesis of two or more cyano-substituted quinolines has been limited (Ökten & Çakmak, 2015[Ökten, S. & Çakmak, O. (2015). Tetrahedron Lett. 56, 5337-5340.]). As part of our studies in this area, the crystal structure of the title compound is now reported.

The title mol­ecule (Fig. 1[link]) is essentially planar, with a maximum deviation of 0.063 (1) Å for atom Br1. All bond lengths and angles are in normal ranges and are comparable with those reported for similar compounds: 2-chloro-8-methyl-3-[(pyrimidin-4-yl­oxy)meth­yl]quinoline (Khan et al., 2010[Khan, F. N., Roopan, S. M., Hathwar, V. R. & Akkurt, M. (2010). Acta Cryst. E66, o1010.]), 6,8-di­bromo­quinoline (Çelik et al., 2010a[Çelik, Í., Akkurt, M., Çakmak, O., Ökten, S. & García-Granda, S. (2010a). Acta Cryst. E66, o2997-o2998.]), 3,6,8-tri­bromo­quinoline (Çelik et al., 2010b[Çelik, Í., Akkurt, M., Ökten, S., Çakmak, O. & García-Granda, S. (2010b). Acta Cryst. E66, o3133.]) and 5,7-di­bromo-8-meth­oxy­quinoline (Çelik et al., 2017[Çelik, İ., Ökten, S., Akkurt, M., Ersanlı, C. C., Çakmak, O. & Özbakır, R. (2017). IUCrData, 2, x170643-x170643.]).

[Figure 1]
Figure 1
View of the title compound, with displacement ellipsoids drawn at the 50% probability level.

In the crystal, the packing features face-to-face ππ stacking inter­actions [Cg1⋯Cg2i = 3.755 (3) Å; symmetry code: (i) −1 + x, y, z] between the pyridine (N1/C1–C4/C9; centroid Cg1) and benzene (C4–C9; centroid Cg2) rings of the quinoline ring systems of adjacent mol­ecules, along the a-axis direction. Short Br⋯Br contacts [3.5908 (12) Å compared to a van der Waals separation of 3.70 Å] are also observed. The packing viewed down the a-axis direction is shown in Fig. 2[link].

[Figure 2]
Figure 2
View of the packing of the title compound down the a axis.

Synthesis and crystallization

The title compound was prepared according to the reported method (Ökten et al., 2013[Ökten, S., Çakmak, O., Erenler, R., Tekin, Ş. & Yüce, Ö. (2013). Turk. J. Chem. 37, 896-908.]). Colourless prisms were obtained by recrystallization from mixed solvents of AcOEt/hexane (1:2).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C10H5BrN2
Mr 233.07
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 3.8484 (8), 12.634 (3), 18.042 (4)
β (°) 92.918 (7)
V3) 876.0 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 4.64
Crystal size (mm) 0.15 × 0.12 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.565, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 26227, 2203, 1501
Rint 0.073
(sin θ/λ)max−1) 0.672
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.120, 1.22
No. of reflections 2203
No. of parameters 118
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.53, −0.61
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP3for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP3for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

6-Bromoquinoline-8-carbonitrile top
Crystal data top
C10H5BrN2F(000) = 456
Mr = 233.07Dx = 1.767 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 3.8484 (8) ÅCell parameters from 9362 reflections
b = 12.634 (3) Åθ = 3.2–25.3°
c = 18.042 (4) ŵ = 4.64 mm1
β = 92.918 (7)°T = 296 K
V = 876.0 (3) Å3Prism, colourless
Z = 40.15 × 0.12 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
1501 reflections with I > 2σ(I)
φ and ω scansRint = 0.073
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
θmax = 28.5°, θmin = 3.2°
Tmin = 0.565, Tmax = 0.746h = 45
26227 measured reflectionsk = 1616
2203 independent reflectionsl = 2424
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0088P)2 + 3.5104P]
where P = (Fo2 + 2Fc2)/3
S = 1.22(Δ/σ)max < 0.001
2203 reflectionsΔρmax = 0.53 e Å3
118 parametersΔρmin = 0.61 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0305 (16)0.4253 (5)0.8151 (3)0.0491 (15)
H10.06010.47590.84620.059*
C20.1004 (16)0.3254 (5)0.8451 (3)0.0482 (15)
H20.05260.31040.89400.058*
C30.2403 (15)0.2500 (5)0.8014 (3)0.0449 (14)
H30.29270.18320.82060.054*
C40.3047 (14)0.2741 (4)0.7272 (3)0.0346 (11)
C50.4372 (14)0.1998 (4)0.6781 (3)0.0375 (12)
H50.49660.13220.69480.045*
C60.4792 (14)0.2268 (4)0.6057 (3)0.0339 (11)
C70.3995 (14)0.3287 (4)0.5793 (3)0.0371 (12)
H70.43170.34600.53000.045*
C80.2738 (14)0.4027 (4)0.6266 (3)0.0337 (11)
C90.2174 (13)0.3781 (4)0.7021 (2)0.0332 (10)
C100.1862 (16)0.5105 (5)0.5988 (3)0.0438 (14)
N10.0822 (12)0.4542 (4)0.7461 (2)0.0412 (11)
N20.1305 (16)0.5879 (4)0.5762 (3)0.0606 (15)
Br10.63809 (18)0.12498 (5)0.53862 (3)0.0525 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.052 (4)0.058 (4)0.038 (3)0.006 (3)0.006 (3)0.015 (3)
C20.049 (4)0.068 (4)0.028 (3)0.008 (3)0.006 (2)0.003 (3)
C30.049 (4)0.050 (3)0.035 (3)0.003 (3)0.002 (2)0.008 (2)
C40.035 (3)0.036 (3)0.031 (2)0.005 (2)0.004 (2)0.000 (2)
C50.039 (3)0.033 (3)0.040 (3)0.002 (2)0.001 (2)0.002 (2)
C60.033 (3)0.033 (3)0.035 (2)0.002 (2)0.001 (2)0.003 (2)
C70.037 (3)0.043 (3)0.031 (2)0.001 (2)0.003 (2)0.001 (2)
C80.037 (3)0.030 (3)0.034 (2)0.004 (2)0.004 (2)0.0005 (19)
C90.036 (3)0.033 (2)0.031 (2)0.003 (2)0.0006 (19)0.002 (2)
C100.056 (4)0.047 (3)0.029 (2)0.002 (3)0.007 (2)0.001 (2)
N10.043 (3)0.043 (3)0.038 (2)0.004 (2)0.004 (2)0.0097 (19)
N20.085 (5)0.047 (3)0.051 (3)0.010 (3)0.011 (3)0.001 (2)
Br10.0572 (4)0.0517 (4)0.0490 (3)0.0076 (3)0.0052 (2)0.0145 (3)
Geometric parameters (Å, º) top
C1—N11.321 (7)C5—H50.9300
C1—C21.394 (8)C6—C71.401 (7)
C1—H10.9300C6—Br11.889 (5)
C2—C31.364 (8)C7—C81.371 (7)
C2—H20.9300C7—H70.9300
C3—C41.408 (7)C8—C91.425 (6)
C3—H30.9300C8—C101.484 (7)
C4—C51.404 (7)C9—N11.366 (6)
C4—C91.425 (7)C10—N21.077 (7)
C5—C61.368 (7)
N1—C1—C2125.5 (5)C5—C6—C7121.3 (5)
N1—C1—H1117.3C5—C6—Br1120.0 (4)
C2—C1—H1117.3C7—C6—Br1118.7 (4)
C3—C2—C1118.8 (5)C8—C7—C6119.5 (4)
C3—C2—H2120.6C8—C7—H7120.2
C1—C2—H2120.6C6—C7—H7120.2
C2—C3—C4119.5 (5)C7—C8—C9121.5 (4)
C2—C3—H3120.3C7—C8—C10119.8 (4)
C4—C3—H3120.3C9—C8—C10118.7 (4)
C5—C4—C3122.9 (5)N1—C9—C8118.9 (4)
C5—C4—C9120.2 (4)N1—C9—C4123.7 (4)
C3—C4—C9116.8 (5)C8—C9—C4117.4 (4)
C6—C5—C4120.0 (5)N2—C10—C8177.0 (6)
C6—C5—H5120.0C1—N1—C9115.7 (5)
C4—C5—H5120.0
N1—C1—C2—C31.4 (10)C7—C8—C9—N1178.1 (5)
C1—C2—C3—C41.1 (9)C10—C8—C9—N10.5 (7)
C2—C3—C4—C5177.9 (5)C7—C8—C9—C41.5 (8)
C2—C3—C4—C90.0 (8)C10—C8—C9—C4179.9 (5)
C3—C4—C5—C6177.0 (5)C5—C4—C9—N1178.9 (5)
C9—C4—C5—C60.8 (8)C3—C4—C9—N11.0 (8)
C4—C5—C6—C71.5 (8)C5—C4—C9—C80.6 (7)
C4—C5—C6—Br1177.2 (4)C3—C4—C9—C8178.6 (5)
C5—C6—C7—C80.6 (8)C2—C1—N1—C90.4 (9)
Br1—C6—C7—C8178.0 (4)C8—C9—N1—C1178.8 (5)
C6—C7—C8—C90.9 (8)C4—C9—N1—C10.8 (8)
C6—C7—C8—C10179.5 (5)
 

Acknowledgements

The authors thank the X-ray Laboratory of Sinop University Scientific and Technological Applied and Research Center, Sinop, Turkey, for use of the X-ray diffractometer.

Funding information

This study was supported financially by grants from the Scientific and Technological Research Council of Turkey (TÜBİTAK, Project No. 112 T394).

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationÇelik, Í., Akkurt, M., Çakmak, O., Ökten, S. & García-Granda, S. (2010a). Acta Cryst. E66, o2997–o2998.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÇelik, Í., Akkurt, M., Ökten, S., Çakmak, O. & García-Granda, S. (2010b). Acta Cryst. E66, o3133.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÇelik, İ., Ökten, S., Akkurt, M., Ersanlı, C. C., Çakmak, O. & Özbakır, R. (2017). IUCrData, 2, x170643–x170643.  Google Scholar
First citationEkiz, M., Tutar, A. & Ökten, S. (2016). Tetrahedron, 72, 5323–5330.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKhan, F. N., Roopan, S. M., Hathwar, V. R. & Akkurt, M. (2010). Acta Cryst. E66, o1010.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖkten, S. & Çakmak, O. (2015). Tetrahedron Lett. 56, 5337–5340.  Google Scholar
First citationÖkten, S., Çakmak, O., Erenler, R., Tekin, Ş. & Yüce, Ö. (2013). Turk. J. Chem. 37, 896–908.  Google Scholar
First citationPauvert, M., Collet, S. C., Bertrand, M., Guingant, A. Y. & Evain, M. (2005). Tetrahedron Lett. 46, 2983–2987.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds