organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-Nitro-1-(prop-2-en-1-yl)-1H-indazole

aLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: mboulhaoua@gmail.com

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 16 June 2017; accepted 24 July 2017; online 28 July 2017)

In the crystal, the title mol­ecule, C10H9N3O2, packs in layers approximately parallel to (100), which are formed by the association of zigzag chains constructed by weak C—H⋯O inter­actions. The allyl group is disordered over two positions, with a ratio of their occupancies close to 70:30.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As a continuation of our research work on indazole derivatives (Boulhaoua et al., 2016[Boulhaoua, M., El Hafi, M., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2016). IUCrData, 1, x160480.]), we have studied the action of allyl bromide towards 5-nitro-1H-indazole under phase-transfer catalysis conditions, by using tetra-n-butyl­ammonium bromide (TBAB) as catalyst and potassium carbonate as base. This readily leads to the title compound (Fig. 1[link]) in good yield.

[Figure 1]
Figure 1
The title mol­ecule with labelling scheme and 50% probability ellipsoids. Only one orientation of the disordered allyl group is shown.

In the crystal, the mol­ecule forms zigzag chains running parallel to the c axis through weak inter­molecular C7—H7⋯O1i hydrogen bonds (Table 1[link] and Fig. 2[link]). The chains pack so as to form layers approximately parallel to (100) aided by weak C9A—H9A⋯O1ii inter­actions (Table 1[link] and Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1i 1.00 (2) 2.56 (3) 3.552 (3) 168 (2)
C9A—H9A⋯O1ii 0.93 2.55 3.404 (17) 154
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].
[Figure 2]
Figure 2
Packing viewed along the a axis with C—H⋯O inter­actions shown as dotted lines.
[Figure 3]
Figure 3
Packing viewed along the c axis with C—H⋯O inter­actions shown as dotted lines.

Synthesis and crystallization

To a solution of 5-nitro-1H-indazole (0.5 g, 3 mmol) in THF (25 ml) was added allyl bromide (0.26 ml, 3 mmol), potassium carbonate (0.83 g, 6 mmol) and a catalytic amount of tetra-n-butyl­ammonium bromide. The mixture was stirred at room temperature for 48 h. The solution was filtered and the solvent removed under reduced pressure. The resulting residue was purified by column chromatography (EtOAc/hexane, 2/8). The title compound was obtained as colourless crystals in 70% yield.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The allyl group is disordered over two partially resolved orientations for which occupancies converged toward 0.702 (12) and 0.298 (12). The two components of the disorder were refined subject to restraints that their geometries be comparable (SADI command in SHELXL; Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and pairs of C atoms were constrained to have identical displacement parameters (EADP command in SHELXL; Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]). The absolute configuration could not be determined with certainty, and was thus assigned arbitrarily.

Table 2
Experimental details

Crystal data
Chemical formula C10H9N3O2
Mr 203.20
Crystal system, space group Orthorhombic, P212121
Temperature (K) 298
a, b, c (Å) 6.9549 (5), 11.6778 (9), 12.2165 (9)
V3) 992.20 (13)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.82
Crystal size (mm) 0.22 × 0.17 × 0.15
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.80, 0.89
No. of measured, independent and observed [I > 2σ(I)] reflections 7734, 1937, 1806
Rint 0.030
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.098, 1.05
No. of reflections 1937
No. of parameters 164
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.13, −0.12
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

5-Nitro-1-(prop-2-en-1-yl)-1H-indazole top
Crystal data top
C10H9N3O2Dx = 1.360 Mg m3
Mr = 203.20Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, P212121Cell parameters from 6584 reflections
a = 6.9549 (5) Åθ = 3.8–72.3°
b = 11.6778 (9) ŵ = 0.82 mm1
c = 12.2165 (9) ÅT = 298 K
V = 992.20 (13) Å3Block, colourless
Z = 40.22 × 0.17 × 0.15 mm
F(000) = 424
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
1937 independent reflections
Radiation source: INCOATEC IµS micro-focus source1806 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.030
Detector resolution: 10.4167 pixels mm-1θmax = 72.3°, θmin = 5.2°
ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1414
Tmin = 0.80, Tmax = 0.89l = 1314
7734 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0632P)2 + 0.0423P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.003
1937 reflectionsΔρmax = 0.13 e Å3
164 parametersΔρmin = 0.12 e Å3
4 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
3 constraintsExtinction coefficient: 0.013 (2)
Primary atom site location: structure-invariant direct methods
Special details top

Refinement. The H-atoms of the disordered allyl group were placed in calculated positions (C—H = 0.93–0.97 Å) while the remainder were refined independently.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.7579 (3)0.04269 (14)0.31969 (17)0.0971 (7)
O20.7999 (4)0.05941 (18)0.17506 (16)0.1030 (6)
N10.8126 (3)0.42834 (13)0.54140 (14)0.0615 (4)
N20.8021 (3)0.37982 (15)0.64367 (15)0.0675 (5)
N30.7819 (3)0.04995 (16)0.27451 (17)0.0733 (5)
C10.7894 (2)0.24152 (15)0.51404 (15)0.0532 (4)
C20.7815 (3)0.14109 (14)0.45294 (16)0.0554 (4)
H20.775 (3)0.068 (2)0.487 (2)0.066 (6)*
C30.7888 (3)0.15275 (16)0.34145 (17)0.0590 (5)
C40.8024 (3)0.25941 (17)0.28784 (18)0.0641 (5)
H40.812 (4)0.263 (2)0.212 (2)0.079 (7)*
C50.8087 (3)0.35883 (16)0.34732 (17)0.0629 (5)
H50.819 (4)0.433 (2)0.313 (2)0.074 (6)*
C60.8037 (3)0.34871 (14)0.46140 (15)0.0544 (4)
C70.7889 (3)0.26889 (17)0.62715 (18)0.0631 (5)
H70.779 (4)0.214 (2)0.690 (2)0.074 (7)*
C80.8333 (11)0.5528 (2)0.5382 (7)0.0642 (15)0.702 (12)
H8A0.9426640.5720270.4924530.077*0.702 (12)
H8B0.8602530.5802620.6115290.077*0.702 (12)
C90.6597 (12)0.6133 (10)0.4954 (7)0.0727 (11)0.702 (12)
H90.5418510.5982280.5283870.087*0.702 (12)
C100.6638 (13)0.6853 (5)0.4153 (5)0.1027 (18)0.702 (12)
H10A0.7796790.7020510.3807360.123*0.702 (12)
H10B0.5510140.7205020.3920420.123*0.702 (12)
C8A0.841 (3)0.5494 (5)0.516 (2)0.0642 (15)0.298 (12)
H8AA0.8981390.5583710.4438290.077*0.298 (12)
H8AB0.9245830.5852200.5694940.077*0.298 (12)
C9A0.645 (3)0.601 (3)0.5191 (18)0.0727 (11)0.298 (12)
H9A0.5704030.5888300.5812610.087*0.298 (12)
C10A0.572 (3)0.6615 (13)0.4409 (14)0.1027 (18)0.298 (12)
H10C0.6435560.6751160.3777330.123*0.298 (12)
H10D0.4491190.6914620.4476510.123*0.298 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1346 (18)0.0541 (8)0.1026 (13)0.0013 (10)0.0014 (12)0.0084 (8)
O20.1418 (17)0.0913 (12)0.0761 (12)0.0089 (13)0.0128 (12)0.0165 (9)
N10.0684 (9)0.0501 (8)0.0660 (9)0.0022 (7)0.0033 (8)0.0038 (7)
N20.0756 (10)0.0653 (9)0.0617 (9)0.0027 (9)0.0005 (8)0.0062 (7)
N30.0759 (11)0.0638 (10)0.0803 (12)0.0082 (9)0.0040 (10)0.0082 (8)
C10.0464 (8)0.0517 (8)0.0616 (10)0.0013 (7)0.0005 (7)0.0099 (7)
C20.0509 (9)0.0475 (8)0.0678 (11)0.0026 (7)0.0023 (8)0.0097 (7)
C30.0562 (9)0.0524 (9)0.0684 (12)0.0027 (8)0.0010 (8)0.0003 (7)
C40.0703 (11)0.0632 (11)0.0587 (11)0.0015 (11)0.0003 (9)0.0084 (8)
C50.0720 (12)0.0545 (9)0.0624 (11)0.0032 (10)0.0012 (9)0.0129 (8)
C60.0498 (8)0.0500 (8)0.0636 (10)0.0009 (8)0.0021 (8)0.0071 (7)
C70.0671 (11)0.0590 (9)0.0632 (11)0.0014 (9)0.0022 (9)0.0103 (8)
C80.0749 (14)0.0489 (9)0.069 (4)0.0057 (9)0.002 (2)0.0027 (11)
C90.084 (2)0.050 (3)0.084 (4)0.0044 (18)0.002 (2)0.001 (2)
C100.130 (5)0.080 (3)0.099 (4)0.013 (3)0.020 (4)0.016 (2)
C8A0.0749 (14)0.0489 (9)0.069 (4)0.0057 (9)0.002 (2)0.0027 (11)
C9A0.084 (2)0.050 (3)0.084 (4)0.0044 (18)0.002 (2)0.001 (2)
C10A0.130 (5)0.080 (3)0.099 (4)0.013 (3)0.020 (4)0.016 (2)
Geometric parameters (Å, º) top
O1—N31.226 (3)C5—H50.96 (3)
O2—N31.226 (3)C7—H71.00 (2)
N1—C61.351 (3)C8—C91.493 (4)
N1—N21.374 (3)C8—H8A0.9700
N1—C81.461 (3)C8—H8B0.9700
N1—C8A1.461 (3)C9—C101.291 (5)
N2—C71.314 (3)C9—H90.9300
N3—C31.453 (3)C10—H10A0.9300
C1—C21.391 (3)C10—H10B0.9300
C1—C61.411 (2)C8A—C9A1.493 (5)
C1—C71.418 (3)C8A—H8AA0.9700
C2—C31.370 (3)C8A—H8AB0.9700
C2—H20.95 (2)C9A—C10A1.291 (6)
C3—C41.410 (3)C9A—H9A0.9300
C4—C51.370 (3)C10A—H10C0.9300
C4—H40.93 (3)C10A—H10D0.9300
C5—C61.399 (3)
C6—N1—N2111.81 (15)N2—C7—C1111.81 (17)
C6—N1—C8132.1 (4)N2—C7—H7120.9 (15)
N2—N1—C8116.1 (4)C1—C7—H7127.2 (15)
C6—N1—C8A121.2 (11)N1—C8—C9113.6 (6)
N2—N1—C8A126.9 (11)N1—C8—H8A108.8
C7—N2—N1105.70 (18)C9—C8—H8A108.8
O1—N3—O2122.6 (2)N1—C8—H8B108.8
O1—N3—C3118.70 (19)C9—C8—H8B108.8
O2—N3—C3118.7 (2)H8A—C8—H8B107.7
C2—C1—C6120.41 (17)C10—C9—C8123.7 (4)
C2—C1—C7135.45 (17)C10—C9—H9118.1
C6—C1—C7104.14 (16)C8—C9—H9118.1
C3—C2—C1116.64 (16)C9—C10—H10A120.0
C3—C2—H2121.9 (15)C9—C10—H10B120.0
C1—C2—H2121.4 (15)H10A—C10—H10B120.0
C2—C3—C4123.50 (19)N1—C8A—C9A105.1 (14)
C2—C3—N3118.44 (17)N1—C8A—H8AA110.7
C4—C3—N3118.06 (19)C9A—C8A—H8AA110.7
C5—C4—C3120.27 (19)N1—C8A—H8AB110.7
C5—C4—H4119.3 (16)C9A—C8A—H8AB110.7
C3—C4—H4120.4 (17)H8AA—C8A—H8AB108.8
C4—C5—C6117.12 (17)C10A—C9A—C8A123.9 (8)
C4—C5—H5122.1 (15)C10A—C9A—H9A118.0
C6—C5—H5120.8 (15)C8A—C9A—H9A118.0
N1—C6—C5131.41 (17)C9A—C10A—H10C120.0
N1—C6—C1106.52 (16)C9A—C10A—H10D120.0
C5—C6—C1122.06 (17)H10C—C10A—H10D120.0
C6—N1—N2—C70.8 (2)C8—N1—C6—C1178.2 (4)
C8—N1—N2—C7178.5 (4)C8A—N1—C6—C1175.9 (9)
C8A—N1—N2—C7175.8 (9)C4—C5—C6—N1178.0 (2)
C6—C1—C2—C30.1 (2)C4—C5—C6—C11.0 (3)
C7—C1—C2—C3179.0 (2)C2—C1—C6—N1178.67 (16)
C1—C2—C3—C40.4 (3)C7—C1—C6—N10.7 (2)
C1—C2—C3—N3179.75 (16)C2—C1—C6—C50.6 (3)
O1—N3—C3—C24.4 (3)C7—C1—C6—C5179.95 (18)
O2—N3—C3—C2175.7 (2)N1—N2—C7—C10.3 (3)
O1—N3—C3—C4175.5 (2)C2—C1—C7—N2179.0 (2)
O2—N3—C3—C44.5 (3)C6—C1—C7—N20.2 (2)
C2—C3—C4—C50.1 (3)C6—N1—C8—C970.0 (8)
N3—C3—C4—C5179.8 (2)N2—N1—C8—C9110.9 (6)
C3—C4—C5—C60.8 (3)N1—C8—C9—C10126.0 (11)
N2—N1—C6—C5179.9 (2)C6—N1—C8A—C9A98.4 (17)
C8—N1—C6—C51.0 (5)N2—N1—C8A—C9A85.3 (16)
C8A—N1—C6—C53.3 (9)N1—C8A—C9A—C10A128 (3)
N2—N1—C6—C10.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i1.00 (2)2.56 (3)3.552 (3)168 (2)
C9A—H9A···O1ii0.932.553.404 (17)154
Symmetry codes: (i) x+3/2, y, z+1/2; (ii) x1/2, y+1/2, z+1.
 

Acknowledgements

The support of NSF-MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBoulhaoua, M., El Hafi, M., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2016). IUCrData, 1, x160480.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds