organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N-[4-(4-Fluoro­phen­yl)-1,3-thia­zol-2-yl]-3-(4-meth­­oxy­phen­yl)-4-methyl­benzamide

CROSSMARK_Color_square_no_text.svg

aDrug Discovery Lab, Department of Chemistry, Annamalai University, Annamalainagar, Chidambaram 608 002, India, and bPG & Research Department of Physics, Government Arts College, Melur 625 106, India
*Correspondence e-mail: profskabilan@gmail.com

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 22 July 2017; accepted 24 July 2017; online 28 July 2017)

In the title compound, C24H19FN2O2S, the dihedral angle between the fluoro­phenyl and thia­zole rings is 12.8 (1)°. In the crystal, mol­ecules are linked via strong N—H⋯O hydrogen bonds, forming C(11) chains propagating along [001]. In addition, C—H⋯O inter­actions are observed in this structure, forming C(10) chains propagating along [001].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In a continuation of our work on the crystal structure analysis of thia­zole derivatives, we have undertaken a single-crystal X-ray diffraction study for the title compound, and the results are presented here.

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The geometry of the present structure, except for atom F1, is comparable with that reported for a similar structure, namely 3-(4-meth­oxy­phen­yl)-4-methyl- N-[4-(4-methyl­phen­yl)-1,3-thia­zol-2-yl]benzamide (Archana et al., 2017[Archana, K., Saravanan, K., Lakshmithendral, K., Kabilan, S. & Selvanayagam, S. (2017). IUCrData, 2, x170721.]). The superposition of the title compound with that in the above-mentioned structure, using Qmol (Gans & Shalloway, 2001[Gans, J. D. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-609.]), gives an r.m.s. deviation of 0.710 Å; see Fig. 2[link]. The meth­oxy atoms O2 and C24 deviate by −0.014 (2) and 0.355 (3) Å, respectively from the ring to which they are attached. This ring is oriented at a dihedral angle of 82.2 (1)° with respect to the fluoro­phenyl ring. The fluoro­phenyl ring makes a dihedral angle of 12.8 (1)° with thia­zole ring. The mol­ecular structure is influenced by intra­molecular C—H⋯N and C—H⋯O hydrogen bonds (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2i 0.86 2.33 3.177 (2) 167
C12—H12⋯O2i 0.93 2.36 3.275 (2) 167
C1—H1⋯N1 0.93 2.48 2.827 (3) 102
C16—H16⋯O1 0.93 2.49 2.802 (3) 100
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
Superposition of the present structure except F1 (yellow) with the similar reported structure (green; Archana et al., 2017[Archana, K., Saravanan, K., Lakshmithendral, K., Kabilan, S. & Selvanayagam, S. (2017). IUCrData, 2, x170721.]).

In the crystal, mol­ecules are linked via strong N—H⋯O hydrogen bonds (Table 1[link]), forming C(11) chains propagating along [001]. In addition, C—H⋯O inter­actions are observed in this structure, forming C(10) chains propagating along [001], see Fig. 3[link].

[Figure 3]
Figure 3
The crystal packing of the title compound viewed along b axis. The N—H⋯O and C—H⋯O inter­molecular hydrogen bonds are shown as dashed lines (see Table 1[link]). For clarity, H atoms not involved in these hydrogen bonds have been omitted.

Synthesis and crystallization

N-(4-(4-Fluoro­phen­yl) thia­zol-2-yl)-3-iodo-4-methyl­benzamide (0.23 mmol) was dissolved in 20 ml of de­oxy­gen­ated toluene and water (8:2). Then, tetra­kis (tri­phenyl­phosphine) palladium (0.014 mmol) and K2CO3 (0.68 mmol) were added in turn at 10 min inter­vals. Finally, 4-meth­oxy phenyl boronic acid (0.25 mmol) was added and the resulting reaction mixture was heated to reflux for 16 h under a nitro­gen atmosphere. The progress of the reaction was monitored by pre-coated TLC plates. After completion of the reaction, it was cooled to rt and concentrated in Rotavac. The obtained crude compound was purified by column chromatography using 20% ethyl acetate and petrol ether (60–80) as eluent. The pure compound was obtained as a light-brown solid, it was further recrystallized from di­chloro­methane (DCM) solution to yield the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C24H19FN2O2S
Mr 418.47
Crystal system, space group Monoclinic, P21/c
Temperature (K) 298
a, b, c (Å) 9.5104 (11), 10.4859 (13), 20.522 (3)
β (°) 94.904 (6)
V3) 2039.1 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.19
Crystal size (mm) 0.24 × 0.21 × 0.19
 
Data collection
Diffractometer Bruker SMART APEX CCD area-detector
No. of measured, independent and observed [I > 2σ(I)] reflections 9198, 4609, 3515
Rint 0.049
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.164, 1.04
No. of reflections 4609
No. of parameters 272
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.29
Computer programs: SMART and SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

N-[4-(4-Fluorophenyl)-1,3-thiazol-2-yl]-3-(4-methoxyphenyl)-4-methylbenzamide top
Crystal data top
C24H19FN2O2SF(000) = 872
Mr = 418.47Dx = 1.363 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.5104 (11) ÅCell parameters from 6448 reflections
b = 10.4859 (13) Åθ = 3.2–27.4°
c = 20.522 (3) ŵ = 0.19 mm1
β = 94.904 (6)°T = 298 K
V = 2039.1 (5) Å3Block, colourless
Z = 40.24 × 0.21 × 0.19 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
Rint = 0.049
Radiation source: fine-focus sealed tubeθmax = 27.5°, θmin = 3.0°
ω and φ scansh = 1112
9198 measured reflectionsk = 1311
4609 independent reflectionsl = 2611
3515 reflections with I > 2σ(I)
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.164 w = 1/[σ2(Fo2) + (0.0907P)2 + 0.3443P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4609 reflectionsΔρmax = 0.23 e Å3
272 parametersΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.36048 (6)0.30153 (6)0.39023 (3)0.05611 (19)
O10.18520 (19)0.2555 (2)0.48536 (8)0.0766 (6)
O20.16903 (17)0.01682 (14)0.82367 (6)0.0525 (4)
N10.19087 (16)0.41980 (15)0.30669 (7)0.0416 (4)
N20.08549 (18)0.37141 (17)0.40186 (8)0.0465 (4)
H2A0.01180.41300.38680.056*
F10.33315 (18)0.56455 (18)0.01917 (7)0.0861 (5)
C10.2007 (2)0.4880 (2)0.17389 (10)0.0492 (5)
H10.11520.48500.19270.059*
C20.2031 (2)0.5264 (2)0.10959 (11)0.0561 (5)
H20.12020.54940.08510.067*
C30.3301 (2)0.5299 (2)0.08263 (10)0.0557 (5)
C40.4533 (2)0.4999 (2)0.11726 (11)0.0583 (6)
H40.53820.50490.09810.070*
C50.4504 (2)0.4617 (2)0.18184 (10)0.0520 (5)
H50.53430.44080.20610.062*
C60.32380 (18)0.45404 (18)0.21081 (9)0.0395 (4)
C70.31681 (19)0.40683 (18)0.27833 (9)0.0410 (4)
C80.4196 (2)0.3466 (2)0.31653 (10)0.0547 (5)
H80.51020.33160.30450.066*
C90.2002 (2)0.36928 (18)0.36480 (9)0.0428 (4)
C100.0813 (2)0.3116 (2)0.46118 (10)0.0496 (5)
C110.0524 (2)0.32029 (18)0.49355 (9)0.0436 (4)
C120.1676 (2)0.3939 (2)0.47043 (10)0.0518 (5)
H120.16390.44160.43240.062*
C130.2872 (2)0.3962 (2)0.50392 (10)0.0524 (5)
H130.36380.44490.48730.063*
C140.2976 (2)0.32849 (19)0.56157 (9)0.0444 (4)
C150.1807 (2)0.25463 (18)0.58507 (8)0.0404 (4)
C160.0618 (2)0.25063 (18)0.55063 (9)0.0430 (4)
H160.01400.19980.56610.052*
C170.4322 (2)0.3332 (2)0.59434 (12)0.0595 (6)
H17A0.42720.40080.62600.089*
H17B0.44590.25340.61590.089*
H17C0.50980.34830.56220.089*
C180.18079 (19)0.17911 (18)0.64708 (8)0.0398 (4)
C190.1805 (2)0.24186 (19)0.70703 (9)0.0496 (5)
H190.18240.33050.70810.059*
C200.1773 (2)0.17391 (19)0.76502 (9)0.0482 (5)
H200.17750.21680.80470.058*
C210.17385 (19)0.04177 (18)0.76370 (8)0.0396 (4)
C220.17349 (19)0.02230 (18)0.70483 (8)0.0397 (4)
H220.17090.11090.70380.048*
C230.17704 (18)0.04781 (18)0.64705 (8)0.0384 (4)
H230.17690.00480.60740.046*
C240.2044 (3)0.1480 (2)0.82531 (11)0.0600 (6)
H24A0.19690.17720.86980.090*
H24B0.29930.15990.80640.090*
H24C0.14080.19580.80080.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0566 (3)0.0681 (4)0.0430 (3)0.0119 (3)0.0002 (2)0.0090 (2)
O10.0686 (10)0.1041 (14)0.0587 (10)0.0258 (10)0.0149 (8)0.0362 (10)
O20.0802 (10)0.0479 (8)0.0281 (6)0.0105 (7)0.0029 (6)0.0050 (5)
N10.0453 (8)0.0451 (9)0.0344 (7)0.0006 (7)0.0037 (6)0.0028 (6)
N20.0504 (9)0.0534 (10)0.0361 (8)0.0029 (7)0.0056 (7)0.0063 (7)
F10.0950 (11)0.1105 (13)0.0549 (8)0.0169 (10)0.0178 (8)0.0380 (8)
C10.0434 (9)0.0606 (13)0.0440 (10)0.0042 (9)0.0064 (8)0.0055 (9)
C20.0529 (11)0.0652 (14)0.0497 (11)0.0070 (10)0.0009 (9)0.0141 (10)
C30.0696 (13)0.0554 (13)0.0428 (11)0.0039 (11)0.0093 (9)0.0124 (9)
C40.0516 (11)0.0688 (15)0.0568 (13)0.0012 (10)0.0180 (10)0.0143 (11)
C50.0421 (10)0.0649 (13)0.0492 (11)0.0012 (9)0.0049 (8)0.0066 (10)
C60.0408 (9)0.0375 (9)0.0402 (9)0.0013 (7)0.0034 (7)0.0023 (7)
C70.0423 (9)0.0421 (10)0.0385 (9)0.0013 (8)0.0035 (7)0.0018 (7)
C80.0491 (11)0.0695 (14)0.0457 (11)0.0081 (10)0.0049 (9)0.0028 (10)
C90.0499 (10)0.0403 (10)0.0381 (9)0.0004 (8)0.0035 (8)0.0018 (7)
C100.0597 (12)0.0510 (12)0.0380 (10)0.0026 (9)0.0042 (8)0.0067 (8)
C110.0533 (10)0.0451 (11)0.0321 (8)0.0003 (8)0.0021 (7)0.0029 (7)
C120.0641 (12)0.0556 (12)0.0352 (9)0.0073 (10)0.0015 (8)0.0120 (8)
C130.0564 (11)0.0571 (12)0.0431 (10)0.0106 (10)0.0000 (9)0.0122 (9)
C140.0515 (10)0.0445 (10)0.0369 (9)0.0001 (8)0.0014 (8)0.0029 (8)
C150.0511 (10)0.0379 (9)0.0314 (8)0.0026 (8)0.0008 (7)0.0033 (7)
C160.0516 (10)0.0439 (10)0.0327 (8)0.0005 (8)0.0008 (7)0.0041 (7)
C170.0584 (12)0.0648 (14)0.0561 (12)0.0081 (11)0.0098 (10)0.0142 (11)
C180.0435 (9)0.0444 (10)0.0314 (8)0.0010 (8)0.0022 (7)0.0035 (7)
C190.0737 (13)0.0370 (10)0.0371 (9)0.0016 (9)0.0005 (9)0.0006 (7)
C200.0688 (13)0.0436 (11)0.0314 (8)0.0026 (9)0.0012 (8)0.0041 (7)
C210.0453 (9)0.0435 (10)0.0289 (8)0.0043 (8)0.0025 (7)0.0027 (7)
C220.0474 (9)0.0361 (9)0.0349 (8)0.0032 (7)0.0005 (7)0.0001 (7)
C230.0416 (9)0.0441 (10)0.0291 (8)0.0023 (7)0.0006 (6)0.0025 (7)
C240.0842 (16)0.0511 (12)0.0440 (11)0.0103 (11)0.0006 (10)0.0115 (9)
Geometric parameters (Å, º) top
S1—C91.722 (2)C11—C121.390 (3)
S1—C81.724 (2)C12—C131.379 (3)
O1—C101.219 (3)C12—H120.9300
O2—C211.373 (2)C13—C141.391 (3)
O2—C241.417 (3)C13—H130.9300
N1—C91.301 (2)C14—C151.407 (3)
N1—C71.382 (2)C14—C171.496 (3)
N2—C101.373 (2)C15—C161.384 (3)
N2—C91.382 (2)C15—C181.499 (2)
N2—H2A0.8600C16—H160.9300
F1—C31.355 (2)C17—H17A0.9600
C1—C21.381 (3)C17—H17B0.9600
C1—C61.386 (3)C17—H17C0.9600
C1—H10.9300C18—C231.377 (3)
C2—C31.372 (3)C18—C191.395 (3)
C2—H20.9300C19—C201.385 (3)
C3—C41.354 (3)C19—H190.9300
C4—C51.387 (3)C20—C211.386 (3)
C4—H40.9300C20—H200.9300
C5—C61.390 (3)C21—C221.383 (2)
C5—H50.9300C22—C231.393 (2)
C6—C71.478 (2)C22—H220.9300
C7—C81.355 (3)C23—H230.9300
C8—H80.9300C24—H24A0.9600
C10—C111.487 (3)C24—H24B0.9600
C11—C161.390 (2)C24—H24C0.9600
C9—S1—C888.13 (10)C12—C13—C14122.48 (19)
C21—O2—C24117.77 (15)C12—C13—H13118.8
C9—N1—C7110.62 (16)C14—C13—H13118.8
C10—N2—C9124.37 (17)C13—C14—C15117.46 (18)
C10—N2—H2A117.8C13—C14—C17119.44 (18)
C9—N2—H2A117.8C15—C14—C17123.07 (17)
C2—C1—C6121.00 (18)C16—C15—C14119.88 (16)
C2—C1—H1119.5C16—C15—C18118.52 (16)
C6—C1—H1119.5C14—C15—C18121.60 (17)
C3—C2—C1118.71 (19)C15—C16—C11121.93 (18)
C3—C2—H2120.6C15—C16—H16119.0
C1—C2—H2120.6C11—C16—H16119.0
C4—C3—F1118.6 (2)C14—C17—H17A109.5
C4—C3—C2122.28 (19)C14—C17—H17B109.5
F1—C3—C2119.2 (2)H17A—C17—H17B109.5
C3—C4—C5118.80 (19)C14—C17—H17C109.5
C3—C4—H4120.6H17A—C17—H17C109.5
C5—C4—H4120.6H17B—C17—H17C109.5
C4—C5—C6120.91 (19)C23—C18—C19118.28 (16)
C4—C5—H5119.5C23—C18—C15121.73 (16)
C6—C5—H5119.5C19—C18—C15119.96 (17)
C1—C6—C5118.28 (18)C20—C19—C18120.89 (19)
C1—C6—C7119.67 (17)C20—C19—H19119.6
C5—C6—C7122.01 (17)C18—C19—H19119.6
C8—C7—N1114.21 (17)C19—C20—C21119.74 (17)
C8—C7—C6127.60 (17)C19—C20—H20120.1
N1—C7—C6118.14 (16)C21—C20—H20120.1
C7—C8—S1111.24 (16)O2—C21—C22124.30 (17)
C7—C8—H8124.4O2—C21—C20115.38 (16)
S1—C8—H8124.4C22—C21—C20120.31 (17)
N1—C9—N2120.18 (17)C21—C22—C23119.05 (17)
N1—C9—S1115.79 (14)C21—C22—H22120.5
N2—C9—S1124.04 (14)C23—C22—H22120.5
O1—C10—N2119.9 (2)C18—C23—C22121.73 (16)
O1—C10—C11122.83 (18)C18—C23—H23119.1
N2—C10—C11117.31 (18)C22—C23—H23119.1
C16—C11—C12118.27 (18)O2—C24—H24A109.5
C16—C11—C10117.63 (17)O2—C24—H24B109.5
C12—C11—C10124.10 (17)H24A—C24—H24B109.5
C13—C12—C11119.96 (18)O2—C24—H24C109.5
C13—C12—H12120.0H24A—C24—H24C109.5
C11—C12—H12120.0H24B—C24—H24C109.5
C6—C1—C2—C30.2 (4)N2—C10—C11—C125.9 (3)
C1—C2—C3—C41.5 (4)C16—C11—C12—C130.1 (3)
C1—C2—C3—F1178.5 (2)C10—C11—C12—C13179.9 (2)
F1—C3—C4—C5178.6 (2)C11—C12—C13—C141.1 (3)
C2—C3—C4—C51.4 (4)C12—C13—C14—C150.7 (3)
C3—C4—C5—C60.0 (4)C12—C13—C14—C17178.6 (2)
C2—C1—C6—C51.1 (3)C13—C14—C15—C160.6 (3)
C2—C1—C6—C7176.7 (2)C17—C14—C15—C16177.2 (2)
C4—C5—C6—C11.2 (3)C13—C14—C15—C18179.44 (18)
C4—C5—C6—C7176.6 (2)C17—C14—C15—C182.8 (3)
C9—N1—C7—C80.4 (2)C14—C15—C16—C111.5 (3)
C9—N1—C7—C6177.43 (17)C18—C15—C16—C11178.51 (17)
C1—C6—C7—C8165.9 (2)C12—C11—C16—C151.1 (3)
C5—C6—C7—C811.8 (3)C10—C11—C16—C15178.59 (18)
C1—C6—C7—N111.6 (3)C16—C15—C18—C2366.0 (2)
C5—C6—C7—N1170.67 (18)C14—C15—C18—C23114.0 (2)
N1—C7—C8—S10.8 (2)C16—C15—C18—C19112.1 (2)
C6—C7—C8—S1176.79 (16)C14—C15—C18—C1968.0 (3)
C9—S1—C8—C70.71 (18)C23—C18—C19—C200.4 (3)
C7—N1—C9—N2179.81 (16)C15—C18—C19—C20178.49 (19)
C7—N1—C9—S10.2 (2)C18—C19—C20—C210.2 (3)
C10—N2—C9—N1174.34 (19)C24—O2—C21—C2218.0 (3)
C10—N2—C9—S15.2 (3)C24—O2—C21—C20162.9 (2)
C8—S1—C9—N10.53 (17)C19—C20—C21—O2179.19 (19)
C8—S1—C9—N2179.87 (18)C19—C20—C21—C220.0 (3)
C9—N2—C10—O12.6 (3)O2—C21—C22—C23179.26 (17)
C9—N2—C10—C11178.13 (18)C20—C21—C22—C230.2 (3)
O1—C10—C11—C166.4 (3)C19—C18—C23—C220.2 (3)
N2—C10—C11—C16174.37 (18)C15—C18—C23—C22178.31 (16)
O1—C10—C11—C12173.4 (2)C21—C22—C23—C180.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.862.333.177 (2)167
C12—H12···O2i0.932.363.275 (2)167
C1—H1···N10.932.482.827 (3)102
C16—H16···O10.932.492.802 (3)100
Symmetry code: (i) x, y+1/2, z1/2.
 

Footnotes

Additional correspondence author, e-mail: s_selvanayagam@rediffmail.com.

References

First citationArchana, K., Saravanan, K., Lakshmithendral, K., Kabilan, S. & Selvanayagam, S. (2017). IUCrData, 2, x170721.  Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGans, J. D. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–609.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds