organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bi­phenyl-4-yl 4-methyl­benzene­sulfonate

aFaculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland
*Correspondence e-mail: bzarychta@uni.opole.pl

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 30 June 2017; accepted 3 July 2017; online 7 July 2017)

Mol­ecules of the title compound, C19H16O3S, are composed of a biphenyl moiety substituted with a toluene-4-sulfonate group. The dihedral angle between the two coplanar biphenyl rings and the toluene ring is 52.72 (6)°.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Aryl tosyl­ates are important substrates in organic synthesis (Hugo et al., 2014[Hugo, A. G., Jimena, M. M., Gladys, M. C., Carlos, E. T. & Carlos, R. P. (2014). Bioorg. Med. Chem. Lett. 24, 760-764.]; Xu & Zhang, 2011[Xu, H. & Zhang, J.-L. (2011). Bioorg. Med. Chem. Lett. 21, 5177-5180.]). Recently, the first-row metal catalysts became promising alternatives when used in cross-coupling reactions (Torborg & Beller, 2009[Torborg, C. & Beller, M. (2009). Adv. Synth. Catal. 351, 3027-3043.]). Aryl tosyl­ates seem to be suitable substrates for this type of reaction (So et al., 2008[So, C. M., Lau, C. P., Chan, A. S. C. & Kwong, F. Y. (2008). J. Org. Chem. 73, 7731-7734.]; Zim et al. 2001[Zim, D., Lando, V. R., Dupont, J. & Monteiro, A. L. (2001). Org. Lett. 3, 3049-3051.]).

In the asymmetric unit of the title compound, there is one independent mol­ecule. The crystal is twinned by inversion. The mol­ecular structure is shown in Fig. 1[link]. In the mol­ecular structure the bond lengths and angles are within normal ranges (Allen et al., 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). The dihedral angle between the two coplanar biphenyl rings and the toluene ring is 52.72 (6)°. The crystal packing is shown in Fig. 2[link].

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
The crystal packing of the title compound, viewed along the c axis.

Synthesis and crystallization

Biphenyl-4-yl 4-methyl­benzene­sulfonate was synthesized according to a procedure described by Murai and co-workers (Murai et al., 2012[Murai, N., Miyano, M., Yonaga, M. & Tanaka, K. (2012). Org. Lett. 14, 2818-2821.]). The crystallization was performed in a diethyl ether solution. Diethyl ether (0.6 ml) was placed in storage reaction vials (8 ml) with silicone septa. The title compound was added in small portions until a saturated solution was obtained. The solution was warmed, and then, it was left to stand in a refrigerator (−20°C).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C19H16O3S
Mr 324.38
Crystal system, space group Orthorhombic, Pca21
Temperature (K) 100
a, b, c (Å) 33.2932 (10), 7.9284 (2), 5.7903 (2)
V3) 1528.42 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.23
Crystal size (mm) 0.3 × 0.25 × 0.12
 
Data collection
Diffractometer Oxford Diffraction Xcalibur
No. of measured, independent and observed [I > 2σ(I)] reflections 9829, 2222, 1978
Rint 0.027
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.057, 0.98
No. of reflections 2222
No. of parameters 210
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.15, −0.27
Absolute structure Refined as an inversion twin.
Absolute structure parameter 0.32 (11)
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Biphenyl-4-yl 4-methylbenzenesulfonate top
Crystal data top
C19H16O3SDx = 1.410 Mg m3
Mr = 324.38Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 9829 reflections
a = 33.2932 (10) Åθ = 3.2–26.0°
b = 7.9284 (2) ŵ = 0.23 mm1
c = 5.7903 (2) ÅT = 100 K
V = 1528.42 (8) Å3Irregular, colourless
Z = 40.3 × 0.25 × 0.12 mm
F(000) = 680
Data collection top
Oxford Diffraction Xcalibur
diffractometer
1978 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Detector resolution: 1024 x 1024 with blocks 2 x 2 pixels mm-1θmax = 26.0°, θmin = 3.2°
ω–scanh = 4140
9829 measured reflectionsk = 99
2222 independent reflectionsl = 47
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.026 w = 1/[σ2(Fo2) + (0.0347P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.057(Δ/σ)max < 0.001
S = 0.98Δρmax = 0.15 e Å3
2222 reflectionsΔρmin = 0.27 e Å3
210 parametersAbsolute structure: Refined as an inversion twin.
1 restraintAbsolute structure parameter: 0.32 (11)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin. All H atoms were found in a difference map but set to idealized positions and treated as riding with Caromatic—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) and with Cmethyl—H = 0.96 Å and Uiso(H) = 1.5Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.32398 (2)0.10318 (6)0.15317 (14)0.01524 (13)
O10.33997 (5)0.14325 (19)0.3745 (3)0.0215 (4)
O20.29105 (4)0.00997 (18)0.1300 (3)0.0226 (4)
O30.35856 (4)0.01401 (17)0.0021 (3)0.0166 (3)
C10.31403 (6)0.2901 (3)0.0019 (4)0.0138 (4)
C20.29338 (6)0.2828 (3)0.2065 (4)0.0156 (5)
H20.28430.18030.26440.019*
C30.28667 (6)0.4316 (2)0.3261 (4)0.0177 (4)
H30.27300.42820.46610.021*
C40.30000 (6)0.5864 (3)0.2409 (4)0.0169 (5)
C50.31986 (6)0.5899 (3)0.0296 (4)0.0176 (5)
H50.32830.69250.03090.021*
C60.32716 (6)0.4425 (3)0.0919 (4)0.0164 (5)
H60.34070.44570.23220.020*
C70.29299 (6)0.7459 (3)0.3755 (5)0.0238 (5)
H7A0.31690.81350.37320.036*
H7B0.28630.71820.53230.036*
H7C0.27130.80790.30700.036*
C80.39783 (6)0.0843 (2)0.0111 (4)0.0159 (5)
C90.42271 (6)0.0434 (3)0.1928 (4)0.0208 (5)
H90.41370.02520.31220.025*
C100.46155 (6)0.1068 (3)0.1938 (4)0.0209 (5)
H100.47850.08030.31630.025*
C110.47596 (6)0.2096 (3)0.0158 (4)0.0152 (4)
C120.44964 (6)0.2455 (3)0.1645 (4)0.0213 (5)
H120.45850.31260.28600.026*
C130.41057 (7)0.1839 (3)0.1682 (4)0.0205 (5)
H130.39340.20970.28990.025*
C140.51792 (6)0.2769 (2)0.0208 (4)0.0149 (4)
C150.54399 (7)0.2397 (3)0.2010 (4)0.0271 (6)
H150.53510.17130.32100.032*
C160.58282 (7)0.3019 (3)0.2067 (4)0.0276 (6)
H160.59960.27470.32960.033*
C170.59683 (7)0.4040 (3)0.0314 (4)0.0223 (5)
H170.62290.44640.03550.027*
C180.57163 (7)0.4421 (3)0.1493 (5)0.0276 (6)
H180.58070.51070.26860.033*
C190.53276 (7)0.3792 (3)0.1556 (5)0.0248 (5)
H190.51630.40580.27990.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0146 (2)0.0136 (2)0.0175 (2)0.0014 (2)0.0020 (2)0.0023 (3)
O10.0248 (8)0.0230 (8)0.0168 (8)0.0061 (7)0.0012 (7)0.0020 (7)
O20.0182 (8)0.0168 (7)0.0329 (9)0.0020 (6)0.0032 (8)0.0050 (8)
O30.0140 (7)0.0130 (7)0.0229 (8)0.0004 (6)0.0009 (7)0.0024 (7)
C10.0125 (10)0.0122 (10)0.0167 (11)0.0017 (8)0.0039 (9)0.0024 (9)
C20.0154 (11)0.0155 (11)0.0158 (12)0.0008 (8)0.0010 (9)0.0017 (9)
C30.0141 (9)0.0223 (11)0.0167 (11)0.0017 (8)0.0002 (10)0.0004 (11)
C40.0145 (11)0.0172 (11)0.0190 (11)0.0018 (9)0.0041 (9)0.0021 (10)
C50.0164 (10)0.0139 (10)0.0223 (13)0.0038 (9)0.0016 (10)0.0036 (10)
C60.0150 (10)0.0170 (11)0.0173 (13)0.0012 (8)0.0021 (9)0.0019 (8)
C70.0240 (11)0.0199 (11)0.0274 (13)0.0034 (8)0.0014 (11)0.0060 (11)
C80.0136 (10)0.0116 (10)0.0224 (12)0.0006 (8)0.0013 (9)0.0034 (10)
C90.0197 (11)0.0207 (11)0.0221 (15)0.0010 (9)0.0021 (10)0.0077 (10)
C100.0178 (10)0.0245 (11)0.0204 (15)0.0040 (9)0.0034 (10)0.0078 (10)
C110.0167 (10)0.0113 (10)0.0176 (11)0.0037 (8)0.0015 (9)0.0023 (9)
C120.0206 (11)0.0266 (12)0.0167 (12)0.0032 (10)0.0004 (10)0.0070 (10)
C130.0192 (11)0.0259 (12)0.0162 (12)0.0003 (10)0.0039 (10)0.0038 (11)
C140.0169 (10)0.0118 (10)0.0161 (11)0.0032 (8)0.0022 (9)0.0020 (9)
C150.0256 (12)0.0318 (13)0.0239 (15)0.0073 (10)0.0033 (11)0.0126 (10)
C160.0243 (12)0.0334 (13)0.0251 (15)0.0056 (10)0.0100 (10)0.0119 (12)
C170.0165 (11)0.0244 (12)0.0261 (13)0.0021 (9)0.0003 (10)0.0007 (11)
C180.0230 (12)0.0353 (14)0.0244 (13)0.0066 (11)0.0007 (11)0.0118 (12)
C190.0193 (12)0.0349 (14)0.0201 (12)0.0025 (10)0.0031 (11)0.0094 (12)
Geometric parameters (Å, º) top
S1—O21.4228 (14)C9—C101.388 (3)
S1—O11.4238 (18)C9—H90.9300
S1—O31.6095 (16)C10—C111.399 (3)
S1—C11.753 (2)C10—H100.9300
O3—C81.422 (2)C11—C121.392 (3)
C1—C61.386 (3)C11—C141.496 (3)
C1—C21.390 (3)C12—C131.389 (3)
C2—C31.386 (3)C12—H120.9300
C2—H20.9300C13—H130.9300
C3—C41.395 (3)C14—C151.388 (3)
C3—H30.9300C14—C191.395 (3)
C4—C51.391 (3)C15—C161.384 (3)
C4—C71.504 (3)C15—H150.9300
C5—C61.386 (3)C16—C171.379 (3)
C5—H50.9300C16—H160.9300
C6—H60.9300C17—C181.375 (3)
C7—H7A0.9600C17—H170.9300
C7—H7B0.9600C18—C191.387 (3)
C7—H7C0.9600C18—H180.9300
C8—C131.372 (3)C19—H190.9300
C8—C91.378 (3)
O2—S1—O1120.90 (12)C8—C9—C10118.6 (2)
O2—S1—O3102.89 (9)C8—C9—H9120.7
O1—S1—O3108.64 (9)C10—C9—H9120.7
O2—S1—C1109.91 (10)C9—C10—C11121.8 (2)
O1—S1—C1109.37 (10)C9—C10—H10119.1
O3—S1—C1103.59 (10)C11—C10—H10119.1
C8—O3—S1117.76 (13)C12—C11—C10117.11 (19)
C6—C1—C2121.25 (19)C12—C11—C14121.99 (19)
C6—C1—S1119.31 (17)C10—C11—C14120.90 (19)
C2—C1—S1119.44 (17)C13—C12—C11122.0 (2)
C3—C2—C1118.5 (2)C13—C12—H12119.0
C3—C2—H2120.7C11—C12—H12119.0
C1—C2—H2120.7C8—C13—C12118.7 (2)
C2—C3—C4121.4 (2)C8—C13—H13120.7
C2—C3—H3119.3C12—C13—H13120.7
C4—C3—H3119.3C15—C14—C19116.86 (19)
C5—C4—C3118.7 (2)C15—C14—C11121.54 (19)
C5—C4—C7120.9 (2)C19—C14—C11121.6 (2)
C3—C4—C7120.5 (2)C16—C15—C14121.8 (2)
C6—C5—C4120.9 (2)C16—C15—H15119.1
C6—C5—H5119.6C14—C15—H15119.1
C4—C5—H5119.6C17—C16—C15120.5 (2)
C5—C6—C1119.3 (2)C17—C16—H16119.8
C5—C6—H6120.4C15—C16—H16119.8
C1—C6—H6120.4C18—C17—C16118.9 (2)
C4—C7—H7A109.5C18—C17—H17120.6
C4—C7—H7B109.5C16—C17—H17120.6
H7A—C7—H7B109.5C17—C18—C19120.7 (2)
C4—C7—H7C109.5C17—C18—H18119.7
H7A—C7—H7C109.5C19—C18—H18119.7
H7B—C7—H7C109.5C18—C19—C14121.4 (2)
C13—C8—C9121.8 (2)C18—C19—H19119.3
C13—C8—O3118.8 (2)C14—C19—H19119.3
C9—C8—O3119.2 (2)
O2—S1—O3—C8172.32 (15)O3—C8—C9—C10177.12 (19)
O1—S1—O3—C843.04 (17)C8—C9—C10—C110.3 (3)
C1—S1—O3—C873.17 (17)C9—C10—C11—C120.3 (3)
O2—S1—C1—C6143.74 (17)C9—C10—C11—C14179.9 (2)
O1—S1—C1—C68.8 (2)C10—C11—C12—C130.6 (3)
O3—S1—C1—C6106.90 (17)C14—C11—C12—C13179.5 (2)
O2—S1—C1—C236.7 (2)C9—C8—C13—C120.3 (3)
O1—S1—C1—C2171.61 (16)O3—C8—C13—C12176.82 (19)
O3—S1—C1—C272.69 (17)C11—C12—C13—C80.3 (3)
C6—C1—C2—C31.1 (3)C12—C11—C14—C15179.7 (2)
S1—C1—C2—C3178.48 (15)C10—C11—C14—C150.1 (3)
C1—C2—C3—C40.3 (3)C12—C11—C14—C190.0 (3)
C2—C3—C4—C51.0 (3)C10—C11—C14—C19179.9 (2)
C2—C3—C4—C7179.0 (2)C19—C14—C15—C160.4 (3)
C3—C4—C5—C61.5 (3)C11—C14—C15—C16179.9 (2)
C7—C4—C5—C6178.5 (2)C14—C15—C16—C170.1 (4)
C4—C5—C6—C10.7 (3)C15—C16—C17—C180.3 (4)
C2—C1—C6—C50.6 (3)C16—C17—C18—C190.1 (4)
S1—C1—C6—C5178.97 (16)C17—C18—C19—C140.4 (4)
S1—O3—C8—C13101.5 (2)C15—C14—C19—C180.7 (3)
S1—O3—C8—C981.9 (2)C11—C14—C19—C18179.6 (2)
C13—C8—C9—C100.6 (3)
 

Funding information

Funding for this research was provided by: Narodowe Centrum Nauki (grant No. 2014/15/D/ST5/02731).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHugo, A. G., Jimena, M. M., Gladys, M. C., Carlos, E. T. & Carlos, R. P. (2014). Bioorg. Med. Chem. Lett. 24, 760–764.  PubMed Google Scholar
First citationMurai, N., Miyano, M., Yonaga, M. & Tanaka, K. (2012). Org. Lett. 14, 2818–2821.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSo, C. M., Lau, C. P., Chan, A. S. C. & Kwong, F. Y. (2008). J. Org. Chem. 73, 7731–7734.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTorborg, C. & Beller, M. (2009). Adv. Synth. Catal. 351, 3027–3043.  Web of Science CrossRef CAS Google Scholar
First citationXu, H. & Zhang, J.-L. (2011). Bioorg. Med. Chem. Lett. 21, 5177–5180.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZim, D., Lando, V. R., Dupont, J. & Monteiro, A. L. (2001). Org. Lett. 3, 3049–3051.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds