metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis{2-[({[3-(di­methylazaniumyl)propyl]imino}methyl)phenyl]sulfanido}nickel(II) tetra­phenyl­borate

aDepartment of Chemistry, Wichita State University, 1845 Fairmount, Wichita, KS 67260-0051, USA
*Correspondence e-mail: david.eichhorn@wichita.edu

Edited by R. J. Butcher, Howard University, USA (Received 25 June 2017; accepted 19 July 2017; online 21 July 2017)

In the title compound, [Ni(C12H18N2S)2](C24H20B)2, the NiII atom is coordinated by two ligands via the thiol­ate S and the imine N atoms. The amine N atoms are protonated and inter­act with the phenyl rings of the BPh4 anions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

We have previously published the reaction of 2,2′-di­thio­dibenzaldehyde with NiCl2 and N,N-di­methyl­ethylenedi­amine to produce a nickel complex of a tridentate ligand in which the Ni is coordinated by the three potential donor atoms (imine N, amine N, and thiol­ate S) of the ligand with the square-planar Ni coordination sphere completed by a Cl ligand. When Ni(BPh4)2 was used as the nickel source, a related species was isolated in which the fourth coordination site is occupied by a thiol­ate derived from the tridentate ligand. (Zimmerman, et al., 2011[Zimmerman, J. R., Smucker, B. W., Dain, R. P., Van Stipdonk, M. J. & Eichhorn, D. M. (2011). Inorg. Chim. Acta, 373, 54-61.]) In an analogous reaction using N,N-di­methyl­propyl­enedi­amine, the title complex was isolated in which the potentially tridentate ligand utilizes only the imine N and thiol­ate S atoms to bind to Ni (Table 1[link]).

Table 1
Selected geometric parameters (Å, °)

Ni1—S1 2.1665 (8) Ni1—N1 1.922 (2)
       
S1—Ni1—S1i 86.93 (4) N1—Ni1—S1 91.85 (7)
N1—Ni1—S1i 165.78 (7) N1i—Ni1—S1i 91.85 (7)
N1i—Ni1—S1 165.78 (7) N1i—Ni1—N1 92.73 (13)
Symmetry code: (i) [-x+1, y, -z+{\script{3\over 2}}].

Two ligands coordinate to the Ni atom, related to each other by a crystallographic twofold rotation axis (Fig. 1[link]). The coordination around Ni deviates somewhat from ideal square planar, with the chelate rings of the two ligands rotated by 19.40 (9)° with respect to each other. The amine N atoms are protonated, with each proton participating in a hydrogen bond with a phenyl ring of one BPh4 anion (Fig. 2[link], Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C25–C30 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯Cg 0.98 2.54 3.510 (3) 171
[Figure 1]
Figure 1
The mol­ecular structure of the cation in the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity.
[Figure 2]
Figure 2
Part of the crystal structure of the title compound showing inter­actions between the protonated amine groups on the cation and the BPh4 anions, indicated by red lines connecting the N—H hydrogen atom and the orange sphere representing the centroid of the phenyl ring.

Synthesis and crystallization

The title compound was synthesized and crystallized by layering a solution of 0.10 g (0.90 mmol) of N,N-di­methyl­propyl­enedi­amine and 0.701 g (1.0 mmol) of [Ni(BPh4)2] in 20 mL of ethyl acetate on top of a solution of 0.123 g (0.45 mmol) of 2,2′-di­thio­dibenzaldehyde in 10 mL of di­chloro­methane.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [Ni(C12H18N2S)2](C24H20B)2
Mr 1141.81
Crystal system, space group Monoclinic, C2/c
Temperature (K) 150
a, b, c (Å) 16.376 (2), 9.9864 (14), 36.605 (5)
β (°) 99.419 (4)
V3) 5905.6 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.45
Crystal size (mm) 0.63 × 0.60 × 0.34
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Numerical (SADABS; Bruker, 2012[Bruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.599, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 30373, 6401, 4454
Rint 0.076
(sin θ/λ)max−1) 0.641
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.109, 1.05
No. of reflections 6401
No. of parameters 368
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.71
Computer programs: APEX2 (Bruker, 2013[Bruker (2013). APEX and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). APEX and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), XL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015); program(s) used to refine structure: XL (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Bis{2-[({[3-(dimethylazaniumyl)propyl]imino}methyl)phenyl]sulfanido}nickel(II) tetraphenylborate top
Crystal data top
[Ni(C12H18N2S2)2](C24H20B)2F(000) = 2424
Mr = 1141.81Dx = 1.284 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 16.376 (2) ÅCell parameters from 4652 reflections
b = 9.9864 (14) Åθ = 2.6–24.3°
c = 36.605 (5) ŵ = 0.45 mm1
β = 99.419 (4)°T = 150 K
V = 5905.6 (14) Å3Block, violet
Z = 40.63 × 0.60 × 0.34 mm
Data collection top
Bruker APEXII CCD
diffractometer
6401 independent reflections
Radiation source: sealed X-ray tube4454 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
Detector resolution: 5.6 pixels mm-1θmax = 27.1°, θmin = 3.1°
φ and ω scansh = 2020
Absorption correction: numerical
(SADABS; Bruker, 2012)
k = 1212
Tmin = 0.599, Tmax = 0.746l = 4646
30373 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.029P)2 + 11.6381P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
6401 reflectionsΔρmax = 0.30 e Å3
368 parametersΔρmin = 0.71 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. 1. Fixed Uiso

At 1.2 times of:

All C(H) groups, All C(H,H) groups, All N(H) groups

At 1.5 times of:

All C(H,H,H) groups

2.a Ternary CH refined with riding coordinates:

N2(H2)

2.b Secondary CH2 refined with riding coordinates:

C8(H8A,H8B), C9(H9A,H9B), C10(H10A,H10B)

2.c Aromatic/amide H refined with riding coordinates:

C18(H18), C3(H3), C17(H17), C15(H15), C1(H1), C16(H16), C14(H14), C6(H6),

C32(H32), C5(H5), C4(H4), C33(H33), C34(H34), C36(H36), C35(H35), C24(H24),

C26(H26), C23(H23), C20(H20), C21(H21), C30(H30), C22(H22), C29(H29), C27(H27),

C28(H28)

2.d Idealised Me refined as rotating group:

C11(H11A,H11B,H11C), C12(H12A,H12B,H12C)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.94419 (5)0.75000.01869 (13)
S10.40969 (4)1.10165 (7)0.75171 (2)0.02515 (18)
N10.41471 (13)0.8114 (2)0.73848 (6)0.0198 (5)
N20.40986 (14)0.9765 (2)0.62926 (6)0.0281 (6)
H20.43570.92250.61200.034*
C180.50475 (16)0.4326 (3)0.66288 (7)0.0220 (6)
H180.45150.40900.65180.026*
C30.26569 (17)0.8453 (3)0.80122 (8)0.0271 (7)
H30.24630.75770.79840.033*
C20.32047 (16)0.8932 (3)0.77834 (7)0.0211 (6)
C170.52741 (18)0.4125 (3)0.70094 (8)0.0275 (7)
H170.48960.37580.71450.033*
C150.66161 (19)0.4988 (3)0.69757 (8)0.0285 (7)
H150.71490.52100.70890.034*
C130.55877 (17)0.4869 (2)0.64052 (7)0.0209 (6)
C10.34617 (17)0.8015 (3)0.75121 (7)0.0218 (6)
H10.31070.73150.74260.026*
C310.45004 (16)0.4282 (3)0.57731 (7)0.0208 (6)
C160.60599 (19)0.4470 (3)0.71857 (8)0.0281 (6)
H160.62110.43560.74400.034*
C140.63840 (17)0.5177 (3)0.65982 (8)0.0253 (6)
H140.67730.55260.64650.030*
C60.31900 (17)1.1093 (3)0.80796 (8)0.0274 (7)
H60.33531.19850.81020.033*
C190.61271 (16)0.4398 (3)0.57707 (7)0.0209 (6)
C320.37278 (16)0.4651 (3)0.58659 (8)0.0247 (6)
H320.37110.53400.60350.030*
C50.26801 (18)1.0579 (3)0.83128 (8)0.0318 (7)
H50.25221.11230.84950.038*
C250.52708 (16)0.6677 (3)0.58324 (8)0.0215 (6)
C80.42913 (17)0.7166 (3)0.70892 (7)0.0226 (6)
H8A0.37940.66430.70110.027*
H8B0.47340.65550.71860.027*
C70.34641 (16)1.0285 (3)0.78095 (7)0.0223 (6)
C40.24024 (17)0.9263 (3)0.82782 (8)0.0303 (7)
H40.20500.89320.84320.036*
C330.29891 (18)0.4027 (3)0.57146 (8)0.0303 (7)
H330.24960.42920.57880.036*
C340.29856 (18)0.3015 (3)0.54565 (8)0.0297 (7)
H340.24940.25910.53560.036*
C360.44618 (18)0.3265 (3)0.55081 (7)0.0241 (6)
H360.49520.29890.54340.029*
C350.37274 (18)0.2643 (3)0.53491 (8)0.0292 (7)
H350.37350.19800.51710.035*
C240.64779 (17)0.3167 (3)0.59048 (8)0.0253 (6)
H240.63040.27860.61110.030*
C260.57679 (17)0.7696 (3)0.60160 (8)0.0261 (6)
H260.61330.74810.62300.031*
C230.70681 (19)0.2500 (3)0.57433 (8)0.0337 (7)
H230.72790.16860.58400.040*
C200.64204 (17)0.4912 (3)0.54601 (7)0.0252 (6)
H200.62090.57210.53610.030*
C90.45220 (17)0.7912 (3)0.67557 (7)0.0253 (6)
H9A0.50180.84360.68350.030*
H9B0.46450.72660.65740.030*
C210.70175 (18)0.4253 (3)0.52945 (8)0.0337 (7)
H210.71940.46240.50880.040*
C300.47271 (19)0.7095 (3)0.55167 (8)0.0328 (7)
H300.43790.64620.53850.039*
C220.7346 (2)0.3050 (3)0.54369 (8)0.0371 (8)
H220.77490.26140.53290.045*
C100.38377 (18)0.8832 (3)0.65759 (8)0.0294 (7)
H10A0.33780.82910.64570.035*
H10B0.36440.93600.67670.035*
C290.4683 (2)0.8411 (3)0.53907 (10)0.0410 (8)
H290.43110.86390.51800.049*
C270.57369 (19)0.9017 (3)0.58911 (9)0.0346 (8)
H270.60860.96540.60190.042*
C280.5191 (2)0.9386 (3)0.55781 (9)0.0386 (8)
H280.51651.02670.54950.046*
C110.4715 (2)1.0792 (3)0.64582 (9)0.0417 (8)
H11A0.45031.12640.66510.063*
H11B0.48131.14130.62700.063*
H11C0.52251.03570.65600.063*
C120.3369 (2)1.0444 (4)0.60779 (10)0.0535 (10)
H12A0.29760.97850.59700.080*
H12B0.35421.09730.58850.080*
H12C0.31191.10140.62390.080*
B10.53614 (19)0.5067 (3)0.59512 (9)0.0214 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0205 (3)0.0140 (2)0.0217 (3)0.0000.0037 (2)0.000
S10.0272 (4)0.0168 (3)0.0323 (4)0.0024 (3)0.0072 (3)0.0020 (3)
N10.0215 (12)0.0168 (11)0.0205 (12)0.0004 (9)0.0020 (10)0.0006 (9)
N20.0271 (14)0.0309 (14)0.0257 (14)0.0052 (11)0.0028 (11)0.0043 (11)
C180.0215 (14)0.0193 (13)0.0264 (15)0.0002 (11)0.0080 (12)0.0000 (12)
C30.0209 (15)0.0306 (15)0.0304 (17)0.0036 (12)0.0057 (13)0.0045 (13)
C20.0198 (14)0.0234 (13)0.0197 (15)0.0043 (11)0.0019 (12)0.0027 (11)
C170.0355 (17)0.0231 (15)0.0268 (16)0.0032 (12)0.0140 (14)0.0013 (12)
C150.0333 (17)0.0238 (14)0.0265 (16)0.0030 (13)0.0005 (13)0.0022 (13)
C130.0249 (15)0.0148 (13)0.0235 (15)0.0011 (11)0.0058 (12)0.0006 (11)
C10.0216 (15)0.0202 (13)0.0227 (15)0.0010 (11)0.0009 (12)0.0008 (12)
C310.0238 (14)0.0189 (13)0.0195 (14)0.0005 (11)0.0033 (11)0.0046 (11)
C160.0443 (18)0.0236 (14)0.0162 (14)0.0084 (14)0.0040 (13)0.0005 (12)
C140.0261 (16)0.0234 (15)0.0269 (16)0.0033 (12)0.0055 (13)0.0032 (12)
C60.0253 (16)0.0261 (15)0.0294 (17)0.0058 (12)0.0007 (13)0.0009 (13)
C190.0200 (14)0.0239 (14)0.0182 (14)0.0049 (12)0.0014 (11)0.0020 (12)
C320.0271 (16)0.0226 (15)0.0243 (15)0.0015 (12)0.0044 (12)0.0014 (12)
C50.0281 (16)0.0417 (18)0.0258 (16)0.0114 (15)0.0051 (13)0.0018 (14)
C250.0188 (14)0.0219 (14)0.0247 (15)0.0015 (11)0.0066 (12)0.0012 (12)
C80.0278 (16)0.0179 (13)0.0210 (15)0.0010 (11)0.0011 (12)0.0029 (11)
C70.0204 (14)0.0223 (14)0.0228 (15)0.0040 (11)0.0001 (12)0.0020 (11)
C40.0257 (16)0.0400 (18)0.0275 (16)0.0073 (13)0.0107 (13)0.0057 (14)
C330.0210 (15)0.0350 (16)0.0346 (18)0.0023 (13)0.0036 (13)0.0070 (14)
C340.0267 (16)0.0303 (16)0.0290 (17)0.0076 (13)0.0047 (13)0.0062 (13)
C360.0264 (15)0.0236 (14)0.0228 (15)0.0014 (12)0.0056 (12)0.0024 (12)
C350.0368 (18)0.0244 (15)0.0246 (16)0.0023 (13)0.0005 (14)0.0016 (12)
C240.0279 (16)0.0264 (15)0.0227 (15)0.0027 (12)0.0072 (13)0.0028 (12)
C260.0264 (16)0.0244 (15)0.0274 (16)0.0002 (12)0.0045 (13)0.0011 (12)
C230.0368 (19)0.0320 (17)0.0325 (18)0.0129 (14)0.0062 (15)0.0018 (14)
C200.0232 (15)0.0291 (15)0.0226 (15)0.0021 (12)0.0018 (12)0.0022 (12)
C90.0274 (16)0.0258 (15)0.0231 (16)0.0010 (12)0.0050 (13)0.0060 (12)
C210.0340 (17)0.0462 (19)0.0227 (16)0.0015 (15)0.0093 (13)0.0014 (14)
C300.0345 (18)0.0277 (16)0.0337 (18)0.0060 (14)0.0011 (14)0.0044 (14)
C220.0356 (18)0.050 (2)0.0288 (18)0.0124 (16)0.0132 (15)0.0058 (15)
C100.0286 (17)0.0350 (16)0.0246 (16)0.0058 (13)0.0045 (13)0.0067 (13)
C290.038 (2)0.0376 (18)0.045 (2)0.0018 (15)0.0015 (16)0.0166 (16)
C270.0342 (18)0.0243 (15)0.047 (2)0.0066 (13)0.0123 (16)0.0037 (14)
C280.0411 (19)0.0229 (15)0.054 (2)0.0015 (15)0.0138 (17)0.0105 (15)
C110.047 (2)0.0361 (18)0.042 (2)0.0135 (16)0.0049 (16)0.0022 (15)
C120.043 (2)0.063 (2)0.051 (2)0.0031 (19)0.0010 (17)0.029 (2)
B10.0221 (17)0.0225 (15)0.0198 (17)0.0004 (13)0.0043 (13)0.0031 (13)
Geometric parameters (Å, º) top
Ni1—S12.1665 (8)C25—C301.402 (4)
Ni1—S1i2.1665 (8)C25—B11.665 (4)
Ni1—N1i1.922 (2)C8—H8A0.9700
Ni1—N11.922 (2)C8—H8B0.9700
S1—C71.765 (3)C8—C91.529 (4)
N1—C11.287 (3)C4—H40.9300
N1—C81.485 (3)C33—H330.9300
N2—H20.9800C33—C341.383 (4)
N2—C101.507 (3)C34—H340.9300
N2—C111.496 (4)C34—C351.387 (4)
N2—C121.482 (4)C36—H360.9300
C18—H180.9300C36—C351.393 (4)
C18—C171.396 (4)C35—H350.9300
C18—C131.409 (4)C24—H240.9300
C3—H30.9300C24—C231.383 (4)
C3—C21.408 (4)C26—H260.9300
C3—C41.381 (4)C26—C271.394 (4)
C2—C11.463 (4)C23—H230.9300
C2—C71.414 (4)C23—C221.391 (4)
C17—H170.9300C20—H200.9300
C17—C161.385 (4)C20—C211.396 (4)
C15—H150.9300C9—H9A0.9700
C15—C161.385 (4)C9—H9B0.9700
C15—C141.385 (4)C9—C101.513 (4)
C13—C141.412 (4)C21—H210.9300
C13—B11.654 (4)C21—C221.384 (4)
C1—H10.9300C30—H300.9300
C31—C321.411 (4)C30—C291.391 (4)
C31—C361.399 (4)C22—H220.9300
C31—B11.651 (4)C10—H10A0.9700
C16—H160.9300C10—H10B0.9700
C14—H140.9300C29—H290.9300
C6—H60.9300C29—C281.386 (4)
C6—C51.387 (4)C27—H270.9300
C6—C71.406 (4)C27—C281.383 (4)
C19—C241.411 (4)C28—H280.9300
C19—C201.402 (4)C11—H11A0.9600
C19—B11.651 (4)C11—H11B0.9600
C32—H320.9300C11—H11C0.9600
C32—C331.392 (4)C12—H12A0.9600
C5—H50.9300C12—H12B0.9600
C5—C41.390 (4)C12—H12C0.9600
C25—C261.404 (4)
S1—Ni1—S1i86.93 (4)C32—C33—H33119.8
N1—Ni1—S1i165.78 (7)C34—C33—C32120.3 (3)
N1i—Ni1—S1165.78 (7)C34—C33—H33119.8
N1—Ni1—S191.85 (7)C33—C34—H34120.6
N1i—Ni1—S1i91.85 (7)C33—C34—C35118.9 (3)
N1i—Ni1—N192.73 (13)C35—C34—H34120.6
C7—S1—Ni1100.86 (9)C31—C36—H36118.3
C1—N1—Ni1128.23 (19)C35—C36—C31123.4 (3)
C1—N1—C8117.8 (2)C35—C36—H36118.3
C8—N1—Ni1113.76 (16)C34—C35—C36119.9 (3)
C10—N2—H2107.8C34—C35—H35120.1
C11—N2—H2107.8C36—C35—H35120.1
C11—N2—C10113.2 (2)C19—C24—H24118.5
C12—N2—H2107.8C23—C24—C19123.0 (3)
C12—N2—C10110.7 (2)C23—C24—H24118.5
C12—N2—C11109.5 (3)C25—C26—H26118.6
C17—C18—H18118.5C27—C26—C25122.8 (3)
C17—C18—C13123.1 (3)C27—C26—H26118.6
C13—C18—H18118.5C24—C23—H23120.0
C2—C3—H3119.5C24—C23—C22119.9 (3)
C4—C3—H3119.5C22—C23—H23120.0
C4—C3—C2121.0 (3)C19—C20—H20118.7
C3—C2—C1118.2 (2)C21—C20—C19122.5 (3)
C3—C2—C7119.9 (2)C21—C20—H20118.7
C7—C2—C1121.8 (2)C8—C9—H9A109.1
C18—C17—H17119.9C8—C9—H9B109.1
C16—C17—C18120.3 (3)H9A—C9—H9B107.9
C16—C17—H17119.9C10—C9—C8112.4 (2)
C16—C15—H15119.8C10—C9—H9A109.1
C16—C15—C14120.5 (3)C10—C9—H9B109.1
C14—C15—H15119.8C20—C21—H21119.9
C18—C13—C14114.2 (2)C22—C21—C20120.2 (3)
C18—C13—B1124.8 (2)C22—C21—H21119.9
C14—C13—B1120.9 (2)C25—C30—H30118.4
N1—C1—C2124.2 (2)C29—C30—C25123.1 (3)
N1—C1—H1117.9C29—C30—H30118.4
C2—C1—H1117.9C23—C22—H22120.4
C32—C31—B1121.5 (2)C21—C22—C23119.2 (3)
C36—C31—C32114.6 (2)C21—C22—H22120.4
C36—C31—B1123.9 (2)N2—C10—C9113.7 (2)
C17—C16—H16120.7N2—C10—H10A108.8
C15—C16—C17118.6 (3)N2—C10—H10B108.8
C15—C16—H16120.7C9—C10—H10A108.8
C15—C14—C13123.3 (3)C9—C10—H10B108.8
C15—C14—H14118.3H10A—C10—H10B107.7
C13—C14—H14118.3C30—C29—H29119.8
C5—C6—H6119.5C28—C29—C30120.3 (3)
C5—C6—C7120.9 (3)C28—C29—H29119.8
C7—C6—H6119.5C26—C27—H27119.7
C24—C19—B1120.4 (2)C28—C27—C26120.5 (3)
C20—C19—C24115.3 (2)C28—C27—H27119.7
C20—C19—B1124.1 (2)C29—C28—H28120.8
C31—C32—H32118.6C27—C28—C29118.5 (3)
C33—C32—C31122.8 (3)C27—C28—H28120.8
C33—C32—H32118.6N2—C11—H11A109.5
C6—C5—H5119.5N2—C11—H11B109.5
C6—C5—C4121.0 (3)N2—C11—H11C109.5
C4—C5—H5119.5H11A—C11—H11B109.5
C26—C25—B1123.7 (2)H11A—C11—H11C109.5
C30—C25—C26114.8 (2)H11B—C11—H11C109.5
C30—C25—B1121.3 (2)N2—C12—H12A109.5
N1—C8—H8A109.4N2—C12—H12B109.5
N1—C8—H8B109.4N2—C12—H12C109.5
N1—C8—C9111.1 (2)H12A—C12—H12B109.5
H8A—C8—H8B108.0H12A—C12—H12C109.5
C9—C8—H8A109.4H12B—C12—H12C109.5
C9—C8—H8B109.4C13—B1—C25112.0 (2)
C2—C7—S1123.6 (2)C31—B1—C13112.1 (2)
C6—C7—S1118.4 (2)C31—B1—C25108.8 (2)
C6—C7—C2118.0 (2)C19—B1—C13107.1 (2)
C3—C4—C5119.1 (3)C19—B1—C31107.8 (2)
C3—C4—H4120.5C19—B1—C25109.1 (2)
C5—C4—H4120.5
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C25–C30 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2···Cg0.982.543.510 (3)171
 

Acknowledgements

JRZ acknowledges support from the Graduate Assistance in Areas of National Need program of the US Department of Education. DME acknowledges support from the National Center for Research Resources – NIH COBRE Award P20 RR017708.

Funding information

Funding for this research was provided by: Kansas IDeA Network of Biomedical Research Excellence.

References

First citationBruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2013). APEX and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZimmerman, J. R., Smucker, B. W., Dain, R. P., Van Stipdonk, M. J. & Eichhorn, D. M. (2011). Inorg. Chim. Acta, 373, 54–61.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds