organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Dodeca­allyl­hexa­sila­cyclo­hexa­ne

CROSSMARK_Color_square_no_text.svg

aInstitute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
*Correspondence e-mail: tokitoh@boc.kuicr.kyoto-u.ac.jp

Edited by M. Weil, Vienna University of Technology, Austria (Received 22 May 2017; accepted 31 May 2017; online 2 June 2017)

The mol­ecule of the title compound, C36H60Si6, exhibits point group symmetry Ci, with the centre of inversion located at the centre of the Si6 ring. The Si6 ring has a chair conformation. In the crystal, mol­ecules are linked via C—H⋯π(all­yl) inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Hexasila­cyclo­hexane derivatives, i.e. six-membered cyclic oligosilanes, are of inter­est from the viewpoint of their unique structures and properties. However, it is challenging to prepare such cyclic oligosilanes because of synthetic difficulties, low yields and long purification times. While a number of crystal structures for hexa­sila­cyclo­hexane derivatives have been reported, those for derivatives with twelve identical carbon subsitituents are limited to dodeca­methyl (Carrell & Donohue, 1972[Carrell, H. L. & Donohue, J. (1972). Acta Cryst. B28, 1566-1571.]) and dodeca­phenyl (M'hirsi & Brini, 1968[M'hirsi, M. & Brini, M. (1968). Bull. Soc. Chim. Fr. p. 1509.]; Dräger & Walter, 1981[Dräger, M. & Walter, K. G. (1981). Z. Anorg. Allg. Chem. 479, 65-74.]) as well as to a hexa­(1,1-silole) derivative (Yamaguchi et al., 1999[Yamaguchi, S., Jin, R. & Tamao, K. (1999). J. Am. Chem. Soc. 121, 2937-2938.]). Herein, we describe the synthesis and structural characterization of dodeca­allyl­hexa­sila­cyclo­hexane by utilizing an effective synthesis method, viz. the reaction of [pedeta·SiH2Cl]2Si6Cl14 (pedeta = N,N,N′,N′,N′′-penta­ethyl­diethylenetri­amine; Choi et al., 2001[Choi, S.-B., Kim, B.-K., Boudjouk, P. & Grier, D. G. (2001). J. Am. Chem. Soc. 123, 8117-8118.]) with allyl­magnesium bromide.

The crystal structure comprises one mol­ecule of the title compound per unit cell (Fig. 1[link]). The mol­ecule exhibits point group symmetry Ci, with the centre of inversion at the centre of the Si6 ring. The latter has a chair conformation with typical bond lengths in the range of 2.3500 (6)–2.3598 (5) Å. The average value of the Si—Si bond lengths (2.354 Å) lies between those for the dodeca­methyl (2.338 Å) and dodeca­phenyl derivatives (2.394 Å). The Si—Si—Si angles are almost the same and range from 110.35 (2)–110.46 (2)°; the average Si—Si—Si angle (110.4°) is smaller than that of Si6Me12 (111.9°) and of Si6Ph12 (113.8°). In the crystal structure, mol­ecules are linked by several C—H⋯π(all­yl) inter­actions into a three-dimensional network (Table 1[link], Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2i—H2i⋯C11 0.95 2.84 3.622 (3) 140
C7—H7A⋯C8ii 0.99 2.82 3.669 (2) 145
C6—H6A⋯C15ii 0.95 2.88 3.678 (4) 142
C16iii—H16iii⋯C12 0.99 2.75 3.684 (3) 159
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+2, -z+1; (iii) -x, -y+1, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing displacement ellipsoids at the 50% probability level. H atoms have been omitted for clarity. Unlabelled atoms are related by labelled atoms by the symmetry code (−x + 1, −y + 1, −z + 1).
[Figure 2]
Figure 2
Parts of the crystal packing of the title compound, emphasizing inter­molecular C—H⋯π(all­yl) inter­actions (light-blue dotted lines). [Symmetry codes: (i) x − 1, y, z; (ii) −x + 1, −y + 2, −z + 1; (iii) −x, −y + 1, −z + 1.]

Synthesis and crystallization

To a THF solution of [pedeta·SiH2Cl]2Si6Cl14 (1.20 g, 0.936 mmol) was slowly added a 1.0 M solution of allyl­magnesium bromide in di­ethyl ­ether (15 ml, 15 mmol) at 293 K. After stirring for 48 h at 363 K, the mixture was treated with a saturated aqueous NH4Cl solution and extracted with diethyl ether. The combined organic layer was dried over Na2SO4 and concentrated under vacuum. The crude material was then purified by column chromatography on silica gel (eluting with hexa­ne) to give the title compound (275 mg, 0.416 mmol, 44%). Single crystals were obtained by recrystallization from a hexane solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C36H60Si6
Mr 661.38
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 103
a, b, c (Å) 9.6036 (2), 10.8060 (3), 11.4686 (3)
α, β, γ (°) 108.617 (2), 100.558 (2), 109.4774 (12)
V3) 1005.90 (5)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.23
Crystal size (mm) 0.25 × 0.20 × 0.20
 
Data collection
Diffractometer Rigaku Saturn
Absorption correction Multi-scan (MULABS; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.])
Tmin, Tmax 0.902, 0.953
No. of measured, independent and observed [I > 2σ(I)] reflections 13675, 3630, 3398
Rint 0.035
(sin θ/λ)max−1) 0.600
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.089, 1.04
No. of reflections 3630
No. of parameters 190
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.45, −0.18
Computer programs: CrystalClear (Rigaku, 1999[Rigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.]), HKL-2000 (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Yadokari-XG (Wakita, 2001[Wakita, K. (2001). Yadokari-XG. Software for Crystal Structure Analyses.]; Kabuto et al., 2009[Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Japan, 51, 218-224.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), CrystalMaker (Palmer, 2007[Palmer, D. (2007). CrystalMaker. CrystalMaker, Bicester, England.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: CrystalClear (Rigaku, 1999); cell refinement: HKL-2000 (Otwinowski & Minor, 1997); data reduction: HKL-2000 (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: Yadokari-XG (Wakita, 2001; Kabuto et al., 2009), Mercury (Macrae et al., 2008) and CrystalMaker (Palmer, 2007); software used to prepare material for publication: Yadokari-XG (Wakita, 2001; Kabuto et al., 2009) and publCIF (Westrip, 2010).

1,1,2,2,3,3,4,4,5,5,6,6-Dodecaallylhexasilinane top
Crystal data top
C36H60Si6Z = 1
Mr = 661.38F(000) = 360
Triclinic, P1Dx = 1.092 Mg m3
a = 9.6036 (2) ÅMo Kα radiation, λ = 0.71075 Å
b = 10.8060 (3) ÅCell parameters from 13675 reflections
c = 11.4686 (3) Åθ = 2.2–25.3°
α = 108.617 (2)°µ = 0.23 mm1
β = 100.558 (2)°T = 103 K
γ = 109.4774 (12)°Prism, colorless
V = 1005.90 (5) Å30.25 × 0.20 × 0.20 mm
Data collection top
Rigaku Saturn
diffractometer
3630 independent reflections
Radiation source: fine-focus sealed tube3398 reflections with I > 2σ(I)
Detector resolution: 28.5714 pixels mm-1Rint = 0.035
ω scansθmax = 25.3°, θmin = 2.2°
Absorption correction: multi-scan
(MULABS; Blessing, 1995)
h = 1111
Tmin = 0.902, Tmax = 0.953k = 1212
13675 measured reflectionsl = 1313
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0439P)2 + 0.4743P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3630 reflectionsΔρmax = 0.45 e Å3
190 parametersΔρmin = 0.18 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.62028 (5)0.70739 (4)0.68222 (4)0.02374 (12)
Si20.39667 (5)0.66287 (4)0.52192 (4)0.02298 (12)
Si30.38195 (5)0.51111 (4)0.31623 (4)0.02389 (12)
C10.79247 (18)0.80929 (17)0.63994 (16)0.0298 (3)
H10.7779130.7562510.5473080.036*
H1A0.7952410.9049680.6514800.036*
C20.94384 (19)0.82874 (18)0.72153 (16)0.0328 (4)
H20.9626040.7449680.7066350.039*
C31.0536 (2)0.9493 (2)0.81160 (18)0.0437 (4)
H31.0405391.0361340.8302370.052*
H3A1.1466680.9502520.8585590.052*
C40.6406 (2)0.82817 (18)0.85323 (15)0.0340 (4)
H40.5649390.7711800.8848930.041*
H4A0.7466800.8589160.9117250.041*
C50.6143 (2)0.95884 (18)0.86206 (16)0.0385 (4)
H50.5096790.9487840.8464490.046*
C60.7207 (2)1.0850 (2)0.88904 (19)0.0476 (5)
H60.8270751.1003920.9053970.057*
H6A0.6922751.1619540.8924220.057*
C70.40334 (19)0.84318 (16)0.52689 (16)0.0321 (4)
H70.4052920.9012630.6141480.038*
H7A0.5014670.8958550.5140690.038*
C80.2692 (2)0.82944 (17)0.42707 (17)0.0369 (4)
H80.2728560.8047770.3407750.044*
C90.1460 (2)0.8484 (2)0.4476 (2)0.0471 (5)
H90.1372960.8731550.5323770.057*
H9A0.0657280.8372870.3776570.057*
C100.20865 (18)0.57289 (16)0.55145 (15)0.0283 (3)
H100.1197150.5627990.4841190.034*
H10A0.1949120.4751000.5429610.034*
C110.20665 (19)0.65531 (18)0.68227 (17)0.0346 (4)
H110.2201790.7517640.7021150.041*
C120.1882 (2)0.6082 (2)0.77254 (18)0.0476 (5)
H120.1741870.5125190.7574490.057*
H12A0.1886690.6697190.8532990.057*
C130.55616 (19)0.59051 (17)0.26470 (16)0.0321 (4)
H130.6485700.5892250.3183710.039*
H13A0.5351670.5279290.1730600.039*
C140.5950 (2)0.7412 (2)0.2765 (2)0.0416 (4)
H140.6384150.8154020.3619020.050*
C150.5749 (3)0.7797 (2)0.1812 (2)0.0544 (5)
H150.5317640.7092460.0939910.065*
H15A0.6031400.8783070.1983030.065*
C160.2031 (2)0.48798 (18)0.19265 (16)0.0345 (4)
H160.1140830.4669760.2263620.041*
H16A0.2237580.5799970.1836650.041*
C170.1580 (2)0.37190 (19)0.06203 (17)0.0397 (4)
H170.1050520.2756350.0519060.048*
C180.1842 (3)0.3903 (3)0.0389 (2)0.0637 (6)
H180.2368040.4847450.0331990.076*
H18A0.1510280.3094230.1188980.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0259 (2)0.0202 (2)0.0237 (2)0.00853 (16)0.00824 (16)0.00849 (16)
Si20.0256 (2)0.0194 (2)0.0252 (2)0.00936 (16)0.00987 (17)0.00997 (16)
Si30.0279 (2)0.0223 (2)0.0239 (2)0.01044 (17)0.01077 (17)0.01121 (17)
C10.0302 (8)0.0251 (8)0.0317 (8)0.0087 (6)0.0105 (7)0.0117 (6)
C20.0299 (8)0.0325 (8)0.0394 (9)0.0129 (7)0.0151 (7)0.0169 (7)
C30.0344 (9)0.0455 (11)0.0412 (10)0.0133 (8)0.0100 (8)0.0104 (8)
C40.0406 (9)0.0321 (8)0.0265 (8)0.0171 (7)0.0090 (7)0.0078 (7)
C50.0460 (10)0.0358 (9)0.0295 (9)0.0205 (8)0.0081 (7)0.0070 (7)
C60.0543 (12)0.0375 (10)0.0427 (11)0.0194 (9)0.0101 (9)0.0093 (8)
C70.0360 (9)0.0238 (8)0.0388 (9)0.0134 (7)0.0128 (7)0.0144 (7)
C80.0546 (11)0.0264 (8)0.0330 (9)0.0196 (8)0.0113 (8)0.0150 (7)
C90.0438 (10)0.0429 (10)0.0576 (12)0.0192 (9)0.0082 (9)0.0278 (9)
C100.0264 (8)0.0276 (8)0.0319 (8)0.0105 (6)0.0108 (6)0.0135 (7)
C110.0293 (8)0.0324 (9)0.0398 (9)0.0129 (7)0.0155 (7)0.0097 (7)
C120.0481 (11)0.0658 (13)0.0377 (10)0.0340 (10)0.0197 (9)0.0182 (9)
C130.0365 (9)0.0326 (8)0.0359 (9)0.0161 (7)0.0196 (7)0.0186 (7)
C140.0468 (10)0.0387 (10)0.0523 (11)0.0202 (8)0.0303 (9)0.0242 (9)
C150.0679 (14)0.0512 (12)0.0698 (14)0.0315 (11)0.0393 (12)0.0396 (11)
C160.0388 (9)0.0373 (9)0.0311 (9)0.0195 (8)0.0104 (7)0.0156 (7)
C170.0420 (10)0.0356 (9)0.0348 (9)0.0158 (8)0.0038 (8)0.0117 (8)
C180.0889 (18)0.0539 (13)0.0342 (11)0.0196 (12)0.0166 (11)0.0138 (10)
Geometric parameters (Å, º) top
Si1—C11.8980 (16)C8—C91.315 (3)
Si1—C41.9089 (16)C8—H80.9500
Si1—Si22.3500 (6)C9—H90.9500
Si1—Si3i2.3598 (6)C9—H9A0.9500
Si2—C101.8931 (15)C10—C111.488 (2)
Si2—C71.9100 (16)C10—H100.9900
Si2—Si32.3511 (6)C10—H10A0.9900
Si3—C131.9009 (16)C11—C121.306 (3)
Si3—C161.9015 (17)C11—H110.9500
C1—C21.485 (2)C12—H120.9500
C1—H10.9900C12—H12A0.9500
C1—H1A0.9900C13—C141.499 (2)
C2—C31.304 (2)C13—H130.9900
C2—H20.9500C13—H13A0.9900
C3—H30.9500C14—C151.292 (3)
C3—H3A0.9500C14—H140.9500
C4—C51.491 (2)C15—H150.9500
C4—H40.9900C15—H15A0.9500
C4—H4A0.9900C16—C171.485 (2)
C5—C61.298 (3)C16—H160.9900
C5—H50.9500C16—H16A0.9900
C6—H60.9500C17—C181.290 (3)
C6—H6A0.9500C17—H170.9500
C7—C81.489 (2)C18—H180.9500
C7—H70.9900C18—H18A0.9500
C7—H7A0.9900
C1—Si1—C4106.79 (8)C8—C7—H7A108.8
C1—Si1—Si2105.58 (5)Si2—C7—H7A108.8
C4—Si1—Si2113.40 (6)H7—C7—H7A107.7
C1—Si1—Si3i112.49 (5)C9—C8—C7125.87 (17)
C4—Si1—Si3i108.24 (5)C9—C8—H8117.1
Si2—Si1—Si3i110.35 (2)C7—C8—H8117.1
C10—Si2—C7105.65 (7)C8—C9—H9120.0
C10—Si2—Si1113.07 (5)C8—C9—H9A120.0
C7—Si2—Si1108.47 (5)H9—C9—H9A120.0
C10—Si2—Si3107.10 (5)C11—C10—Si2112.41 (11)
C7—Si2—Si3112.04 (5)C11—C10—H10109.1
Si1—Si2—Si3110.46 (2)Si2—C10—H10109.1
C13—Si3—C16106.55 (8)C11—C10—H10A109.1
C13—Si3—Si2113.06 (5)Si2—C10—H10A109.1
C16—Si3—Si2107.39 (5)H10—C10—H10A107.9
C13—Si3—Si1i105.61 (5)C12—C11—C10126.47 (17)
C16—Si3—Si1i113.91 (6)C12—C11—H11116.8
Si2—Si3—Si1i110.38 (2)C10—C11—H11116.8
C2—C1—Si1112.56 (11)C11—C12—H12120.0
C2—C1—H1109.1C11—C12—H12A120.0
Si1—C1—H1109.1H12—C12—H12A120.0
C2—C1—H1A109.1C14—C13—Si3114.81 (11)
Si1—C1—H1A109.1C14—C13—H13108.6
H1—C1—H1A107.8Si3—C13—H13108.6
C3—C2—C1126.54 (16)C14—C13—H13A108.6
C3—C2—H2116.7Si3—C13—H13A108.6
C1—C2—H2116.7H13—C13—H13A107.5
C2—C3—H3120.0C15—C14—C13126.06 (19)
C2—C3—H3A120.0C15—C14—H14117.0
H3—C3—H3A120.0C13—C14—H14117.0
C5—C4—Si1114.30 (12)C14—C15—H15120.0
C5—C4—H4108.7C14—C15—H15A120.0
Si1—C4—H4108.7H15—C15—H15A120.0
C5—C4—H4A108.7C17—C16—Si3114.17 (12)
Si1—C4—H4A108.7C17—C16—H16108.7
H4—C4—H4A107.6Si3—C16—H16108.7
C6—C5—C4126.23 (18)C17—C16—H16A108.7
C6—C5—H5116.9Si3—C16—H16A108.7
C4—C5—H5116.9H16—C16—H16A107.6
C5—C6—H6120.0C18—C17—C16125.72 (19)
C5—C6—H6A120.0C18—C17—H17117.1
H6—C6—H6A120.0C16—C17—H17117.1
C8—C7—Si2113.75 (11)C17—C18—H18120.0
C8—C7—H7108.8C17—C18—H18A120.0
Si2—C7—H7108.8H18—C18—H18A120.0
C4—Si1—C1—C266.90 (13)C7—Si2—C10—C1163.26 (13)
Si2—Si1—C1—C2172.12 (10)Si1—Si2—C10—C1155.23 (12)
Si3i—Si1—C1—C251.71 (12)Si3—Si2—C10—C11177.14 (10)
Si1—C1—C2—C3109.91 (18)Si2—C10—C11—C12121.92 (18)
Si1—C4—C5—C692.8 (2)Si3—C13—C14—C15109.0 (2)
Si2—C7—C8—C9101.37 (18)Si3—C16—C17—C18102.9 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2ii—H2ii···C110.952.843.622 (3)140
C7—H7A···C8iii0.992.823.669 (2)145
C6—H6A···C15iii0.952.883.678 (4)142
C16iv—H16iv···C120.992.753.684 (3)159
Symmetry codes: (ii) x1, y, z; (iii) x+1, y+2, z+1; (iv) x, y+1, z+1.
 

Acknowledgements

This work was supported by Integrated Research Consortium on Chemical Science (IRCCS) and Kyoto University Research Coordination Alliance (KURCA). This study was also supported by the Joint Usage/Research Center (JURC, Institute for Chemical Research (ICR), Kyoto University) by providing access to JEOL JNM-ECA600 and Bruker Avance III 600US Plus NMR spectrometers. We are grateful for computation time, which was provided by the Super Computer System (ICR, Kyoto University). Elemental analyses were carried out at the Microanalytical Laboratory of the Institute for Chemical Research (Kyoto University).

Funding information

Funding for this research was provided by: JSPS KAKENHI (award Nos. 16H04110, 26410044, 24109013).

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCarrell, H. L. & Donohue, J. (1972). Acta Cryst. B28, 1566–1571.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationChoi, S.-B., Kim, B.-K., Boudjouk, P. & Grier, D. G. (2001). J. Am. Chem. Soc. 123, 8117–8118.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDräger, M. & Walter, K. G. (1981). Z. Anorg. Allg. Chem. 479, 65–74.  Google Scholar
First citationKabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Japan, 51, 218–224.  CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationM'hirsi, M. & Brini, M. (1968). Bull. Soc. Chim. Fr. p. 1509.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPalmer, D. (2007). CrystalMaker. CrystalMaker, Bicester, England.  Google Scholar
First citationRigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWakita, K. (2001). Yadokari-XG. Software for Crystal Structure Analyses.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamaguchi, S., Jin, R. & Tamao, K. (1999). J. Am. Chem. Soc. 121, 2937–2938.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds