organic compounds
Dodecaallylhexasilacyclohexane
aInstitute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
*Correspondence e-mail: tokitoh@boc.kuicr.kyoto-u.ac.jp
The molecule of the title compound, C36H60Si6, exhibits symmetry Ci, with the centre of inversion located at the centre of the Si6 ring. The Si6 ring has a chair conformation. In the crystal, molecules are linked via C—H⋯π(allyl) interactions.
Keywords: crystal structure; cyclic oligosilane; chair conformation.
CCDC reference: 1553273
Structure description
Hexasilacyclohexane derivatives, i.e. six-membered cyclic oligosilanes, are of interest from the viewpoint of their unique structures and properties. However, it is challenging to prepare such cyclic oligosilanes because of synthetic difficulties, low yields and long purification times. While a number of crystal structures for hexasilacyclohexane derivatives have been reported, those for derivatives with twelve identical carbon subsitituents are limited to dodecamethyl (Carrell & Donohue, 1972) and dodecaphenyl (M'hirsi & Brini, 1968; Dräger & Walter, 1981) as well as to a hexa(1,1-silole) derivative (Yamaguchi et al., 1999). Herein, we describe the synthesis and structural characterization of dodecaallylhexasilacyclohexane by utilizing an effective synthesis method, viz. the reaction of [pedeta·SiH2Cl]2Si6Cl14 (pedeta = N,N,N′,N′,N′′-pentaethyldiethylenetriamine; Choi et al., 2001) with allylmagnesium bromide.
The ). The molecule exhibits symmetry Ci, with the centre of inversion at the centre of the Si6 ring. The latter has a chair conformation with typical bond lengths in the range of 2.3500 (6)–2.3598 (5) Å. The average value of the Si—Si bond lengths (2.354 Å) lies between those for the dodecamethyl (2.338 Å) and dodecaphenyl derivatives (2.394 Å). The Si—Si—Si angles are almost the same and range from 110.35 (2)–110.46 (2)°; the average Si—Si—Si angle (110.4°) is smaller than that of Si6Me12 (111.9°) and of Si6Ph12 (113.8°). In the molecules are linked by several C—H⋯π(allyl) interactions into a three-dimensional network (Table 1, Fig. 2).
comprises one molecule of the title compound per (Fig. 1Synthesis and crystallization
To a THF solution of [pedeta·SiH2Cl]2Si6Cl14 (1.20 g, 0.936 mmol) was slowly added a 1.0 M solution of allylmagnesium bromide in diethyl ether (15 ml, 15 mmol) at 293 K. After stirring for 48 h at 363 K, the mixture was treated with a saturated aqueous NH4Cl solution and extracted with diethyl ether. The combined organic layer was dried over Na2SO4 and concentrated under vacuum. The crude material was then purified by on silica gel (eluting with hexane) to give the title compound (275 mg, 0.416 mmol, 44%). Single crystals were obtained by recrystallization from a hexane solution.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1553273
https://doi.org/10.1107/S2414314617008070/wm4048sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617008070/wm4048Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314617008070/wm4048Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2414314617008070/wm4048Isup4.cml
Data collection: CrystalClear (Rigaku, 1999); cell
HKL-2000 (Otwinowski & Minor, 1997); data reduction: HKL-2000 (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: Yadokari-XG (Wakita, 2001; Kabuto et al., 2009), Mercury (Macrae et al., 2008) and CrystalMaker (Palmer, 2007); software used to prepare material for publication: Yadokari-XG (Wakita, 2001; Kabuto et al., 2009) and publCIF (Westrip, 2010).C36H60Si6 | Z = 1 |
Mr = 661.38 | F(000) = 360 |
Triclinic, P1 | Dx = 1.092 Mg m−3 |
a = 9.6036 (2) Å | Mo Kα radiation, λ = 0.71075 Å |
b = 10.8060 (3) Å | Cell parameters from 13675 reflections |
c = 11.4686 (3) Å | θ = 2.2–25.3° |
α = 108.617 (2)° | µ = 0.23 mm−1 |
β = 100.558 (2)° | T = 103 K |
γ = 109.4774 (12)° | Prism, colorless |
V = 1005.90 (5) Å3 | 0.25 × 0.20 × 0.20 mm |
Rigaku Saturn diffractometer | 3630 independent reflections |
Radiation source: fine-focus sealed tube | 3398 reflections with I > 2σ(I) |
Detector resolution: 28.5714 pixels mm-1 | Rint = 0.035 |
ω scans | θmax = 25.3°, θmin = 2.2° |
Absorption correction: multi-scan (MULABS; Blessing, 1995) | h = −11→11 |
Tmin = 0.902, Tmax = 0.953 | k = −12→12 |
13675 measured reflections | l = −13→13 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.032 | H-atom parameters constrained |
wR(F2) = 0.089 | w = 1/[σ2(Fo2) + (0.0439P)2 + 0.4743P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
3630 reflections | Δρmax = 0.45 e Å−3 |
190 parameters | Δρmin = −0.18 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Si1 | 0.62028 (5) | 0.70739 (4) | 0.68222 (4) | 0.02374 (12) | |
Si2 | 0.39667 (5) | 0.66287 (4) | 0.52192 (4) | 0.02298 (12) | |
Si3 | 0.38195 (5) | 0.51111 (4) | 0.31623 (4) | 0.02389 (12) | |
C1 | 0.79247 (18) | 0.80929 (17) | 0.63994 (16) | 0.0298 (3) | |
H1 | 0.777913 | 0.756251 | 0.547308 | 0.036* | |
H1A | 0.795241 | 0.904968 | 0.651480 | 0.036* | |
C2 | 0.94384 (19) | 0.82874 (18) | 0.72153 (16) | 0.0328 (4) | |
H2 | 0.962604 | 0.744968 | 0.706635 | 0.039* | |
C3 | 1.0536 (2) | 0.9493 (2) | 0.81160 (18) | 0.0437 (4) | |
H3 | 1.040539 | 1.036134 | 0.830237 | 0.052* | |
H3A | 1.146668 | 0.950252 | 0.858559 | 0.052* | |
C4 | 0.6406 (2) | 0.82817 (18) | 0.85323 (15) | 0.0340 (4) | |
H4 | 0.564939 | 0.771180 | 0.884893 | 0.041* | |
H4A | 0.746680 | 0.858916 | 0.911725 | 0.041* | |
C5 | 0.6143 (2) | 0.95884 (18) | 0.86206 (16) | 0.0385 (4) | |
H5 | 0.509679 | 0.948784 | 0.846449 | 0.046* | |
C6 | 0.7207 (2) | 1.0850 (2) | 0.88904 (19) | 0.0476 (5) | |
H6 | 0.827075 | 1.100392 | 0.905397 | 0.057* | |
H6A | 0.692275 | 1.161954 | 0.892422 | 0.057* | |
C7 | 0.40334 (19) | 0.84318 (16) | 0.52689 (16) | 0.0321 (4) | |
H7 | 0.405292 | 0.901263 | 0.614148 | 0.038* | |
H7A | 0.501467 | 0.895855 | 0.514069 | 0.038* | |
C8 | 0.2692 (2) | 0.82944 (17) | 0.42707 (17) | 0.0369 (4) | |
H8 | 0.272856 | 0.804777 | 0.340775 | 0.044* | |
C9 | 0.1460 (2) | 0.8484 (2) | 0.4476 (2) | 0.0471 (5) | |
H9 | 0.137296 | 0.873155 | 0.532377 | 0.057* | |
H9A | 0.065728 | 0.837287 | 0.377657 | 0.057* | |
C10 | 0.20865 (18) | 0.57289 (16) | 0.55145 (15) | 0.0283 (3) | |
H10 | 0.119715 | 0.562799 | 0.484119 | 0.034* | |
H10A | 0.194912 | 0.475100 | 0.542961 | 0.034* | |
C11 | 0.20665 (19) | 0.65531 (18) | 0.68227 (17) | 0.0346 (4) | |
H11 | 0.220179 | 0.751764 | 0.702115 | 0.041* | |
C12 | 0.1882 (2) | 0.6082 (2) | 0.77254 (18) | 0.0476 (5) | |
H12 | 0.174187 | 0.512519 | 0.757449 | 0.057* | |
H12A | 0.188669 | 0.669719 | 0.853299 | 0.057* | |
C13 | 0.55616 (19) | 0.59051 (17) | 0.26470 (16) | 0.0321 (4) | |
H13 | 0.648570 | 0.589225 | 0.318371 | 0.039* | |
H13A | 0.535167 | 0.527929 | 0.173060 | 0.039* | |
C14 | 0.5950 (2) | 0.7412 (2) | 0.2765 (2) | 0.0416 (4) | |
H14 | 0.638415 | 0.815402 | 0.361902 | 0.050* | |
C15 | 0.5749 (3) | 0.7797 (2) | 0.1812 (2) | 0.0544 (5) | |
H15 | 0.531764 | 0.709246 | 0.093991 | 0.065* | |
H15A | 0.603140 | 0.878307 | 0.198303 | 0.065* | |
C16 | 0.2031 (2) | 0.48798 (18) | 0.19265 (16) | 0.0345 (4) | |
H16 | 0.114083 | 0.466976 | 0.226362 | 0.041* | |
H16A | 0.223758 | 0.579997 | 0.183665 | 0.041* | |
C17 | 0.1580 (2) | 0.37190 (19) | 0.06203 (17) | 0.0397 (4) | |
H17 | 0.105052 | 0.275635 | 0.051906 | 0.048* | |
C18 | 0.1842 (3) | 0.3903 (3) | −0.0389 (2) | 0.0637 (6) | |
H18 | 0.236804 | 0.484745 | −0.033199 | 0.076* | |
H18A | 0.151028 | 0.309423 | −0.118898 | 0.076* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Si1 | 0.0259 (2) | 0.0202 (2) | 0.0237 (2) | 0.00853 (16) | 0.00824 (16) | 0.00849 (16) |
Si2 | 0.0256 (2) | 0.0194 (2) | 0.0252 (2) | 0.00936 (16) | 0.00987 (17) | 0.00997 (16) |
Si3 | 0.0279 (2) | 0.0223 (2) | 0.0239 (2) | 0.01044 (17) | 0.01077 (17) | 0.01121 (17) |
C1 | 0.0302 (8) | 0.0251 (8) | 0.0317 (8) | 0.0087 (6) | 0.0105 (7) | 0.0117 (6) |
C2 | 0.0299 (8) | 0.0325 (8) | 0.0394 (9) | 0.0129 (7) | 0.0151 (7) | 0.0169 (7) |
C3 | 0.0344 (9) | 0.0455 (11) | 0.0412 (10) | 0.0133 (8) | 0.0100 (8) | 0.0104 (8) |
C4 | 0.0406 (9) | 0.0321 (8) | 0.0265 (8) | 0.0171 (7) | 0.0090 (7) | 0.0078 (7) |
C5 | 0.0460 (10) | 0.0358 (9) | 0.0295 (9) | 0.0205 (8) | 0.0081 (7) | 0.0070 (7) |
C6 | 0.0543 (12) | 0.0375 (10) | 0.0427 (11) | 0.0194 (9) | 0.0101 (9) | 0.0093 (8) |
C7 | 0.0360 (9) | 0.0238 (8) | 0.0388 (9) | 0.0134 (7) | 0.0128 (7) | 0.0144 (7) |
C8 | 0.0546 (11) | 0.0264 (8) | 0.0330 (9) | 0.0196 (8) | 0.0113 (8) | 0.0150 (7) |
C9 | 0.0438 (10) | 0.0429 (10) | 0.0576 (12) | 0.0192 (9) | 0.0082 (9) | 0.0278 (9) |
C10 | 0.0264 (8) | 0.0276 (8) | 0.0319 (8) | 0.0105 (6) | 0.0108 (6) | 0.0135 (7) |
C11 | 0.0293 (8) | 0.0324 (9) | 0.0398 (9) | 0.0129 (7) | 0.0155 (7) | 0.0097 (7) |
C12 | 0.0481 (11) | 0.0658 (13) | 0.0377 (10) | 0.0340 (10) | 0.0197 (9) | 0.0182 (9) |
C13 | 0.0365 (9) | 0.0326 (8) | 0.0359 (9) | 0.0161 (7) | 0.0196 (7) | 0.0186 (7) |
C14 | 0.0468 (10) | 0.0387 (10) | 0.0523 (11) | 0.0202 (8) | 0.0303 (9) | 0.0242 (9) |
C15 | 0.0679 (14) | 0.0512 (12) | 0.0698 (14) | 0.0315 (11) | 0.0393 (12) | 0.0396 (11) |
C16 | 0.0388 (9) | 0.0373 (9) | 0.0311 (9) | 0.0195 (8) | 0.0104 (7) | 0.0156 (7) |
C17 | 0.0420 (10) | 0.0356 (9) | 0.0348 (9) | 0.0158 (8) | 0.0038 (8) | 0.0117 (8) |
C18 | 0.0889 (18) | 0.0539 (13) | 0.0342 (11) | 0.0196 (12) | 0.0166 (11) | 0.0138 (10) |
Si1—C1 | 1.8980 (16) | C8—C9 | 1.315 (3) |
Si1—C4 | 1.9089 (16) | C8—H8 | 0.9500 |
Si1—Si2 | 2.3500 (6) | C9—H9 | 0.9500 |
Si1—Si3i | 2.3598 (6) | C9—H9A | 0.9500 |
Si2—C10 | 1.8931 (15) | C10—C11 | 1.488 (2) |
Si2—C7 | 1.9100 (16) | C10—H10 | 0.9900 |
Si2—Si3 | 2.3511 (6) | C10—H10A | 0.9900 |
Si3—C13 | 1.9009 (16) | C11—C12 | 1.306 (3) |
Si3—C16 | 1.9015 (17) | C11—H11 | 0.9500 |
C1—C2 | 1.485 (2) | C12—H12 | 0.9500 |
C1—H1 | 0.9900 | C12—H12A | 0.9500 |
C1—H1A | 0.9900 | C13—C14 | 1.499 (2) |
C2—C3 | 1.304 (2) | C13—H13 | 0.9900 |
C2—H2 | 0.9500 | C13—H13A | 0.9900 |
C3—H3 | 0.9500 | C14—C15 | 1.292 (3) |
C3—H3A | 0.9500 | C14—H14 | 0.9500 |
C4—C5 | 1.491 (2) | C15—H15 | 0.9500 |
C4—H4 | 0.9900 | C15—H15A | 0.9500 |
C4—H4A | 0.9900 | C16—C17 | 1.485 (2) |
C5—C6 | 1.298 (3) | C16—H16 | 0.9900 |
C5—H5 | 0.9500 | C16—H16A | 0.9900 |
C6—H6 | 0.9500 | C17—C18 | 1.290 (3) |
C6—H6A | 0.9500 | C17—H17 | 0.9500 |
C7—C8 | 1.489 (2) | C18—H18 | 0.9500 |
C7—H7 | 0.9900 | C18—H18A | 0.9500 |
C7—H7A | 0.9900 | ||
C1—Si1—C4 | 106.79 (8) | C8—C7—H7A | 108.8 |
C1—Si1—Si2 | 105.58 (5) | Si2—C7—H7A | 108.8 |
C4—Si1—Si2 | 113.40 (6) | H7—C7—H7A | 107.7 |
C1—Si1—Si3i | 112.49 (5) | C9—C8—C7 | 125.87 (17) |
C4—Si1—Si3i | 108.24 (5) | C9—C8—H8 | 117.1 |
Si2—Si1—Si3i | 110.35 (2) | C7—C8—H8 | 117.1 |
C10—Si2—C7 | 105.65 (7) | C8—C9—H9 | 120.0 |
C10—Si2—Si1 | 113.07 (5) | C8—C9—H9A | 120.0 |
C7—Si2—Si1 | 108.47 (5) | H9—C9—H9A | 120.0 |
C10—Si2—Si3 | 107.10 (5) | C11—C10—Si2 | 112.41 (11) |
C7—Si2—Si3 | 112.04 (5) | C11—C10—H10 | 109.1 |
Si1—Si2—Si3 | 110.46 (2) | Si2—C10—H10 | 109.1 |
C13—Si3—C16 | 106.55 (8) | C11—C10—H10A | 109.1 |
C13—Si3—Si2 | 113.06 (5) | Si2—C10—H10A | 109.1 |
C16—Si3—Si2 | 107.39 (5) | H10—C10—H10A | 107.9 |
C13—Si3—Si1i | 105.61 (5) | C12—C11—C10 | 126.47 (17) |
C16—Si3—Si1i | 113.91 (6) | C12—C11—H11 | 116.8 |
Si2—Si3—Si1i | 110.38 (2) | C10—C11—H11 | 116.8 |
C2—C1—Si1 | 112.56 (11) | C11—C12—H12 | 120.0 |
C2—C1—H1 | 109.1 | C11—C12—H12A | 120.0 |
Si1—C1—H1 | 109.1 | H12—C12—H12A | 120.0 |
C2—C1—H1A | 109.1 | C14—C13—Si3 | 114.81 (11) |
Si1—C1—H1A | 109.1 | C14—C13—H13 | 108.6 |
H1—C1—H1A | 107.8 | Si3—C13—H13 | 108.6 |
C3—C2—C1 | 126.54 (16) | C14—C13—H13A | 108.6 |
C3—C2—H2 | 116.7 | Si3—C13—H13A | 108.6 |
C1—C2—H2 | 116.7 | H13—C13—H13A | 107.5 |
C2—C3—H3 | 120.0 | C15—C14—C13 | 126.06 (19) |
C2—C3—H3A | 120.0 | C15—C14—H14 | 117.0 |
H3—C3—H3A | 120.0 | C13—C14—H14 | 117.0 |
C5—C4—Si1 | 114.30 (12) | C14—C15—H15 | 120.0 |
C5—C4—H4 | 108.7 | C14—C15—H15A | 120.0 |
Si1—C4—H4 | 108.7 | H15—C15—H15A | 120.0 |
C5—C4—H4A | 108.7 | C17—C16—Si3 | 114.17 (12) |
Si1—C4—H4A | 108.7 | C17—C16—H16 | 108.7 |
H4—C4—H4A | 107.6 | Si3—C16—H16 | 108.7 |
C6—C5—C4 | 126.23 (18) | C17—C16—H16A | 108.7 |
C6—C5—H5 | 116.9 | Si3—C16—H16A | 108.7 |
C4—C5—H5 | 116.9 | H16—C16—H16A | 107.6 |
C5—C6—H6 | 120.0 | C18—C17—C16 | 125.72 (19) |
C5—C6—H6A | 120.0 | C18—C17—H17 | 117.1 |
H6—C6—H6A | 120.0 | C16—C17—H17 | 117.1 |
C8—C7—Si2 | 113.75 (11) | C17—C18—H18 | 120.0 |
C8—C7—H7 | 108.8 | C17—C18—H18A | 120.0 |
Si2—C7—H7 | 108.8 | H18—C18—H18A | 120.0 |
C4—Si1—C1—C2 | 66.90 (13) | C7—Si2—C10—C11 | −63.26 (13) |
Si2—Si1—C1—C2 | −172.12 (10) | Si1—Si2—C10—C11 | 55.23 (12) |
Si3i—Si1—C1—C2 | −51.71 (12) | Si3—Si2—C10—C11 | 177.14 (10) |
Si1—C1—C2—C3 | −109.91 (18) | Si2—C10—C11—C12 | −121.92 (18) |
Si1—C4—C5—C6 | −92.8 (2) | Si3—C13—C14—C15 | −109.0 (2) |
Si2—C7—C8—C9 | 101.37 (18) | Si3—C16—C17—C18 | −102.9 (2) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2ii—H2ii···C11 | 0.95 | 2.84 | 3.622 (3) | 140 |
C7—H7A···C8iii | 0.99 | 2.82 | 3.669 (2) | 145 |
C6—H6A···C15iii | 0.95 | 2.88 | 3.678 (4) | 142 |
C16iv—H16iv···C12 | 0.99 | 2.75 | 3.684 (3) | 159 |
Symmetry codes: (ii) x−1, y, z; (iii) −x+1, −y+2, −z+1; (iv) −x, −y+1, −z+1. |
Acknowledgements
This work was supported by Integrated Research Consortium on Chemical Science (IRCCS) and Kyoto University Research Coordination Alliance (KURCA). This study was also supported by the Joint Usage/Research Center (JURC, Institute for Chemical Research (ICR), Kyoto University) by providing access to JEOL JNM-ECA600 and Bruker Avance III 600US Plus NMR spectrometers. We are grateful for computation time, which was provided by the Super Computer System (ICR, Kyoto University). Elemental analyses were carried out at the Microanalytical Laboratory of the Institute for Chemical Research (Kyoto University).
Funding information
Funding for this research was provided by: JSPS KAKENHI (award Nos. 16H04110, 26410044, 24109013).
References
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Carrell, H. L. & Donohue, J. (1972). Acta Cryst. B28, 1566–1571. CSD CrossRef IUCr Journals Web of Science Google Scholar
Choi, S.-B., Kim, B.-K., Boudjouk, P. & Grier, D. G. (2001). J. Am. Chem. Soc. 123, 8117–8118. Web of Science CSD CrossRef PubMed CAS Google Scholar
Dräger, M. & Walter, K. G. (1981). Z. Anorg. Allg. Chem. 479, 65–74. Google Scholar
Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Japan, 51, 218–224. CrossRef Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
M'hirsi, M. & Brini, M. (1968). Bull. Soc. Chim. Fr. p. 1509. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Palmer, D. (2007). CrystalMaker. CrystalMaker, Bicester, England. Google Scholar
Rigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Wakita, K. (2001). Yadokari-XG. Software for Analyses. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yamaguchi, S., Jin, R. & Tamao, K. (1999). J. Am. Chem. Soc. 121, 2937–2938. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.