organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Creatininium phosphite

aDepartment of Physics, Nesamony Memorial Christian College, Marthandam, Kaniyakumari, Tamilnadu, India, bDepartment of Physics and Research Centre, Womens Christian College, Nagercoil, Kaniyakumari, Tamilnadu, India, and cDepartment of Physics & Nano Technology, SRM University, SRM Nagar, Kattankulathur, Kancheepuram Dist, Chennai 603 203, Tamil Nadu, India
*Correspondence e-mail: phdguna@gmail.com

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 22 June 2017; accepted 13 July 2017; online 18 July 2017)

The title salt, C4H8N3O+·H2PO3, contains a creatininium cation (2-amino-1-methyl-4-oxo-4,5-di­hydro-1H-imidazol-3-ium) and a phosphite anion. The crystal packing shows layers of hydrogen-bonded ions lying parallel to the (-114) and (11-4) planes.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Creatinine as one such material is more valuable for the detection of renal dysfunction than urea (Sharma et al., 2004[Sharma, A. C., Jana, T., Kesavamoorthy, R., Shi, L., Virji, M. A., Finegold, D. N. & Asher, S. A. (2004). J. Am. Chem. Soc. 126, 2971-2977.]).

The title compound comprises a protonated creatininium cation and a deprotonated phosphite anion (Fig. 1[link]). The geometric parameters of the title ion-pair agree well with those reported for a similar structure (Thayanithi et al., 2016[Thayanithi, V., Kumar, P. P. & Gunasekaran, B. (2016). IUCrData, 1, x160989.]). The crystal packing (Fig. 2[link]) shows planes of hydrogen-bonded ions parallel to the ([\overline{1}]14) and (11[\overline{4}]) planes (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯O1i 0.97 2.58 2.997 (4) 106
C4—H4A⋯O4ii 0.96 2.61 3.470 (3) 150
N1—H1⋯O2 0.86 1.94 2.754 (2) 157
N3—H3A⋯O3iii 0.86 1.98 2.800 (2) 158
N3—H3B⋯O3 0.86 1.96 2.821 (2) 178
O4—H4⋯O2iv 0.82 1.77 2.585 (2) 170
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+2, -y, -z+2; (iv) -x+3, -y+1, -z+2.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for the non-H atoms.
[Figure 2]
Figure 2
The packing of the title compound, viewed down the b axis. Hydrogen bonds are shown as dashed lines.

Synthesis and crystallization

The title compound was synthesized by dissolving creatinine (1.1312 g, 0.01 mol) in 30 ml of deionized water. Phospho­rus acid (0.82 g, 0.01 mol) was then added slowly. The solution was stirred for 4 h, filtered into a beaker and kept dust-free. Colourless crystals were obtained from the mother solution in 93% yield.

Refinement

Crystal data, data collection and structure refinement details are presented in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C4H8N3O+·H2O3P
Mr 195.12
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 8.8083 (11), 6.6316 (9), 15.068 (2)
β (°) 99.539 (4)
V3) 868.0 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.30
Crystal size (mm) 0.20 × 0.20 × 0.15
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.942, 0.956
No. of measured, independent and observed [I > 2σ(I)] reflections 17033, 2806, 1735
Rint 0.058
(sin θ/λ)max−1) 0.732
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.152, 1.10
No. of reflections 2806
No. of parameters 112
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.41, −0.48
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

2-Amino-1-methyl-4-oxo-4,5-dihydro-1H-imidazol-3-ium phosphite top
Crystal data top
C4H8N3O+·H2O3PF(000) = 408
Mr = 195.12Dx = 1.493 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2806 reflections
a = 8.8083 (11) Åθ = 2.7–31.3°
b = 6.6316 (9) ŵ = 0.30 mm1
c = 15.068 (2) ÅT = 296 K
β = 99.539 (4)°Block, colourless
V = 868.0 (2) Å30.20 × 0.20 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2806 independent reflections
Radiation source: fine-focus sealed tube1735 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
Detector resolution: 0 pixels mm-1θmax = 31.3°, θmin = 2.7°
ω and φ scansh = 1212
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 99
Tmin = 0.942, Tmax = 0.956l = 2122
17033 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.152 w = 1/[σ2(Fo2) + (0.0518P)2 + 0.7395P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
2806 reflectionsΔρmax = 0.41 e Å3
112 parametersΔρmin = 0.48 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.016 (3)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9486 (3)0.6568 (4)0.82130 (17)0.0371 (6)
C20.7886 (3)0.5893 (4)0.78225 (18)0.0411 (6)
H2A0.71240.68640.79450.049*
H2B0.77810.56900.71780.049*
C30.9043 (3)0.3583 (4)0.88290 (15)0.0288 (5)
C40.6448 (4)0.2661 (5)0.8068 (2)0.0604 (9)
H4A0.63810.22090.74580.091*
H4B0.55190.33590.81350.091*
H4C0.65820.15190.84650.091*
N11.0075 (2)0.5102 (3)0.88175 (14)0.0311 (4)
H11.09730.51410.91440.037*
N20.7741 (2)0.4002 (3)0.82874 (14)0.0369 (5)
N30.9339 (2)0.1983 (3)0.93186 (15)0.0394 (5)
H3A0.86510.10600.93110.047*
H3B1.02250.18420.96520.047*
O11.0143 (3)0.8075 (3)0.80485 (15)0.0575 (6)
O21.3127 (2)0.4455 (3)0.95142 (14)0.0501 (6)
O31.2272 (2)0.1521 (3)1.03801 (13)0.0435 (5)
O41.4909 (2)0.2863 (3)1.08076 (14)0.0506 (6)
H41.55050.36981.06580.076*
P11.35438 (7)0.25366 (10)1.00218 (5)0.0336 (2)
H1A1.39030.15930.96010.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0422 (14)0.0362 (14)0.0346 (13)0.0032 (11)0.0109 (11)0.0059 (11)
C20.0395 (14)0.0473 (15)0.0351 (13)0.0085 (12)0.0024 (11)0.0080 (12)
C30.0269 (11)0.0309 (12)0.0283 (11)0.0017 (9)0.0037 (9)0.0001 (9)
C40.0389 (16)0.074 (2)0.061 (2)0.0176 (16)0.0118 (14)0.0016 (17)
N10.0279 (10)0.0288 (10)0.0354 (10)0.0039 (8)0.0018 (8)0.0028 (8)
N20.0279 (10)0.0444 (12)0.0366 (11)0.0025 (9)0.0001 (8)0.0037 (9)
N30.0307 (11)0.0323 (11)0.0511 (13)0.0109 (9)0.0055 (10)0.0085 (10)
O10.0677 (15)0.0442 (12)0.0624 (14)0.0077 (10)0.0158 (11)0.0210 (10)
O20.0263 (9)0.0522 (12)0.0668 (14)0.0108 (8)0.0071 (9)0.0278 (10)
O30.0318 (10)0.0419 (11)0.0554 (11)0.0127 (8)0.0033 (8)0.0104 (9)
O40.0342 (10)0.0585 (14)0.0536 (12)0.0164 (9)0.0090 (9)0.0230 (10)
P10.0249 (3)0.0355 (3)0.0398 (4)0.0038 (3)0.0034 (2)0.0050 (3)
Geometric parameters (Å, º) top
C1—O11.201 (3)C4—H4B0.9600
C1—N11.374 (3)C4—H4C0.9600
C1—C21.502 (4)N1—H10.8600
C2—N21.452 (4)N3—H3A0.8600
C2—H2A0.9700N3—H3B0.8600
C2—H2B0.9700O2—P11.4983 (19)
C3—N31.294 (3)O3—P11.4833 (18)
C3—N21.322 (3)O4—P11.5566 (19)
C3—N11.359 (3)O4—H40.8200
C4—N21.440 (4)P1—H1A0.9800
C4—H4A0.9600
O1—C1—N1125.7 (3)H4B—C4—H4C109.5
O1—C1—C2128.3 (2)C3—N1—C1110.7 (2)
N1—C1—C2106.0 (2)C3—N1—H1124.7
N2—C2—C1102.7 (2)C1—N1—H1124.7
N2—C2—H2A111.2C3—N2—C4125.7 (2)
C1—C2—H2A111.2C3—N2—C2110.0 (2)
N2—C2—H2B111.2C4—N2—C2123.5 (2)
C1—C2—H2B111.2C3—N3—H3A120.0
H2A—C2—H2B109.1C3—N3—H3B120.0
N3—C3—N2126.6 (2)H3A—N3—H3B120.0
N3—C3—N1122.9 (2)P1—O4—H4109.5
N2—C3—N1110.5 (2)O3—P1—O2115.80 (11)
N2—C4—H4A109.5O3—P1—O4108.73 (11)
N2—C4—H4B109.5O2—P1—O4111.31 (11)
H4A—C4—H4B109.5O3—P1—H1A106.8
N2—C4—H4C109.5O2—P1—H1A106.8
H4A—C4—H4C109.5O4—P1—H1A106.8
O1—C1—C2—N2179.2 (3)N3—C3—N2—C46.6 (4)
N1—C1—C2—N20.4 (3)N1—C3—N2—C4173.9 (3)
N3—C3—N1—C1177.4 (2)N3—C3—N2—C2177.2 (2)
N2—C3—N1—C13.1 (3)N1—C3—N2—C23.4 (3)
O1—C1—N1—C3178.9 (3)C1—C2—N2—C32.3 (3)
C2—C1—N1—C31.5 (3)C1—C2—N2—C4173.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O1i0.972.582.997 (4)106
C4—H4C···N30.962.572.941 (4)103
C4—H4A···O4ii0.962.613.470 (3)150
N1—H1···O20.861.942.754 (2)157
N3—H3A···O3iii0.861.982.800 (2)158
N3—H3B···O30.861.962.821 (2)178
O4—H4···O2iv0.821.772.585 (2)170
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x1, y+1/2, z1/2; (iii) x+2, y, z+2; (iv) x+3, y+1, z+2.
 

Acknowledgements

The authors acknowledge the SAIF, IIT Madras, Chennai.

References

First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSharma, A. C., Jana, T., Kesavamoorthy, R., Shi, L., Virji, M. A., Finegold, D. N. & Asher, S. A. (2004). J. Am. Chem. Soc. 126, 2971–2977.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThayanithi, V., Kumar, P. P. & Gunasekaran, B. (2016). IUCrData, 1, x160989.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds