organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(1R,2R,7S,8R,9R)-N-(2-Hy­dr­oxy-2,6,6,9-tetra­methyl-12-oxatri­cyclo[7.2.1.01,7]dodecan-8-yl)acetamide

aLaboratoire de Chimie des Substances Naturelles, "Unité Associé au CNRST (URAC16)", Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, Université Cadi Ayyad, 40000 Marrakech, Morocco, and bLaboratoire de Chimie de Coordination, 205 route de Narbonne, 31077 Toulouse Cedex 04, France
*Correspondence e-mail: mazoir17@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 3 June 2017; accepted 1 July 2017; online 7 July 2017)

The title compound, C17H29NO3, was synthesized in two steps from β-hima­chalene (2,6,6,9-tetra­methylbi­cyclo­[5.4.01,7]undeca-1,8-diene), which was isolated from an oil of the Atlas cedar (Cedrus Atlantica). The asymmetric unit contains two independent mol­ecules (A and B): B features an intra­molecular O—H⋯O hydrogen bond whereas A forms an inter­molecular O—H⋯O link to B. Each mol­ecule is built up from a seven-membered ring to which a bridged six-membered ring is fused: the cyclo­heptane rings have twist-chair conformations, while the bridged cyclo­hexane rings display near-perfect boat conformations. In the crystal, the mol­ecules are linked by N—H⋯O and O—H⋯O hydrogen bonds forming helical chains propagating along the b-axis direction. Some weak C—H⋯O inter­actions are also observed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The bicyclic sesquiterpene β-himachalene is the main constituent of the essential oil of the Atlas cedar (Cedrus Atlantica) (El Haib et al., 2010[El Haib, A., Benharref, A., Parrès-Maynadié, S., Manoury, E., Daran, J. C., Urrutigoïty, M. & Gouygou, M. (2010). Tetrahedron Asymmetry, 21, 1272-1277.]; Loubidi et al., 2014[Loubidi, M., Agustin, D., Benharref, A. & Poli, R. (2014). C. R. Chim. 17, 549-556.]). The reactivity of this sesquiterpene and its derivatives has been studied extensively by our group (Benharref et al., 2017[Benharref, A., El Ammari, L., Saadi, M., Mazoir, N., Daran, J.-C. & Berraho, M. (2017). IUCrData, 2, x170584.] and references therein) in order to prepare new products with potential biological properties. Indeed, these compounds have been tested for their potential anti­fungal activity against the phytopathogen Botrytis cinerea (Daoubi et al., 2004[Daoubi, M., Durán-Patrón, R., Hmamouchi, M., Hernández-Galán, R., Benharref, A. & Collado, I. G. (2004). Pest Manag. Sci. 60, 927-932.]). Herein, we report on the synthesis and crystal structure of the title compound.

The asymmetric unit contains two independent mol­ecules having similar, but not identical conformations: they differ by the presence of an intra­molecular hydrogen bond in the mol­ecule B involving the O1B and O2B atoms (Table 1[link]). Each mol­ecule is built up from a seven-membered ring, which is fused to a bridged cyclo­hexane ring as shown in Fig. 1[link]. In both mol­ecules, the cyclo­heptane rings displays a twist-chair conformation as indicated by the total puckering amplitude QT = 0.7876 (5) Å and spherical polar angle θ = 34.56 (3)°, φ2 = 215.0 (5)° and φ3 = 13.7 (4)° for mol­ecule B and QT = 0.809 (4) Å, θ2 = 38.4 (3)°, φ2 =112.2 (5)°, φ3 = 219.3 (4)° for mol­ecule A, whereas the cyclo­hexane rings shows a near-perfect boat conformation with QT = 0.952 (5) Å and spherical polar angle θ = 89.4 (3)° and φ2 = 7.0 (3)° for mol­ecule B and QT = 0.937 (5) Å, θ2 = 89.2 (3)°, φ2 = 8.0 (3)° for mol­ecule A.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1Ai 0.86 2.33 3.084 (4) 147
N2—H2⋯O3Aii 0.86 2.15 2.851 (5) 139
O1A—H1A⋯O3Biii 0.82 1.90 2.712 (4) 169
O1B—H1B⋯O2B 0.82 2.32 2.752 (4) 114
C3A—H3A2⋯O1B 0.97 2.58 3.516 (5) 162
C15A—H15C⋯O3Biv 0.96 2.43 3.369 (6) 167
C17A—H17C⋯O1Ai 0.96 2.35 3.252 (6) 156
Symmetry codes: (i) x, y-1, z; (ii) x-1, y, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+1]; (iv) [-x+1, y-{\script{1\over 2}}, -z+1].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

The crystal structure features C—H⋯O, N—H⋯O and O—H⋯O hydrogen bonds (Table 1[link]). Classical hydrogen bonds link the mol­ecules into helical chains propagating along the b-axis direction (Fig. 2[link] and Table 1[link]). The unit-cell packing exhibits layered stacking when viewed along the b-axis direction, as shown in Fig. 3[link].

[Figure 2]
Figure 2
A view along the c axis of the crystal packing of the title compound, showing mol­ecules linked by N—H⋯O hydrogen bonds (dashed lines; see Table 1[link]), forming helical chains along [010]. For clarity, C-bound H atoms have been omitted.
[Figure 3]
Figure 3
Unit-cell packing of the title compound viewed along [010].

Synthesis and crystallization

4.0 g (17 mmol) of 2α,3α:6α,7α-diepoxyhimachalane (Lassaba et al., 1998[Lassaba, E., ElJamili, H., Chekroun, A., Benharref, A., Chiaroni, A., Riche, C. & Lavergne, J.-P. (1998). Synth. Commun. 28, 2641-2651.]) was dissolved in 30 ml of CH3CN and stirred at 273 K under argon. BF3OEt (3% mmol) was added and the reaction mixture was stirred and monitored by TLC. After completion of the reaction, the solvent was removed and the residue obtained was chromatographed on silica, eluting with hexa­ne–ethyl­acetate (88:12), which allowed the isolation of the title compound (yield: 3 g, 10 mmol, 60%). Colourless plates were recrystallized from ethyl acetate solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C17H29NO3
Mr 295.42
Crystal system, space group Monoclinic, P21
Temperature (K) 293
a, b, c (Å) 14.5077 (10), 7.9149 (4), 14.8297 (8)
β (°) 106.803 (7)
V3) 1630.15 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.50 × 0.25 × 0.12
 
Data collection
Diffractometer Rigaku Oxford Diffraction Xcalibur Eos Gemini ultra
Absorption correction Multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.628, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 16240, 6178, 4204
Rint 0.063
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.115, 0.99
No. of reflections 6178
No. of parameters 391
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.23
Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXS2014(Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); cell refinement: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: SHELXS2014(Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

(1R,2R,7S,8R,9R)-N-(2-Hydroxy-2,6,6,9-tetramethyl-12-oxatricyclo[7.2.1.01,7]dodecan-8-yl)acetamide top
Crystal data top
C17H29NO3F(000) = 648
Mr = 295.42Dx = 1.204 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 14.5077 (10) ÅCell parameters from 6178 reflections
b = 7.9149 (4) Åθ = 2.9–26.4°
c = 14.8297 (8) ŵ = 0.08 mm1
β = 106.803 (7)°T = 293 K
V = 1630.15 (17) Å3Plate, colourless
Z = 40.50 × 0.25 × 0.12 mm
Data collection top
Rigaku Oxford Diffraction Xcalibur Eos Gemini ultra
diffractometer
6178 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source4204 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
Detector resolution: 16.1978 pixels mm-1θmax = 26.4°, θmin = 3.0°
ω scansh = 1818
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku Oxford Diffraction, 2015)
k = 99
Tmin = 0.628, Tmax = 1.000l = 1818
16240 measured reflections
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0496P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
6178 reflectionsΔρmax = 0.20 e Å3
391 parametersΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.99 Å (methylene), 0.98 Å (methyl), 1.0Å (methine) with Uiso(H) = 1.2Ueq(CH and CH2) or Uiso(H) = 1.5Ueq(CH3). The coordinates of H atoms attached to N atoms were freely refined with Uiso(H) = 1.2Ueq(N) and the H attached to hydroxyl O atoms were fixed geometrically and treated as riding with O—H = 0.84Å and Uiso(H) = 1.5Ueq(O).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.6042 (3)0.9215 (5)0.3367 (3)0.0176 (9)
C1B0.1521 (3)0.7991 (5)0.1239 (3)0.0184 (9)
C2A0.5787 (3)1.1119 (5)0.3300 (3)0.0194 (9)
C2B0.2228 (3)0.8563 (5)0.0698 (3)0.0234 (10)
C3A0.5175 (3)1.1635 (5)0.2328 (3)0.0256 (11)
H3A10.50511.28380.23360.031*
H3A20.45591.10620.22010.031*
C3B0.2688 (3)0.7124 (6)0.0319 (3)0.0283 (11)
H3B10.31570.75980.00390.034*
H3B20.21930.65860.01820.034*
C4A0.5593 (3)1.1271 (5)0.1517 (3)0.0277 (11)
H4A10.62671.15940.17030.033*
H4A20.52631.19640.09820.033*
C4B0.3191 (3)0.5749 (6)0.1016 (3)0.0285 (11)
H4B10.35970.50860.07330.034*
H4B20.36030.62850.15760.034*
C5A0.5511 (4)0.9415 (6)0.1212 (3)0.0282 (11)
H5A10.54530.93810.05440.034*
H5A20.49140.89770.12890.034*
C5B0.2495 (3)0.4569 (5)0.1303 (3)0.0284 (11)
H5B10.27980.34680.14310.034*
H5B20.19290.44410.07660.034*
C6A0.6328 (3)0.8185 (5)0.1716 (3)0.0216 (10)
C6B0.2152 (3)0.5072 (5)0.2162 (3)0.0241 (10)
C7A0.6721 (3)0.8589 (5)0.2791 (3)0.0162 (9)
H7A0.71710.95260.28240.019*
C7B0.1981 (3)0.7020 (5)0.2176 (3)0.0188 (9)
H7B0.26250.75110.24260.023*
C8A0.7331 (3)0.7213 (5)0.3489 (3)0.0182 (9)
H8A0.79640.77160.37850.022*
C8B0.1376 (3)0.7772 (5)0.2814 (3)0.0204 (10)
H8B0.17950.85950.32330.024*
C9A0.6804 (4)0.7145 (5)0.4250 (3)0.0248 (11)
C9B0.0608 (3)0.8793 (5)0.2109 (3)0.0202 (10)
C10A0.5781 (3)0.6436 (5)0.3840 (3)0.0274 (11)
H10A0.55090.60870.43360.033*
H10B0.57780.54830.34280.033*
C10B0.0064 (3)0.7649 (5)0.1357 (3)0.0238 (10)
H10C0.02360.66360.16380.029*
H10D0.06460.82430.10200.029*
C11A0.5228 (3)0.7952 (5)0.3287 (3)0.0273 (11)
H11C0.49120.76580.26350.033*
H11D0.47530.83840.35740.033*
C11B0.0558 (3)0.7226 (6)0.0701 (3)0.0234 (10)
H11A0.06080.60160.06250.028*
H11B0.03030.77470.00870.028*
C12A0.5288 (4)1.1601 (5)0.4038 (3)0.0295 (11)
H12D0.51881.28000.40240.044*
H12E0.56841.12720.46500.044*
H12F0.46781.10330.39030.044*
C12B0.1739 (4)0.9771 (6)0.0103 (3)0.0367 (13)
H12A0.22081.02010.03870.055*
H12B0.14551.06920.01420.055*
H12C0.12470.91760.05680.055*
C13A0.5922 (4)0.6396 (6)0.1448 (3)0.0292 (11)
H13D0.64440.56070.15420.044*
H13E0.55470.63820.07980.044*
H13F0.55230.60840.18360.044*
C13B0.2971 (4)0.4656 (6)0.3050 (3)0.0340 (12)
H13A0.30770.34570.30870.051*
H13B0.28000.50300.35960.051*
H13C0.35490.52180.30230.051*
C14A0.7174 (4)0.8430 (6)0.1309 (3)0.0321 (12)
H14D0.69870.80840.06610.048*
H14E0.77090.77590.16580.048*
H14F0.73560.96000.13510.048*
C14B0.1300 (4)0.3921 (5)0.2153 (3)0.0328 (12)
H14A0.11980.39260.27650.049*
H14B0.14360.27900.19950.049*
H14C0.07310.43260.16940.049*
C15A0.7375 (4)0.6418 (6)0.5174 (3)0.0401 (14)
H15A0.70210.65420.56260.060*
H15B0.79780.70050.53930.060*
H15C0.74930.52420.50960.060*
C15B0.0104 (4)1.0103 (5)0.2527 (3)0.0305 (11)
H15D0.02381.08670.20420.046*
H15E0.05701.07200.30050.046*
H15F0.03430.95580.28000.046*
C16A0.8330 (3)0.5161 (5)0.2981 (3)0.0244 (10)
C16B0.1403 (4)0.6587 (5)0.4341 (3)0.0252 (11)
C17A0.8449 (4)0.3346 (5)0.2726 (3)0.0346 (12)
H17A0.90660.29380.30950.052*
H17B0.84070.32730.20690.052*
H17C0.79500.26710.28520.052*
C17B0.0852 (4)0.5607 (6)0.4879 (3)0.0427 (14)
H17D0.02740.62090.48690.064*
H17E0.12410.54680.55180.064*
H17F0.06870.45180.45930.064*
N10.7507 (3)0.5542 (4)0.3163 (2)0.0207 (8)
H10.70670.47810.30840.025*
N20.0990 (3)0.6698 (4)0.3410 (2)0.0207 (8)
H20.04810.61150.31580.025*
O1A0.6662 (2)1.2086 (3)0.34675 (18)0.0217 (7)
H1A0.69661.20280.40260.033*
O1B0.3005 (2)0.9460 (4)0.1336 (2)0.0299 (8)
H1B0.27901.00980.16620.045*
O2A0.6627 (2)0.8915 (3)0.43286 (17)0.0228 (7)
O2B0.1198 (2)0.9552 (3)0.15845 (19)0.0219 (7)
O3A0.8965 (2)0.6211 (4)0.3013 (2)0.0354 (8)
O3B0.2193 (3)0.7230 (4)0.4729 (2)0.0359 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.019 (3)0.017 (2)0.016 (2)0.0008 (19)0.0030 (19)0.0002 (18)
C1B0.016 (3)0.017 (2)0.019 (2)0.0011 (19)0.001 (2)0.0040 (18)
C2A0.016 (2)0.020 (2)0.023 (2)0.0002 (19)0.005 (2)0.0009 (18)
C2B0.018 (3)0.028 (2)0.021 (2)0.003 (2)0.002 (2)0.0015 (19)
C3A0.023 (3)0.017 (2)0.033 (2)0.001 (2)0.002 (2)0.0001 (19)
C3B0.023 (3)0.039 (3)0.024 (2)0.005 (2)0.008 (2)0.004 (2)
C4A0.030 (3)0.029 (2)0.017 (2)0.005 (2)0.004 (2)0.006 (2)
C4B0.023 (3)0.033 (3)0.030 (2)0.002 (2)0.009 (2)0.008 (2)
C5A0.032 (3)0.032 (3)0.016 (2)0.007 (2)0.000 (2)0.000 (2)
C5B0.026 (3)0.020 (2)0.038 (3)0.005 (2)0.008 (2)0.005 (2)
C6A0.022 (3)0.026 (2)0.016 (2)0.003 (2)0.003 (2)0.0012 (18)
C6B0.024 (3)0.018 (2)0.031 (2)0.002 (2)0.008 (2)0.0037 (19)
C7A0.012 (2)0.013 (2)0.022 (2)0.0017 (17)0.0038 (19)0.0044 (17)
C7B0.015 (2)0.018 (2)0.020 (2)0.0020 (18)0.001 (2)0.0019 (18)
C8A0.018 (3)0.014 (2)0.020 (2)0.0010 (19)0.001 (2)0.0009 (18)
C8B0.020 (3)0.022 (2)0.019 (2)0.005 (2)0.004 (2)0.0030 (18)
C9A0.041 (3)0.014 (2)0.022 (2)0.007 (2)0.014 (2)0.0001 (19)
C9B0.015 (2)0.021 (2)0.024 (2)0.0012 (19)0.005 (2)0.0011 (19)
C10A0.037 (3)0.018 (2)0.036 (3)0.004 (2)0.024 (2)0.005 (2)
C10B0.016 (3)0.027 (3)0.025 (2)0.0004 (19)0.000 (2)0.0019 (19)
C11A0.028 (3)0.024 (2)0.035 (3)0.005 (2)0.018 (2)0.008 (2)
C11B0.018 (3)0.028 (2)0.021 (2)0.001 (2)0.001 (2)0.002 (2)
C12A0.033 (3)0.021 (2)0.037 (3)0.004 (2)0.015 (2)0.002 (2)
C12B0.041 (4)0.038 (3)0.036 (3)0.001 (2)0.018 (3)0.009 (2)
C13A0.033 (3)0.029 (2)0.021 (2)0.001 (2)0.000 (2)0.006 (2)
C13B0.030 (3)0.032 (3)0.038 (3)0.012 (2)0.007 (3)0.014 (2)
C14A0.043 (3)0.033 (3)0.024 (2)0.007 (2)0.015 (2)0.002 (2)
C14B0.036 (3)0.020 (2)0.047 (3)0.005 (2)0.018 (3)0.004 (2)
C15A0.068 (4)0.027 (2)0.027 (3)0.013 (3)0.015 (3)0.003 (2)
C15B0.031 (3)0.024 (2)0.039 (3)0.001 (2)0.014 (3)0.000 (2)
C16A0.019 (3)0.030 (3)0.023 (2)0.007 (2)0.006 (2)0.010 (2)
C16B0.031 (3)0.021 (2)0.021 (2)0.007 (2)0.003 (2)0.0014 (19)
C17A0.035 (3)0.030 (3)0.046 (3)0.008 (2)0.023 (3)0.004 (2)
C17B0.053 (4)0.048 (3)0.030 (3)0.010 (3)0.015 (3)0.014 (2)
N10.020 (2)0.0172 (18)0.0270 (19)0.0004 (16)0.0094 (18)0.0022 (15)
N20.020 (2)0.023 (2)0.0179 (18)0.0069 (16)0.0031 (17)0.0009 (15)
O1A0.0243 (19)0.0184 (15)0.0208 (15)0.0048 (14)0.0038 (14)0.0010 (14)
O1B0.025 (2)0.0289 (18)0.0359 (18)0.0071 (15)0.0092 (16)0.0043 (14)
O2A0.034 (2)0.0173 (15)0.0175 (15)0.0028 (14)0.0072 (14)0.0005 (12)
O2B0.0228 (19)0.0168 (15)0.0272 (15)0.0009 (13)0.0089 (15)0.0019 (13)
O3A0.022 (2)0.0331 (18)0.053 (2)0.0023 (16)0.0156 (17)0.0059 (16)
O3B0.040 (2)0.0319 (18)0.0258 (17)0.0023 (17)0.0064 (17)0.0021 (15)
Geometric parameters (Å, º) top
C1A—O2A1.453 (5)C9B—C15B1.502 (6)
C1A—C11A1.526 (6)C9B—C10B1.544 (6)
C1A—C2A1.548 (5)C10A—C11A1.543 (6)
C1A—C7A1.560 (5)C10A—H10A0.9700
C1B—O2B1.465 (5)C10A—H10B0.9700
C1B—C11B1.520 (6)C10B—C11B1.542 (6)
C1B—C2B1.542 (6)C10B—H10C0.9700
C1B—C7B1.560 (6)C10B—H10D0.9700
C2A—O1A1.442 (5)C11A—H11C0.9700
C2A—C3A1.514 (6)C11A—H11D0.9700
C2A—C12A1.524 (5)C11B—H11A0.9700
C2B—O1B1.432 (5)C11B—H11B0.9700
C2B—C3B1.508 (6)C12A—H12D0.9600
C2B—C12B1.530 (6)C12A—H12E0.9600
C3A—C4A1.524 (6)C12A—H12F0.9600
C3A—H3A10.9700C12B—H12A0.9600
C3A—H3A20.9700C12B—H12B0.9600
C3B—C4B1.532 (6)C12B—H12C0.9600
C3B—H3B10.9700C13A—H13D0.9600
C3B—H3B20.9700C13A—H13E0.9600
C4A—C5A1.532 (6)C13A—H13F0.9600
C4A—H4A10.9700C13B—H13A0.9600
C4A—H4A20.9700C13B—H13B0.9600
C4B—C5B1.523 (6)C13B—H13C0.9600
C4B—H4B10.9700C14A—H14D0.9600
C4B—H4B20.9700C14A—H14E0.9600
C5A—C6A1.549 (6)C14A—H14F0.9600
C5A—H5A10.9700C14B—H14A0.9600
C5A—H5A20.9700C14B—H14B0.9600
C5B—C6B1.548 (5)C14B—H14C0.9600
C5B—H5B10.9700C15A—H15A0.9600
C5B—H5B20.9700C15A—H15B0.9600
C6A—C14A1.529 (6)C15A—H15C0.9600
C6A—C13A1.541 (6)C15B—H15D0.9600
C6A—C7A1.563 (5)C15B—H15E0.9600
C6B—C13B1.533 (6)C15B—H15F0.9600
C6B—C14B1.533 (6)C16A—O3A1.232 (5)
C6B—C7B1.563 (6)C16A—N11.332 (5)
C7A—C8A1.586 (5)C16A—C17A1.508 (6)
C7A—H7A0.9800C16B—O3B1.234 (5)
C7B—C8B1.580 (5)C16B—N21.339 (5)
C7B—H7B0.9800C16B—C17B1.498 (6)
C8A—N11.456 (5)C17A—H17A0.9600
C8A—C9A1.536 (5)C17A—H17B0.9600
C8A—H8A0.9800C17A—H17C0.9600
C8B—N21.451 (5)C17B—H17D0.9600
C8B—C9B1.522 (6)C17B—H17E0.9600
C8B—H8B0.9800C17B—H17F0.9600
C9A—O2A1.435 (5)N1—H10.8600
C9A—C15A1.496 (6)N2—H20.8600
C9A—C10A1.537 (6)O1A—H1A0.8200
C9B—O2B1.443 (5)O1B—H1B0.8200
O2A—C1A—C11A100.9 (3)C15B—C9B—C8B115.5 (3)
O2A—C1A—C2A106.4 (3)O2B—C9B—C10B101.8 (3)
C11A—C1A—C2A117.9 (3)C15B—C9B—C10B114.9 (4)
O2A—C1A—C7A101.7 (3)C8B—C9B—C10B111.7 (3)
C11A—C1A—C7A110.3 (3)C9A—C10A—C11A102.7 (3)
C2A—C1A—C7A116.9 (3)C9A—C10A—H10A111.2
O2B—C1B—C11B100.4 (3)C11A—C10A—H10A111.2
O2B—C1B—C2B105.2 (3)C9A—C10A—H10B111.2
C11B—C1B—C2B119.6 (3)C11A—C10A—H10B111.2
O2B—C1B—C7B101.6 (3)H10A—C10A—H10B109.1
C11B—C1B—C7B111.3 (3)C11B—C10B—C9B102.7 (3)
C2B—C1B—C7B115.5 (3)C11B—C10B—H10C111.2
O1A—C2A—C3A105.4 (3)C9B—C10B—H10C111.2
O1A—C2A—C12A108.7 (3)C11B—C10B—H10D111.2
C3A—C2A—C12A110.3 (4)C9B—C10B—H10D111.2
O1A—C2A—C1A108.9 (3)H10C—C10B—H10D109.1
C3A—C2A—C1A112.7 (3)C1A—C11A—C10A101.3 (4)
C12A—C2A—C1A110.6 (3)C1A—C11A—H11C111.5
O1B—C2B—C3B105.8 (4)C10A—C11A—H11C111.5
O1B—C2B—C12B107.6 (4)C1A—C11A—H11D111.5
C3B—C2B—C12B109.8 (3)C10A—C11A—H11D111.5
O1B—C2B—C1B108.5 (3)H11C—C11A—H11D109.3
C3B—C2B—C1B113.9 (3)C1B—C11B—C10B101.5 (3)
C12B—C2B—C1B111.0 (4)C1B—C11B—H11A111.5
C2A—C3A—C4A116.3 (4)C10B—C11B—H11A111.5
C2A—C3A—H3A1108.2C1B—C11B—H11B111.5
C4A—C3A—H3A1108.2C10B—C11B—H11B111.5
C2A—C3A—H3A2108.2H11A—C11B—H11B109.3
C4A—C3A—H3A2108.2C2A—C12A—H12D109.5
H3A1—C3A—H3A2107.4C2A—C12A—H12E109.5
C2B—C3B—C4B117.4 (3)H12D—C12A—H12E109.5
C2B—C3B—H3B1107.9C2A—C12A—H12F109.5
C4B—C3B—H3B1107.9H12D—C12A—H12F109.5
C2B—C3B—H3B2107.9H12E—C12A—H12F109.5
C4B—C3B—H3B2107.9C2B—C12B—H12A109.5
H3B1—C3B—H3B2107.2C2B—C12B—H12B109.5
C3A—C4A—C5A113.5 (4)H12A—C12B—H12B109.5
C3A—C4A—H4A1108.9C2B—C12B—H12C109.5
C5A—C4A—H4A1108.9H12A—C12B—H12C109.5
C3A—C4A—H4A2108.9H12B—C12B—H12C109.5
C5A—C4A—H4A2108.9C6A—C13A—H13D109.5
H4A1—C4A—H4A2107.7C6A—C13A—H13E109.5
C5B—C4B—C3B113.6 (4)H13D—C13A—H13E109.5
C5B—C4B—H4B1108.9C6A—C13A—H13F109.5
C3B—C4B—H4B1108.9H13D—C13A—H13F109.5
C5B—C4B—H4B2108.9H13E—C13A—H13F109.5
C3B—C4B—H4B2108.9C6B—C13B—H13A109.5
H4B1—C4B—H4B2107.7C6B—C13B—H13B109.5
C4A—C5A—C6A118.5 (4)H13A—C13B—H13B109.5
C4A—C5A—H5A1107.7C6B—C13B—H13C109.5
C6A—C5A—H5A1107.7H13A—C13B—H13C109.5
C4A—C5A—H5A2107.7H13B—C13B—H13C109.5
C6A—C5A—H5A2107.7C6A—C14A—H14D109.5
H5A1—C5A—H5A2107.1C6A—C14A—H14E109.5
C4B—C5B—C6B118.0 (4)H14D—C14A—H14E109.5
C4B—C5B—H5B1107.8C6A—C14A—H14F109.5
C6B—C5B—H5B1107.8H14D—C14A—H14F109.5
C4B—C5B—H5B2107.8H14E—C14A—H14F109.5
C6B—C5B—H5B2107.8C6B—C14B—H14A109.5
H5B1—C5B—H5B2107.2C6B—C14B—H14B109.5
C14A—C6A—C13A107.8 (3)H14A—C14B—H14B109.5
C14A—C6A—C5A108.6 (3)C6B—C14B—H14C109.5
C13A—C6A—C5A105.7 (4)H14A—C14B—H14C109.5
C14A—C6A—C7A106.2 (4)H14B—C14B—H14C109.5
C13A—C6A—C7A116.8 (3)C9A—C15A—H15A109.5
C5A—C6A—C7A111.5 (3)C9A—C15A—H15B109.5
C13B—C6B—C14B107.6 (4)H15A—C15A—H15B109.5
C13B—C6B—C5B107.3 (4)C9A—C15A—H15C109.5
C14B—C6B—C5B106.9 (3)H15A—C15A—H15C109.5
C13B—C6B—C7B106.7 (3)H15B—C15A—H15C109.5
C14B—C6B—C7B117.1 (4)C9B—C15B—H15D109.5
C5B—C6B—C7B110.8 (3)C9B—C15B—H15E109.5
C1A—C7A—C6A121.4 (3)H15D—C15B—H15E109.5
C1A—C7A—C8A100.5 (3)C9B—C15B—H15F109.5
C6A—C7A—C8A119.7 (3)H15D—C15B—H15F109.5
C1A—C7A—H7A104.4H15E—C15B—H15F109.5
C6A—C7A—H7A104.4O3A—C16A—N1122.9 (4)
C8A—C7A—H7A104.4O3A—C16A—C17A120.9 (4)
C1B—C7B—C6B120.2 (3)N1—C16A—C17A116.2 (4)
C1B—C7B—C8B100.3 (3)O3B—C16B—N2122.1 (4)
C6B—C7B—C8B119.8 (3)O3B—C16B—C17B122.2 (4)
C1B—C7B—H7B104.9N2—C16B—C17B115.8 (4)
C6B—C7B—H7B104.9C16A—C17A—H17A109.5
C8B—C7B—H7B104.9C16A—C17A—H17B109.5
N1—C8A—C9A112.6 (3)H17A—C17A—H17B109.5
N1—C8A—C7A121.6 (3)C16A—C17A—H17C109.5
C9A—C8A—C7A101.6 (3)H17A—C17A—H17C109.5
N1—C8A—H8A106.7H17B—C17A—H17C109.5
C9A—C8A—H8A106.7C16B—C17B—H17D109.5
C7A—C8A—H8A106.7C16B—C17B—H17E109.5
N2—C8B—C9B113.3 (4)H17D—C17B—H17E109.5
N2—C8B—C7B121.5 (3)C16B—C17B—H17F109.5
C9B—C8B—C7B102.2 (3)H17D—C17B—H17F109.5
N2—C8B—H8B106.3H17E—C17B—H17F109.5
C9B—C8B—H8B106.3C16A—N1—C8A121.8 (4)
C7B—C8B—H8B106.3C16A—N1—H1119.1
O2A—C9A—C15A111.4 (3)C8A—N1—H1119.1
O2A—C9A—C8A99.5 (3)C16B—N2—C8B122.1 (4)
C15A—C9A—C8A115.1 (4)C16B—N2—H2119.0
O2A—C9A—C10A102.3 (4)C8B—N2—H2119.0
C15A—C9A—C10A115.9 (4)C2A—O1A—H1A109.5
C8A—C9A—C10A110.6 (3)C2B—O1B—H1B109.5
O2B—C9B—C15B111.7 (3)C9A—O2A—C1A98.5 (3)
O2B—C9B—C8B99.2 (3)C9B—O2B—C1B97.8 (3)
O2A—C1A—C2A—O1A63.2 (4)C14B—C6B—C7B—C8B40.9 (6)
C11A—C1A—C2A—O1A175.4 (3)C5B—C6B—C7B—C8B163.8 (4)
C7A—C1A—C2A—O1A49.5 (4)C1A—C7A—C8A—N1133.3 (4)
O2A—C1A—C2A—C3A179.8 (3)C6A—C7A—C8A—N12.5 (6)
C11A—C1A—C2A—C3A68.0 (4)C1A—C7A—C8A—C9A7.3 (4)
C7A—C1A—C2A—C3A67.0 (5)C6A—C7A—C8A—C9A128.5 (4)
O2A—C1A—C2A—C12A56.2 (4)C1B—C7B—C8B—N2135.4 (4)
C11A—C1A—C2A—C12A56.0 (5)C6B—C7B—C8B—N21.5 (6)
C7A—C1A—C2A—C12A169.0 (3)C1B—C7B—C8B—C9B8.0 (4)
O2B—C1B—C2B—O1B59.7 (4)C6B—C7B—C8B—C9B125.9 (4)
C11B—C1B—C2B—O1B171.4 (3)N1—C8A—C9A—O2A172.7 (3)
C7B—C1B—C2B—O1B51.5 (4)C7A—C8A—C9A—O2A40.9 (4)
O2B—C1B—C2B—C3B177.2 (3)N1—C8A—C9A—C15A68.1 (5)
C11B—C1B—C2B—C3B71.1 (5)C7A—C8A—C9A—C15A160.1 (4)
C7B—C1B—C2B—C3B66.0 (4)N1—C8A—C9A—C10A65.6 (4)
O2B—C1B—C2B—C12B58.4 (4)C7A—C8A—C9A—C10A66.2 (4)
C11B—C1B—C2B—C12B53.3 (5)N2—C8B—C9B—O2B174.4 (3)
C7B—C1B—C2B—C12B169.5 (4)C7B—C8B—C9B—O2B41.9 (3)
O1A—C2A—C3A—C4A61.4 (4)N2—C8B—C9B—C15B66.0 (5)
C12A—C2A—C3A—C4A178.6 (4)C7B—C8B—C9B—C15B161.5 (4)
C1A—C2A—C3A—C4A57.2 (5)N2—C8B—C9B—C10B67.7 (4)
O1B—C2B—C3B—C4B65.9 (5)C7B—C8B—C9B—C10B64.8 (4)
C12B—C2B—C3B—C4B178.2 (4)O2A—C9A—C10A—C11A28.0 (4)
C1B—C2B—C3B—C4B53.1 (5)C15A—C9A—C10A—C11A149.5 (4)
C2A—C3A—C4A—C5A77.3 (5)C8A—C9A—C10A—C11A77.2 (4)
C2B—C3B—C4B—C5B73.9 (5)O2B—C9B—C10B—C11B28.4 (4)
C3A—C4A—C5A—C6A87.9 (5)C15B—C9B—C10B—C11B149.3 (3)
C3B—C4B—C5B—C6B88.7 (5)C8B—C9B—C10B—C11B76.7 (4)
C4A—C5A—C6A—C14A78.9 (4)O2A—C1A—C11A—C10A38.5 (3)
C4A—C5A—C6A—C13A165.7 (4)C2A—C1A—C11A—C10A153.8 (3)
C4A—C5A—C6A—C7A37.8 (5)C7A—C1A—C11A—C10A68.4 (4)
C4B—C5B—C6B—C13B77.7 (5)C9A—C10A—C11A—C1A6.5 (4)
C4B—C5B—C6B—C14B167.1 (4)O2B—C1B—C11B—C10B39.5 (4)
C4B—C5B—C6B—C7B38.4 (5)C2B—C1B—C11B—C10B153.8 (3)
O2A—C1A—C7A—C6A163.0 (3)C7B—C1B—C11B—C10B67.5 (4)
C11A—C1A—C7A—C6A56.6 (5)C9B—C10B—C11B—C1B6.9 (4)
C2A—C1A—C7A—C6A81.6 (5)O3A—C16A—N1—C8A5.1 (6)
O2A—C1A—C7A—C8A28.2 (3)C17A—C16A—N1—C8A175.0 (3)
C11A—C1A—C7A—C8A78.2 (4)C9A—C8A—N1—C16A140.3 (4)
C2A—C1A—C7A—C8A143.6 (3)C7A—C8A—N1—C16A98.9 (5)
C14A—C6A—C7A—C1A154.1 (3)O3B—C16B—N2—C8B8.7 (6)
C13A—C6A—C7A—C1A85.7 (5)C17B—C16B—N2—C8B172.3 (4)
C5A—C6A—C7A—C1A35.9 (5)C9B—C8B—N2—C16B135.4 (4)
C14A—C6A—C7A—C8A79.4 (4)C7B—C8B—N2—C16B102.4 (5)
C13A—C6A—C7A—C8A40.8 (5)C15A—C9A—O2A—C1A177.5 (4)
C5A—C6A—C7A—C8A162.5 (4)C8A—C9A—O2A—C1A60.7 (4)
O2B—C1B—C7B—C6B161.6 (4)C10A—C9A—O2A—C1A52.9 (3)
C11B—C1B—C7B—C6B55.4 (5)C11A—C1A—O2A—C9A57.6 (3)
C2B—C1B—C7B—C6B85.1 (5)C2A—C1A—O2A—C9A178.9 (3)
O2B—C1B—C7B—C8B27.9 (4)C7A—C1A—O2A—C9A56.0 (3)
C11B—C1B—C7B—C8B78.3 (4)C15B—C9B—O2B—C1B176.7 (3)
C2B—C1B—C7B—C8B141.2 (3)C8B—C9B—O2B—C1B61.0 (3)
C13B—C6B—C7B—C1B155.4 (4)C10B—C9B—O2B—C1B53.6 (3)
C14B—C6B—C7B—C1B84.0 (5)C11B—C1B—O2B—C9B58.7 (3)
C5B—C6B—C7B—C1B38.9 (5)C2B—C1B—O2B—C9B176.6 (3)
C13B—C6B—C7B—C8B79.6 (5)C7B—C1B—O2B—C9B55.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1Ai0.862.333.084 (4)147
N2—H2···O3Aii0.862.152.851 (5)139
O1A—H1A···O3Biii0.821.902.712 (4)169
O1B—H1B···O2B0.822.322.752 (4)114
C3A—H3A2···O1B0.972.583.516 (5)162
C15A—H15C···O3Biv0.962.433.369 (6)167
C17A—H17C···O1Ai0.962.353.252 (6)156
Symmetry codes: (i) x, y1, z; (ii) x1, y, z; (iii) x+1, y+1/2, z+1; (iv) x+1, y1/2, z+1.
 

Acknowledgements

The authors thank the Laboratoire de Chimie de Coordination, UPR-CNRS 8241 Toulouse, for the X-ray measurements.

References

First citationBenharref, A., El Ammari, L., Saadi, M., Mazoir, N., Daran, J.-C. & Berraho, M. (2017). IUCrData, 2, x170584.  Google Scholar
First citationDaoubi, M., Durán-Patrón, R., Hmamouchi, M., Hernández-Galán, R., Benharref, A. & Collado, I. G. (2004). Pest Manag. Sci. 60, 927–932.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEl Haib, A., Benharref, A., Parrès-Maynadié, S., Manoury, E., Daran, J. C., Urrutigoïty, M. & Gouygou, M. (2010). Tetrahedron Asymmetry, 21, 1272–1277.  CAS Google Scholar
First citationLassaba, E., ElJamili, H., Chekroun, A., Benharref, A., Chiaroni, A., Riche, C. & Lavergne, J.-P. (1998). Synth. Commun. 28, 2641–2651.  Web of Science CrossRef CAS Google Scholar
First citationLoubidi, M., Agustin, D., Benharref, A. & Poli, R. (2014). C. R. Chim. 17, 549–556.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds