organic compounds
6-Bromoquinoline-8-carbonitrile
aDepartment of Physics, Faculty of Sciences, Cumhuriyet University, 58140 Sivas, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Maths and Science Education, Division of Science Education, Faculty of Education, Kırıkkale University, 71450, Yahşihan, Kırıkkale, Turkey, dDepartment of Nutrition and Dietetics, School of Health Sciences, İstanbul Gelişim University, 34315 Avcılar, İstanbul, Turkey, and eDepartment of Physics, Faculty of Arts and Sciences, Sinop University, 57010 Sinop, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr
In the title compound, C10H5BrN2, the whole molecule is essentially planar (r.m.s. deviation = 0.005 Å). The crystal packing features face-to-face π–π stacking interactions [centroid–centroid distance = 3.755 (3) Å] between the pyridine and benzene rings of the quinoline ring systems of adjacent molecules, along the a-axis direction. Short Br⋯Br contacts of 3.5908 (12) Å (compared to a van der Waals separation of 3.70 Å) are also observed.
Keywords: crystal structure; quinoline ring; π–π stacking interactions; synthesis.
CCDC reference: 1557337
Structure description
The asymmetric syntheses of 2-cyano-substituted dihydro and tetrahydroquinolines have been achieved using the Reissert reaction (Pauvert et al., 2005) while 8-cyano substituted quinolines have been prepared by the treatment of cyano substituted aniline with several in polar solvents (Ekiz et al., 2016). As the methods using cyano-substituted benzene or cyclohexane allow only the synthesis of mono cyano-substituted quinolines, the synthesis of two or more cyano-substituted quinolines has been limited (Ökten & Çakmak, 2015). As part of our studies in this area, the of the title compound is now reported.
The title molecule (Fig. 1) is essentially planar, with a maximum deviation of 0.063 (1) Å for atom Br1. All bond lengths and angles are in normal ranges and are comparable with those reported for similar compounds: 2-chloro-8-methyl-3-[(pyrimidin-4-yloxy)methyl]quinoline (Khan et al., 2010), 6,8-dibromoquinoline (Çelik et al., 2010a), 3,6,8-tribromoquinoline (Çelik et al., 2010b) and 5,7-dibromo-8-methoxyquinoline (Çelik et al., 2017).
In the crystal, the packing features face-to-face π–π stacking interactions [Cg1⋯Cg2i = 3.755 (3) Å; symmetry code: (i) −1 + x, y, z] between the pyridine (N1/C1–C4/C9; centroid Cg1) and benzene (C4–C9; centroid Cg2) rings of the quinoline ring systems of adjacent molecules, along the a-axis direction. Short Br⋯Br contacts [3.5908 (12) Å compared to a van der Waals separation of 3.70 Å] are also observed. The packing viewed down the a-axis direction is shown in Fig. 2.
Synthesis and crystallization
The title compound was prepared according to the reported method (Ökten et al., 2013). Colourless prisms were obtained by recrystallization from mixed solvents of AcOEt/hexane (1:2).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 1Structural data
CCDC reference: 1557337
https://doi.org/10.1107/S2414314617009300/hb4153sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617009300/hb4153Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314617009300/hb4153Isup3.cml
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP3for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).C10H5BrN2 | F(000) = 456 |
Mr = 233.07 | Dx = 1.767 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 3.8484 (8) Å | Cell parameters from 9362 reflections |
b = 12.634 (3) Å | θ = 3.2–25.3° |
c = 18.042 (4) Å | µ = 4.64 mm−1 |
β = 92.918 (7)° | T = 296 K |
V = 876.0 (3) Å3 | Prism, colourless |
Z = 4 | 0.15 × 0.12 × 0.10 mm |
Bruker APEXII CCD diffractometer | 1501 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.073 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | θmax = 28.5°, θmin = 3.2° |
Tmin = 0.565, Tmax = 0.746 | h = −4→5 |
26227 measured reflections | k = −16→16 |
2203 independent reflections | l = −24→24 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.058 | H-atom parameters constrained |
wR(F2) = 0.120 | w = 1/[σ2(Fo2) + (0.0088P)2 + 3.5104P] where P = (Fo2 + 2Fc2)/3 |
S = 1.22 | (Δ/σ)max < 0.001 |
2203 reflections | Δρmax = 0.53 e Å−3 |
118 parameters | Δρmin = −0.61 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.0305 (16) | 0.4253 (5) | 0.8151 (3) | 0.0491 (15) | |
H1 | −0.0601 | 0.4759 | 0.8462 | 0.059* | |
C2 | 0.1004 (16) | 0.3254 (5) | 0.8451 (3) | 0.0482 (15) | |
H2 | 0.0526 | 0.3104 | 0.8940 | 0.058* | |
C3 | 0.2403 (15) | 0.2500 (5) | 0.8014 (3) | 0.0449 (14) | |
H3 | 0.2927 | 0.1832 | 0.8206 | 0.054* | |
C4 | 0.3047 (14) | 0.2741 (4) | 0.7272 (3) | 0.0346 (11) | |
C5 | 0.4372 (14) | 0.1998 (4) | 0.6781 (3) | 0.0375 (12) | |
H5 | 0.4966 | 0.1322 | 0.6948 | 0.045* | |
C6 | 0.4792 (14) | 0.2268 (4) | 0.6057 (3) | 0.0339 (11) | |
C7 | 0.3995 (14) | 0.3287 (4) | 0.5793 (3) | 0.0371 (12) | |
H7 | 0.4317 | 0.3460 | 0.5300 | 0.045* | |
C8 | 0.2738 (14) | 0.4027 (4) | 0.6266 (3) | 0.0337 (11) | |
C9 | 0.2174 (13) | 0.3781 (4) | 0.7021 (2) | 0.0332 (10) | |
C10 | 0.1862 (16) | 0.5105 (5) | 0.5988 (3) | 0.0438 (14) | |
N1 | 0.0822 (12) | 0.4542 (4) | 0.7461 (2) | 0.0412 (11) | |
N2 | 0.1305 (16) | 0.5879 (4) | 0.5762 (3) | 0.0606 (15) | |
Br1 | 0.63809 (18) | 0.12498 (5) | 0.53862 (3) | 0.0525 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.052 (4) | 0.058 (4) | 0.038 (3) | −0.006 (3) | 0.006 (3) | −0.015 (3) |
C2 | 0.049 (4) | 0.068 (4) | 0.028 (3) | −0.008 (3) | 0.006 (2) | −0.003 (3) |
C3 | 0.049 (4) | 0.050 (3) | 0.035 (3) | −0.003 (3) | 0.002 (2) | 0.008 (2) |
C4 | 0.035 (3) | 0.036 (3) | 0.031 (2) | −0.005 (2) | −0.004 (2) | 0.000 (2) |
C5 | 0.039 (3) | 0.033 (3) | 0.040 (3) | −0.002 (2) | 0.001 (2) | 0.002 (2) |
C6 | 0.033 (3) | 0.033 (3) | 0.035 (2) | −0.002 (2) | 0.001 (2) | −0.003 (2) |
C7 | 0.037 (3) | 0.043 (3) | 0.031 (2) | −0.001 (2) | 0.003 (2) | 0.001 (2) |
C8 | 0.037 (3) | 0.030 (3) | 0.034 (2) | −0.004 (2) | −0.004 (2) | 0.0005 (19) |
C9 | 0.036 (3) | 0.033 (2) | 0.031 (2) | −0.003 (2) | 0.0006 (19) | −0.002 (2) |
C10 | 0.056 (4) | 0.047 (3) | 0.029 (2) | 0.002 (3) | 0.007 (2) | −0.001 (2) |
N1 | 0.043 (3) | 0.043 (3) | 0.038 (2) | −0.004 (2) | 0.004 (2) | −0.0097 (19) |
N2 | 0.085 (5) | 0.047 (3) | 0.051 (3) | 0.010 (3) | 0.011 (3) | −0.001 (2) |
Br1 | 0.0572 (4) | 0.0517 (4) | 0.0490 (3) | 0.0076 (3) | 0.0052 (2) | −0.0145 (3) |
C1—N1 | 1.321 (7) | C5—H5 | 0.9300 |
C1—C2 | 1.394 (8) | C6—C7 | 1.401 (7) |
C1—H1 | 0.9300 | C6—Br1 | 1.889 (5) |
C2—C3 | 1.364 (8) | C7—C8 | 1.371 (7) |
C2—H2 | 0.9300 | C7—H7 | 0.9300 |
C3—C4 | 1.408 (7) | C8—C9 | 1.425 (6) |
C3—H3 | 0.9300 | C8—C10 | 1.484 (7) |
C4—C5 | 1.404 (7) | C9—N1 | 1.366 (6) |
C4—C9 | 1.425 (7) | C10—N2 | 1.077 (7) |
C5—C6 | 1.368 (7) | ||
N1—C1—C2 | 125.5 (5) | C5—C6—C7 | 121.3 (5) |
N1—C1—H1 | 117.3 | C5—C6—Br1 | 120.0 (4) |
C2—C1—H1 | 117.3 | C7—C6—Br1 | 118.7 (4) |
C3—C2—C1 | 118.8 (5) | C8—C7—C6 | 119.5 (4) |
C3—C2—H2 | 120.6 | C8—C7—H7 | 120.2 |
C1—C2—H2 | 120.6 | C6—C7—H7 | 120.2 |
C2—C3—C4 | 119.5 (5) | C7—C8—C9 | 121.5 (4) |
C2—C3—H3 | 120.3 | C7—C8—C10 | 119.8 (4) |
C4—C3—H3 | 120.3 | C9—C8—C10 | 118.7 (4) |
C5—C4—C3 | 122.9 (5) | N1—C9—C8 | 118.9 (4) |
C5—C4—C9 | 120.2 (4) | N1—C9—C4 | 123.7 (4) |
C3—C4—C9 | 116.8 (5) | C8—C9—C4 | 117.4 (4) |
C6—C5—C4 | 120.0 (5) | N2—C10—C8 | 177.0 (6) |
C6—C5—H5 | 120.0 | C1—N1—C9 | 115.7 (5) |
C4—C5—H5 | 120.0 | ||
N1—C1—C2—C3 | 1.4 (10) | C7—C8—C9—N1 | −178.1 (5) |
C1—C2—C3—C4 | −1.1 (9) | C10—C8—C9—N1 | 0.5 (7) |
C2—C3—C4—C5 | −177.9 (5) | C7—C8—C9—C4 | 1.5 (8) |
C2—C3—C4—C9 | 0.0 (8) | C10—C8—C9—C4 | −179.9 (5) |
C3—C4—C5—C6 | 177.0 (5) | C5—C4—C9—N1 | 178.9 (5) |
C9—C4—C5—C6 | −0.8 (8) | C3—C4—C9—N1 | 1.0 (8) |
C4—C5—C6—C7 | 1.5 (8) | C5—C4—C9—C8 | −0.6 (7) |
C4—C5—C6—Br1 | −177.2 (4) | C3—C4—C9—C8 | −178.6 (5) |
C5—C6—C7—C8 | −0.6 (8) | C2—C1—N1—C9 | −0.4 (9) |
Br1—C6—C7—C8 | 178.0 (4) | C8—C9—N1—C1 | 178.8 (5) |
C6—C7—C8—C9 | −0.9 (8) | C4—C9—N1—C1 | −0.8 (8) |
C6—C7—C8—C10 | −179.5 (5) |
Acknowledgements
The authors thank the X-ray Laboratory of Sinop University Scientific and Technological Applied and Research Center, Sinop, Turkey, for use of the X-ray diffractometer.
Funding information
This study was supported financially by grants from the Scientific and Technological Research Council of Turkey (TÜBİTAK, Project No. 112 T394).
References
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Çelik, Í., Akkurt, M., Çakmak, O., Ökten, S. & García-Granda, S. (2010a). Acta Cryst. E66, o2997–o2998. Web of Science CSD CrossRef IUCr Journals Google Scholar
Çelik, Í., Akkurt, M., Ökten, S., Çakmak, O. & García-Granda, S. (2010b). Acta Cryst. E66, o3133. Web of Science CSD CrossRef IUCr Journals Google Scholar
Çelik, İ., Ökten, S., Akkurt, M., Ersanlı, C. C., Çakmak, O. & Özbakır, R. (2017). IUCrData, 2, x170643–x170643. Google Scholar
Ekiz, M., Tutar, A. & Ökten, S. (2016). Tetrahedron, 72, 5323–5330. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Khan, F. N., Roopan, S. M., Hathwar, V. R. & Akkurt, M. (2010). Acta Cryst. E66, o1010. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ökten, S. & Çakmak, O. (2015). Tetrahedron Lett. 56, 5337–5340. Google Scholar
Ökten, S., Çakmak, O., Erenler, R., Tekin, Ş. & Yüce, Ö. (2013). Turk. J. Chem. 37, 896–908. Google Scholar
Pauvert, M., Collet, S. C., Bertrand, M., Guingant, A. Y. & Evain, M. (2005). Tetrahedron Lett. 46, 2983–2987. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.