metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(2,2′-Bi­pyrazine-κ2N1,N1′)[1,2-bis­­(di­phenyl­phosphan­yl)methane-κP]tri­carbonyl­rhenium(I) tri­fluoro­methane­sulfonate monohydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Wichita State University, Wichita, KS 67260, USA
*Correspondence e-mail: paul.rillema@wichita.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 13 June 2017; accepted 22 June 2017; online 27 June 2017)

The title compound, [Re(C8H6N4)(C25H22P2)(CO)3]CF3SO3·H2O, crystallizes with one [Re(C8N4H6){P(Ph)2CH2P(Ph)2}(CO)3]+ cation, where Ph is a phenyl group, one CF3SO3 anion and one water mol­ecule of hydration. The three C atoms of the facial oriented carbonyl groups, two N atoms from the bi­pyrazine ligand and one P atom from the (bis­)di­phenyl­phosphanyl­methane ligand define a distorted octa­hedral coordination environment about the central ReI atom. The Re—Ccarbon­yl bond length trans to the P atom is longer than the the two Re—Ccarbon­yl bond lengths in the plane with the bi­pyrazine ligand. Hydrogen-bonding inter­actions between the solvent water mol­ecule and the cation, as well as weak C—H⋯O inter­actions, consolidate a three-dimensional network structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

We are inter­ested in preparing ReI complexes containing bidentate di­amine ligands due to their excited state properties (Kirgan et al., 2007[Kirgan, R., Simpson, M., Moore, C., Day, J., Bui, L., Tanner, C. & Rillema, D. P. (2007). Inorg. Chem. 46, 6464-6472.]) and determining their structures as a guide to design better photochomophores. The mol­ecular structures of Re(di­amine)(CO)3X, where X = Cl, OH2, pyridine (py), 2,6-di­methyl­isocyanide (CNx), bis­(di­phenyl­phosphino­methane (dppm) or bis­(di­phenyl­phosphino­ethane (dppe), and di­amine = 2,2′-bi­pyrazine (bpz), 2,2′-bi­pyridine (bpy) or 1,10-phenanthroline (phen), reveal the CO ligands lie on the face of an octa­hedron, the di­amine ligand and two CO ligands lie in a plane and one CO ligand and the ligating atom of X are trans to one another (Kirgan et al., 2007[Kirgan, R., Simpson, M., Moore, C., Day, J., Bui, L., Tanner, C. & Rillema, D. P. (2007). Inorg. Chem. 46, 6464-6472.]; Rillema et al., 2007[Rillema, D. P., Kirgan, R. A., Smucker, B. & Moore, C. (2007). Acta Cryst. E63, m1404-m1405.]; Villegas et al., 2005[Villegas, J. M., Stoyanov, S. R., Moore, C. E., Eichhorn, D. M. & Rillema, D. P. (2005). Acta Cryst. E61, m533-m534.]; Stoyanov et al., 2005[Stoyanov, S. R., Villegas, J. M., Cruz, A. J., Lockyear, L. L., Reibenspies, J. H. & Rillema, D. P. (2005). J. Chem. Theory Comput. 1, 95-106.]; Yamamoto et al., 2008[Yamamoto, Y., Sawa, S., Funada, Y., Morimoto, T., Falkenström, M., Miyasaka, H., Shishido, S., Ozeki, T., Koike, K. & Ishitani, O. (2008). J. Am. Chem. Soc. 130, 14659-14674.]), as shown for the cation of the title compound (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the complex cation of the title compound with atom labels and displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity.

The cation of the title compound is best described as a distorted octa­hedron. The six bond lengths for the atoms bonded to ReI differ markedly and are the shortest for the C atoms of the three carbonyl groups, followed by the two N atoms of the bidentate bi­pyrazine ligand and the P atom of the bis­(di­phenyl­phosphino­methane) ligand (Table 1[link]). The bond angles of the coordinating atoms trans to one another are less than 180°, viz. C9—Re1—N1 = 173.94 (8)°, C10—Re1—P1 = 175.79 (7)° and C11—Re1—N3 = 170.78 (8)°. The bond angles about P2 and the coordinating P1 atom also differ from the ideal tetra­hedral angle (Table 1[link]).

Table 1
Selected geometric parameters (Å, °)

C9—Re1 1.919 (2) N1—Re1 2.1673 (17)
C10—Re1 1.973 (2) N3—Re1 2.1665 (17)
C11—Re1 1.935 (2) P1—Re1 2.4790 (6)
       
C12—P1—C18 102.48 (9) C24—P1—Re1 114.39 (7)
C12—P1—C24 105.39 (9) C25—P2—C24 102.68 (9)
C12—P1—Re1 110.43 (7) C31—P2—C24 103.85 (10)
C18—P1—C24 103.53 (9) C31—P2—C25 99.74 (10)
C18—P1—Re1 119.17 (7)    

The two Re—N bond lengths in the title structure are similar to those of the following mol­ecular entities: Re(bpz)(CO)3Cl [2.150 (5), 2.151 (5) Å] and Re(bpz)(CO)3(py)+ [2.162 (2), 2.161 (2) Å; Kirgan et al., 2007[Kirgan, R., Simpson, M., Moore, C., Day, J., Bui, L., Tanner, C. & Rillema, D. P. (2007). Inorg. Chem. 46, 6464-6472.]]; Re(bpz)(CO)3(OH2)+ [2.167 (2) Å; Rillema et al., 2007[Rillema, D. P., Kirgan, R. A., Smucker, B. & Moore, C. (2007). Acta Cryst. E63, m1404-m1405.]]; Re(phen)(CO)3(CNx) [2.196 (3), 2.203 (3) Å; Villegas et al., 2005[Villegas, J. M., Stoyanov, S. R., Moore, C. E., Eichhorn, D. M. & Rillema, D. P. (2005). Acta Cryst. E61, m533-m534.]], Re(bpy)(CO)3(CNx) [2.173 (3), 2.169 (3) Å; Stoyanov et al., 2005[Stoyanov, S. R., Villegas, J. M., Cruz, A. J., Lockyear, L. L., Reibenspies, J. H. & Rillema, D. P. (2005). J. Chem. Theory Comput. 1, 95-106.]] and Re(bpy)(CO)3(dppe)Re(bpy)(CO)2(dppe)Re(bpy)(CO)33+ [2.133 (10), 2.149 (12) Å; Yamamoto et al., 2008[Yamamoto, Y., Sawa, S., Funada, Y., Morimoto, T., Falkenström, M., Miyasaka, H., Shishido, S., Ozeki, T., Koike, K. & Ishitani, O. (2008). J. Am. Chem. Soc. 130, 14659-14674.]]. The Re1—P1 bond length in the title structure compares favorably with the one for Re(bpy)(CO)3(dppe)Re(bpy)(CO)2(dppe)Re(bpy)(CO)33+ [2.472 (4) Å] and for Re—Cl [2.484 (1) Å] in Re(bpz)(CO)3Cl, but is longer than the bond length for Re—N(py) [2.203 (3) Å] in Re(bpz)(CO)3(py)+, Re—O [2.143 (3) Å] in Re(bpz)(CO)3(OH2)+, Re—C [2.063 (4) Å] in Re(phen)(CO)3(CNx) and Re—C [2.074 (4) Å] in Re(bpy)(CO)3(CNx).

The crystal packing is shown in Fig. 2[link]. Apart from Couloumbic forces between complex cations and tri­fluoro­methane­sulfonate anions, C⋯O and N⋯F van der Waals inter­actions between the cations and the anions are present. Also O—H⋯O≡C and O—H⋯N hydrogen-bonding inter­actions between the water mol­ecules and a carbonyl group and the N atoms of the di­amine, respectively, are present. Weak C—H⋯O hydrogen bonds are also observed (Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O4i 0.95 2.47 3.281 (3) 143
C6—H6⋯O4i 0.95 2.62 3.468 (3) 148
C8—H8⋯O101ii 0.95 2.33 3.226 (3) 156
C17—H17⋯O6i 0.95 2.31 3.180 (3) 152
O101—H10A⋯N2iii 0.94 (5) 2.20 (5) 2.983 (3) 141 (4)
O101—H10A⋯N4iv 0.94 (5) 2.44 (5) 3.126 (3) 131 (4)
O101—H10B⋯O1v 0.84 (3) 2.47 (3) 3.103 (3) 133 (3)
Symmetry codes: (i) x+1, y, z; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) x-1, y, z; (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Packing diagram showing C⋯O (blue) and N⋯F (green) van der Waals inter­actions between the complex cation and the tri­fluoro­methane­sulfonate anion and C—O⋯H (pink) hydrogen-bonding inter­actions between the carbonyl groups and the water mol­ecules.

Synthesis and crystallization

To a 100 ml round-bottom flask equipped with a stir bar, 0.20 g (0.432 mmol) of Re(bpz)(CO)3Cl (Kirgan et al., 2007[Kirgan, R., Simpson, M., Moore, C., Day, J., Bui, L., Tanner, C. & Rillema, D. P. (2007). Inorg. Chem. 46, 6464-6472.]), where bpz is 2,2′-bi­pyrazine, and 0.11 g (0.432 mmol) AgCF3SO3 were added along with 25 ml of absolute ethanol. This solution was allowed to reflux for 12 h under nitro­gen gas. After refluxing for roughly 2 h, a gray AgCl precipitate was present. At the end of the reflux procedure, the round-bottom flask was removed from the condenser and the solution was vacuum-filtered to remove the silver chloride. The yellow filtrate was transferred to a 100 ml round-bottom flask with a stir bar and 0.166 g (0.432 mmol) of bis­(diphenlyphosphan­yl)methane. This solution was allowed to reflux overnight under nitro­gen gas. The solution remained yellow during reflux. Then the solution was filtered to remove insoluble impurities and concentrated under rotary evaporation yielding 0.274 g (67%) of the desired title compound. A small portion of the solid was then recrystallized by slow evaporation from ethanol solution.

Refinement

Crystal data, data collection and stucture refinement details are summarized in Table 3[link]. Reflections (002), ([\overline{2}]02), ([\overline{1}]11), (110), (200), (101), (011) and (111) were obstructed by the beam stop and were omitted from the refinement.

Table 3
Experimental details

Crystal data
Chemical formula [Re(C8H6N4)(C25H22P2)(CO)3]CF3O3S·H2O
Mr 979.85
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 18.188 (4), 9.934 (2), 22.887 (5)
β (°) 110.062 (10)
V3) 3884.4 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.33
Crystal size (mm) 0.28 × 0.16 × 0.10
 
Data collection
Diffractometer Bruker SMART CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.854, 0.935
No. of measured, independent and observed [I > 2σ(I)] reflections 77073, 7628, 6856
Rint 0.033
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.039, 1.04
No. of reflections 7628
No. of parameters 504
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.62, −0.30
Computer programs: SMART and SAINT (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR2004 (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]), SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2007); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(2,2'-Bipyrazine-κ2N1,N1')[1,2-bis(diphenylphosphanyl)methane-κP]tricarbonylrhenium(I) trifluoromethanesulfonate monohydrate top
Crystal data top
[Re(C8H6N4)(C25H22P2)(CO)3]CF3O3S·H2OF(000) = 1936
Mr = 979.85Dx = 1.675 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 18.188 (4) ÅCell parameters from 9722 reflections
b = 9.934 (2) Åθ = 2.7–27.1°
c = 22.887 (5) ŵ = 3.33 mm1
β = 110.062 (10)°T = 150 K
V = 3884.4 (14) Å3Prism, yellow
Z = 40.28 × 0.16 × 0.10 mm
Data collection top
Bruker SMART CCD area detector
diffractometer
6856 reflections with I > 2σ(I)
phi and ω scansRint = 0.033
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 26.0°, θmin = 2.8°
Tmin = 0.854, Tmax = 0.935h = 2222
77073 measured reflectionsk = 1212
7628 independent reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.016H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.039 w = 1/[σ2(Fo2) + (0.0175P)2 + 3.0353P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
7628 reflectionsΔρmax = 0.62 e Å3
504 parametersΔρmin = 0.30 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.12890 (13)0.0732 (2)0.31293 (10)0.0215 (4)
H11.10000.00280.31790.026*
C21.19548 (13)0.1117 (2)0.36087 (10)0.0254 (5)
H21.21100.06090.39830.030*
C31.21558 (12)0.2839 (2)0.30326 (10)0.0234 (5)
H31.24550.35890.29860.028*
C41.14895 (11)0.2480 (2)0.25373 (9)0.0178 (4)
C51.12322 (11)0.3146 (2)0.19303 (9)0.0180 (4)
C61.16036 (13)0.4264 (2)0.17868 (10)0.0243 (5)
H61.20440.46360.21020.029*
C71.07519 (13)0.4256 (2)0.08022 (11)0.0273 (5)
H71.05710.46240.03940.033*
C81.03644 (12)0.3156 (2)0.09239 (10)0.0229 (5)
H80.99280.27890.06030.027*
C90.91755 (13)0.0653 (2)0.10254 (10)0.0242 (5)
C101.06703 (13)0.0344 (2)0.15151 (11)0.0240 (5)
C110.96474 (12)0.0484 (2)0.21795 (10)0.0218 (5)
C120.92262 (12)0.4244 (2)0.16444 (9)0.0182 (4)
C130.87371 (13)0.4307 (2)0.10223 (10)0.0242 (5)
H130.83900.35830.08460.029*
C140.87538 (15)0.5415 (3)0.06605 (11)0.0327 (6)
H140.84080.54650.02420.039*
C150.92772 (16)0.6454 (3)0.09115 (13)0.0364 (6)
H150.92970.72090.06630.044*
C160.97686 (15)0.6387 (2)0.15233 (13)0.0332 (6)
H161.01310.70940.16920.040*
C170.97388 (13)0.5300 (2)0.18945 (11)0.0242 (5)
H171.00680.52770.23190.029*
C180.82138 (11)0.2393 (2)0.19442 (9)0.0169 (4)
C190.77494 (12)0.3460 (2)0.20091 (10)0.0212 (4)
H190.79710.43330.21050.025*
C200.69672 (13)0.3263 (2)0.19348 (11)0.0261 (5)
H200.66570.39960.19820.031*
C210.66414 (13)0.1990 (2)0.17913 (10)0.0267 (5)
H210.61070.18490.17420.032*
C220.70911 (13)0.0929 (2)0.17202 (10)0.0246 (5)
H220.68650.00610.16190.029*
C230.78795 (12)0.1126 (2)0.17962 (10)0.0209 (4)
H230.81870.03920.17470.025*
C240.96408 (12)0.3199 (2)0.29061 (9)0.0180 (4)
H24A0.93410.39750.29780.022*
H24B1.01960.34720.30190.022*
C250.88188 (12)0.2330 (2)0.37257 (9)0.0201 (4)
C260.80430 (13)0.1956 (2)0.34234 (10)0.0239 (5)
H260.79080.14500.30490.029*
C270.74628 (13)0.2316 (2)0.36626 (11)0.0288 (5)
H270.69340.20650.34490.035*
C280.76547 (14)0.3035 (3)0.42084 (11)0.0322 (5)
H280.72610.32700.43750.039*
C290.84233 (15)0.3414 (3)0.45136 (11)0.0322 (5)
H290.85540.39160.48890.039*
C300.90042 (13)0.3066 (2)0.42756 (10)0.0264 (5)
H300.95300.33320.44890.032*
C311.04395 (12)0.1870 (2)0.40903 (10)0.0235 (5)
C321.05876 (15)0.0743 (3)0.44770 (12)0.0359 (6)
H321.02640.00310.43540.043*
C331.12085 (16)0.0746 (3)0.50434 (13)0.0488 (8)
H331.13050.00200.53070.059*
C341.16785 (15)0.1860 (3)0.52169 (12)0.0451 (7)
H341.20920.18710.56070.054*
C351.15567 (14)0.2962 (3)0.48310 (12)0.0391 (6)
H351.18980.37140.49490.047*
C361.09337 (13)0.2978 (3)0.42682 (11)0.0300 (5)
H361.08460.37460.40060.036*
C370.2103 (2)0.6951 (3)0.39864 (13)0.0507 (8)
F1010.23127 (12)0.58796 (19)0.43486 (8)0.0615 (5)
F1020.14850 (15)0.7505 (2)0.40888 (10)0.0886 (7)
F1030.26801 (15)0.7831 (2)0.41738 (9)0.0949 (8)
H10A0.352 (3)0.188 (5)0.432 (2)0.120 (17)*
H10B0.3570 (19)0.290 (3)0.4732 (15)0.052 (11)*
N11.10464 (9)0.14245 (17)0.25918 (8)0.0168 (3)
N21.23885 (10)0.21675 (19)0.35690 (8)0.0253 (4)
N31.05997 (9)0.26006 (17)0.14938 (8)0.0175 (4)
N41.13650 (11)0.4827 (2)0.12260 (9)0.0287 (4)
O10.86691 (10)0.0460 (2)0.05652 (8)0.0394 (4)
O21.10190 (10)0.10941 (17)0.13425 (9)0.0388 (4)
O30.94393 (10)0.13437 (16)0.24188 (8)0.0326 (4)
O40.25922 (11)0.60542 (18)0.31277 (9)0.0399 (4)
O50.15883 (14)0.7761 (2)0.28536 (9)0.0584 (6)
O60.12803 (10)0.5481 (2)0.30898 (9)0.0434 (5)
O1010.37966 (13)0.2167 (3)0.47235 (9)0.0523 (6)
P10.92512 (3)0.27010 (5)0.20823 (2)0.01519 (10)
P20.95581 (3)0.17415 (5)0.33975 (2)0.01939 (11)
Re11.00297 (2)0.09495 (2)0.17872 (2)0.01594 (3)
S1010.18615 (4)0.65191 (6)0.31689 (3)0.03235 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0222 (11)0.0190 (11)0.0259 (11)0.0050 (9)0.0117 (9)0.0026 (9)
C20.0233 (11)0.0310 (13)0.0212 (11)0.0091 (10)0.0069 (9)0.0054 (9)
C30.0195 (11)0.0236 (11)0.0264 (11)0.0000 (9)0.0067 (9)0.0013 (9)
C40.0163 (10)0.0171 (10)0.0216 (10)0.0013 (8)0.0088 (8)0.0022 (8)
C50.0151 (10)0.0189 (10)0.0220 (10)0.0010 (8)0.0089 (8)0.0006 (8)
C60.0207 (11)0.0240 (12)0.0288 (12)0.0033 (9)0.0092 (9)0.0004 (9)
C70.0245 (12)0.0353 (13)0.0245 (11)0.0045 (10)0.0115 (10)0.0100 (10)
C80.0180 (10)0.0322 (12)0.0198 (11)0.0028 (9)0.0083 (9)0.0008 (9)
C90.0233 (11)0.0255 (12)0.0264 (12)0.0055 (9)0.0118 (10)0.0043 (9)
C100.0216 (11)0.0215 (11)0.0316 (12)0.0042 (9)0.0127 (10)0.0048 (9)
C110.0216 (11)0.0180 (10)0.0277 (11)0.0003 (9)0.0112 (9)0.0046 (9)
C120.0176 (10)0.0175 (10)0.0229 (10)0.0030 (8)0.0112 (8)0.0012 (8)
C130.0204 (11)0.0279 (12)0.0259 (11)0.0017 (9)0.0101 (9)0.0020 (9)
C140.0349 (14)0.0400 (14)0.0285 (12)0.0133 (12)0.0177 (11)0.0127 (11)
C150.0490 (16)0.0243 (12)0.0506 (16)0.0100 (12)0.0359 (14)0.0125 (12)
C160.0427 (15)0.0183 (11)0.0490 (16)0.0030 (11)0.0290 (13)0.0013 (11)
C170.0267 (12)0.0210 (11)0.0286 (12)0.0025 (9)0.0144 (10)0.0027 (9)
C180.0155 (10)0.0210 (11)0.0149 (9)0.0007 (8)0.0060 (8)0.0002 (8)
C190.0218 (11)0.0192 (11)0.0236 (11)0.0004 (9)0.0092 (9)0.0016 (9)
C200.0203 (11)0.0286 (12)0.0317 (12)0.0041 (9)0.0118 (10)0.0006 (10)
C210.0162 (10)0.0358 (13)0.0282 (12)0.0028 (10)0.0079 (9)0.0016 (10)
C220.0220 (11)0.0263 (12)0.0258 (11)0.0075 (9)0.0088 (9)0.0030 (9)
C230.0198 (10)0.0215 (11)0.0221 (11)0.0004 (9)0.0083 (9)0.0022 (9)
C240.0181 (10)0.0190 (10)0.0172 (10)0.0000 (8)0.0066 (8)0.0014 (8)
C250.0220 (11)0.0195 (11)0.0205 (10)0.0032 (9)0.0096 (9)0.0044 (8)
C260.0268 (12)0.0231 (11)0.0230 (11)0.0016 (9)0.0103 (9)0.0025 (9)
C270.0223 (11)0.0331 (13)0.0337 (13)0.0003 (10)0.0130 (10)0.0065 (10)
C280.0324 (13)0.0343 (13)0.0380 (14)0.0073 (11)0.0226 (11)0.0059 (11)
C290.0400 (14)0.0332 (13)0.0285 (13)0.0046 (11)0.0182 (11)0.0040 (10)
C300.0253 (12)0.0302 (13)0.0248 (12)0.0019 (10)0.0100 (10)0.0010 (9)
C310.0193 (11)0.0319 (12)0.0207 (11)0.0081 (9)0.0088 (9)0.0019 (9)
C320.0283 (13)0.0432 (15)0.0365 (14)0.0050 (11)0.0115 (11)0.0130 (12)
C330.0367 (15)0.073 (2)0.0358 (15)0.0177 (15)0.0112 (12)0.0255 (15)
C340.0250 (13)0.078 (2)0.0263 (13)0.0136 (14)0.0017 (11)0.0043 (14)
C350.0262 (13)0.0538 (17)0.0323 (13)0.0042 (12)0.0036 (11)0.0123 (13)
C360.0271 (12)0.0349 (13)0.0246 (12)0.0070 (10)0.0044 (10)0.0022 (10)
C370.075 (2)0.0435 (17)0.0357 (15)0.0214 (16)0.0211 (15)0.0041 (13)
F1010.0796 (13)0.0678 (12)0.0340 (9)0.0106 (10)0.0156 (9)0.0112 (8)
F1020.139 (2)0.0839 (16)0.0696 (14)0.0220 (15)0.0697 (15)0.0081 (12)
F1030.145 (2)0.0904 (16)0.0482 (11)0.0793 (16)0.0321 (13)0.0318 (11)
N10.0154 (8)0.0159 (8)0.0204 (9)0.0030 (7)0.0078 (7)0.0006 (7)
N20.0202 (9)0.0296 (10)0.0231 (10)0.0032 (8)0.0036 (8)0.0004 (8)
N30.0153 (8)0.0193 (9)0.0198 (9)0.0006 (7)0.0085 (7)0.0021 (7)
N40.0262 (10)0.0304 (11)0.0321 (11)0.0017 (9)0.0132 (9)0.0070 (9)
O10.0352 (10)0.0501 (11)0.0273 (9)0.0158 (9)0.0035 (8)0.0060 (8)
O20.0359 (10)0.0321 (10)0.0574 (12)0.0010 (8)0.0276 (9)0.0134 (8)
O30.0384 (10)0.0209 (8)0.0467 (10)0.0036 (7)0.0250 (9)0.0014 (8)
O40.0393 (10)0.0355 (10)0.0508 (11)0.0061 (8)0.0230 (9)0.0027 (8)
O50.0927 (17)0.0408 (12)0.0460 (12)0.0211 (12)0.0291 (12)0.0105 (10)
O60.0305 (10)0.0497 (11)0.0463 (11)0.0080 (9)0.0084 (8)0.0115 (9)
O1010.0559 (14)0.0585 (15)0.0277 (11)0.0001 (12)0.0048 (9)0.0014 (10)
P10.0144 (2)0.0153 (2)0.0165 (2)0.0009 (2)0.0060 (2)0.0011 (2)
P20.0203 (3)0.0196 (3)0.0189 (3)0.0015 (2)0.0077 (2)0.0002 (2)
Re10.01489 (5)0.01501 (5)0.01932 (5)0.00169 (3)0.00768 (3)0.00305 (3)
S1010.0415 (4)0.0285 (3)0.0266 (3)0.0018 (3)0.0111 (3)0.0030 (2)
Geometric parameters (Å, º) top
C1—H10.9500C21—C221.377 (3)
C1—C21.380 (3)C22—H220.9500
C1—N11.345 (3)C22—C231.398 (3)
C2—H20.9500C23—H230.9500
C2—N21.330 (3)C24—H24A0.9900
C3—H30.9500C24—H24B0.9900
C3—C41.392 (3)C24—P11.840 (2)
C3—N21.332 (3)C24—P21.871 (2)
C4—C51.463 (3)C25—C261.392 (3)
C4—N11.354 (3)C25—C301.394 (3)
C5—C61.396 (3)C25—P21.846 (2)
C5—N31.351 (3)C26—H260.9500
C6—H60.9500C26—C271.392 (3)
C6—N41.329 (3)C27—H270.9500
C7—H70.9500C27—C281.376 (3)
C7—C81.379 (3)C28—H280.9500
C7—N41.328 (3)C28—C291.383 (4)
C8—H80.9500C29—H290.9500
C8—N31.344 (3)C29—C301.388 (3)
C9—O11.153 (3)C30—H300.9500
C9—Re11.919 (2)C31—C321.395 (3)
C10—O21.134 (3)C31—C361.391 (3)
C10—Re11.973 (2)C31—P21.832 (2)
C11—O31.147 (3)C32—H320.9500
C11—Re11.935 (2)C32—C331.397 (4)
C12—C131.398 (3)C33—H330.9500
C12—C171.390 (3)C33—C341.371 (4)
C12—P11.823 (2)C34—H340.9500
C13—H130.9500C34—C351.376 (4)
C13—C141.384 (3)C35—H350.9500
C14—H140.9500C35—C361.394 (3)
C14—C151.387 (4)C36—H360.9500
C15—H150.9500C37—F1011.322 (3)
C15—C161.380 (4)C37—F1021.342 (4)
C16—H160.9500C37—F1031.320 (3)
C16—C171.387 (3)C37—S1011.820 (3)
C17—H170.9500N1—Re12.1673 (17)
C18—C191.395 (3)N3—Re12.1665 (17)
C18—C231.388 (3)O4—S1011.4402 (19)
C18—P11.829 (2)O5—S1011.429 (2)
C19—H190.9500O6—S1011.443 (2)
C19—C201.387 (3)O101—H10A0.94 (5)
C20—H200.9500O101—H10B0.84 (3)
C20—C211.388 (3)P1—Re12.4790 (6)
C21—H210.9500
C2—C1—H1119.7C26—C27—H27120.0
N1—C1—H1119.7C28—C27—C26120.0 (2)
N1—C1—C2120.6 (2)C28—C27—H27120.0
C1—C2—H2118.6C27—C28—H28120.1
N2—C2—C1122.8 (2)C27—C28—C29119.8 (2)
N2—C2—H2118.6C29—C28—H28120.1
C4—C3—H3118.8C28—C29—H29119.8
N2—C3—H3118.8C28—C29—C30120.5 (2)
N2—C3—C4122.3 (2)C30—C29—H29119.8
C3—C4—C5124.25 (19)C25—C30—H30119.9
N1—C4—C3120.17 (19)C29—C30—C25120.3 (2)
N1—C4—C5115.54 (18)C29—C30—H30119.9
C6—C5—C4124.06 (19)C32—C31—P2114.47 (18)
N3—C5—C4115.75 (18)C36—C31—C32119.0 (2)
N3—C5—C6120.18 (19)C36—C31—P2126.46 (17)
C5—C6—H6118.7C31—C32—H32119.8
N4—C6—C5122.5 (2)C31—C32—C33120.4 (3)
N4—C6—H6118.7C33—C32—H32119.8
C8—C7—H7118.3C32—C33—H33120.1
N4—C7—H7118.3C34—C33—C32119.7 (3)
N4—C7—C8123.4 (2)C34—C33—H33120.1
C7—C8—H8119.8C33—C34—H34119.7
N3—C8—C7120.4 (2)C33—C34—C35120.6 (2)
N3—C8—H8119.8C35—C34—H34119.7
O1—C9—Re1178.9 (2)C34—C35—H35119.9
O2—C10—Re1177.9 (2)C34—C35—C36120.2 (3)
O3—C11—Re1178.3 (2)C36—C35—H35119.9
C13—C12—P1119.01 (16)C31—C36—C35120.0 (2)
C17—C12—C13119.2 (2)C31—C36—H36120.0
C17—C12—P1121.43 (16)C35—C36—H36120.0
C12—C13—H13119.7F101—C37—F102107.4 (2)
C14—C13—C12120.5 (2)F101—C37—S101111.8 (2)
C14—C13—H13119.7F102—C37—S101110.8 (2)
C13—C14—H14120.1F103—C37—F101107.7 (3)
C13—C14—C15119.8 (2)F103—C37—F102106.9 (3)
C15—C14—H14120.1F103—C37—S101112.0 (2)
C14—C15—H15120.1C1—N1—C4117.48 (18)
C16—C15—C14119.9 (2)C1—N1—Re1125.63 (14)
C16—C15—H15120.1C4—N1—Re1116.84 (13)
C15—C16—H16119.6C2—N2—C3116.57 (19)
C15—C16—C17120.7 (2)C5—N3—Re1116.80 (13)
C17—C16—H16119.6C8—N3—C5117.36 (18)
C12—C17—H17120.1C8—N3—Re1125.79 (14)
C16—C17—C12119.8 (2)C7—N4—C6116.1 (2)
C16—C17—H17120.1H10A—O101—H10B101 (3)
C19—C18—P1118.74 (16)C12—P1—C18102.48 (9)
C23—C18—C19118.98 (19)C12—P1—C24105.39 (9)
C23—C18—P1122.25 (16)C12—P1—Re1110.43 (7)
C18—C19—H19119.6C18—P1—C24103.53 (9)
C20—C19—C18120.8 (2)C18—P1—Re1119.17 (7)
C20—C19—H19119.6C24—P1—Re1114.39 (7)
C19—C20—H20120.2C25—P2—C24102.68 (9)
C19—C20—C21119.6 (2)C31—P2—C24103.85 (10)
C21—C20—H20120.2C31—P2—C2599.74 (10)
C20—C21—H21119.9C9—Re1—C1089.71 (9)
C22—C21—C20120.2 (2)C9—Re1—C1190.04 (9)
C22—C21—H21119.9C9—Re1—N1173.94 (8)
C21—C22—H22119.9C9—Re1—N399.16 (8)
C21—C22—C23120.2 (2)C9—Re1—P189.73 (7)
C23—C22—H22119.9C10—Re1—N189.19 (8)
C18—C23—C22120.1 (2)C10—Re1—N389.88 (8)
C18—C23—H23119.9C10—Re1—P1175.79 (7)
C22—C23—H23119.9C11—Re1—C1090.72 (9)
H24A—C24—H24B108.3C11—Re1—N195.94 (8)
P1—C24—H24A109.9C11—Re1—N3170.78 (8)
P1—C24—H24B109.9C11—Re1—P193.45 (6)
P1—C24—P2108.99 (10)N1—Re1—P190.93 (5)
P2—C24—H24A109.9N3—Re1—N174.87 (6)
P2—C24—H24B109.9N3—Re1—P186.09 (5)
C26—C25—C30118.6 (2)O4—S101—C37103.91 (14)
C26—C25—P2117.97 (16)O4—S101—O6114.53 (11)
C30—C25—P2123.33 (17)O5—S101—C37103.60 (14)
C25—C26—H26119.6O5—S101—O4114.36 (13)
C27—C26—C25120.8 (2)O5—S101—O6116.14 (14)
C27—C26—H26119.6O6—S101—C37101.84 (13)
C1—C2—N2—C30.9 (3)C26—C25—P2—C31157.87 (17)
C2—C1—N1—C41.6 (3)C26—C27—C28—C290.9 (4)
C2—C1—N1—Re1178.96 (15)C27—C28—C29—C300.4 (4)
C3—C4—C5—C63.3 (3)C28—C29—C30—C250.0 (4)
C3—C4—C5—N3175.81 (19)C30—C25—C26—C270.4 (3)
C3—C4—N1—C11.9 (3)C30—C25—P2—C2487.99 (19)
C3—C4—N1—Re1179.44 (15)C30—C25—P2—C3118.7 (2)
C4—C3—N2—C20.7 (3)C31—C32—C33—C340.6 (4)
C4—C5—C6—N4178.5 (2)C32—C31—C36—C351.2 (3)
C4—C5—N3—C8177.60 (18)C32—C31—P2—C24168.40 (17)
C4—C5—N3—Re14.6 (2)C32—C31—P2—C2585.84 (19)
C5—C4—N1—C1176.05 (17)C32—C33—C34—C351.7 (4)
C5—C4—N1—Re11.5 (2)C33—C34—C35—C362.4 (4)
C5—C6—N4—C70.7 (3)C34—C35—C36—C311.0 (4)
C6—C5—N3—C81.6 (3)C36—C31—C32—C332.0 (4)
C6—C5—N3—Re1176.25 (15)C36—C31—P2—C2414.5 (2)
C7—C8—N3—C51.2 (3)C36—C31—P2—C2591.3 (2)
C7—C8—N3—Re1176.36 (15)F101—C37—S101—O465.0 (2)
C8—C7—N4—C61.0 (3)F101—C37—S101—O5175.2 (2)
C12—C13—C14—C152.0 (3)F101—C37—S101—O654.2 (3)
C13—C12—C17—C161.1 (3)F102—C37—S101—O4175.2 (2)
C13—C12—P1—C1851.49 (18)F102—C37—S101—O555.4 (2)
C13—C12—P1—C24159.52 (16)F102—C37—S101—O665.5 (2)
C13—C12—P1—Re176.46 (17)F103—C37—S101—O455.9 (3)
C13—C14—C15—C161.1 (4)F103—C37—S101—O563.9 (3)
C14—C15—C16—C170.9 (4)F103—C37—S101—O6175.1 (2)
C15—C16—C17—C122.0 (3)N1—C1—C2—N20.2 (3)
C17—C12—C13—C140.9 (3)N1—C4—C5—C6178.86 (19)
C17—C12—P1—C18135.24 (17)N1—C4—C5—N32.0 (3)
C17—C12—P1—C2427.2 (2)N2—C3—C4—C5177.0 (2)
C17—C12—P1—Re196.81 (17)N2—C3—C4—N10.8 (3)
C18—C19—C20—C210.3 (3)N3—C5—C6—N40.6 (3)
C19—C18—C23—C220.6 (3)N4—C7—C8—N30.1 (3)
C19—C18—P1—C1246.79 (18)P1—C12—C13—C14174.32 (17)
C19—C18—P1—C2462.64 (18)P1—C12—C17—C16172.16 (17)
C19—C18—P1—Re1168.99 (13)P1—C18—C19—C20177.27 (17)
C19—C20—C21—C220.3 (3)P1—C18—C23—C22177.34 (16)
C20—C21—C22—C230.4 (3)P1—C24—P2—C25112.46 (11)
C21—C22—C23—C180.0 (3)P1—C24—P2—C31144.00 (11)
C23—C18—C19—C200.8 (3)P2—C24—P1—C12171.97 (10)
C23—C18—P1—C12135.25 (17)P2—C24—P1—C1864.71 (12)
C23—C18—P1—C24115.31 (18)P2—C24—P1—Re166.55 (11)
C23—C18—P1—Re113.1 (2)P2—C25—C26—C27177.11 (17)
C25—C26—C27—C280.8 (3)P2—C25—C30—C29176.49 (18)
C26—C25—C30—C290.1 (3)P2—C31—C32—C33175.3 (2)
C26—C25—P2—C2495.42 (18)P2—C31—C36—C35175.77 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O4i0.952.473.281 (3)143
C6—H6···O4i0.952.623.468 (3)148
C8—H8···O101ii0.952.333.226 (3)156
C17—H17···O6i0.952.313.180 (3)152
O101—H10A···N2iii0.94 (5)2.20 (5)2.983 (3)141 (4)
O101—H10A···N4iv0.94 (5)2.44 (5)3.126 (3)131 (4)
O101—H10B···O1v0.84 (3)2.47 (3)3.103 (3)133 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z1/2; (iii) x1, y, z; (iv) x+3/2, y1/2, z+1/2; (v) x1/2, y+1/2, z+1/2.
 

Acknowledgements

We are grateful for support from the National Science Foundation (EPSCoR), the Wichita State University Office of Research and the Department of Energy.

References

First citationBruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKirgan, R., Simpson, M., Moore, C., Day, J., Bui, L., Tanner, C. & Rillema, D. P. (2007). Inorg. Chem. 46, 6464–6472.  CSD CrossRef PubMed CAS Google Scholar
First citationRillema, D. P., Kirgan, R. A., Smucker, B. & Moore, C. (2007). Acta Cryst. E63, m1404–m1405.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoyanov, S. R., Villegas, J. M., Cruz, A. J., Lockyear, L. L., Reibenspies, J. H. & Rillema, D. P. (2005). J. Chem. Theory Comput. 1, 95–106.  CSD CrossRef PubMed Google Scholar
First citationVillegas, J. M., Stoyanov, S. R., Moore, C. E., Eichhorn, D. M. & Rillema, D. P. (2005). Acta Cryst. E61, m533–m534.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYamamoto, Y., Sawa, S., Funada, Y., Morimoto, T., Falkenström, M., Miyasaka, H., Shishido, S., Ozeki, T., Koike, K. & Ishitani, O. (2008). J. Am. Chem. Soc. 130, 14659–14674.  CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds