organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(Z)-4-Chloro-N-{3-[(4-chloro­phen­yl)sulfon­yl]-2,3-di­hydrobenzo[d]thia­zol-2-yl­­idene}benzene­sulfonamide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
*Correspondence e-mail: czheng@niu.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 30 April 2017; accepted 9 June 2017; online 20 June 2017)

The title compound, C19H12Cl2N2O4S3, is related to a di­tosyl­ated 2-imino­benzo­thia­zole with the two methyl groups on the two phenyl rings replaced by chlorine. There is a weak intra­molecular ππ contact between the two phenyl rings, with a centroid-to-centroid distance of 4.004 (2) Å. The dihedral angle between the rings is 9.96 (13)°. An intra­molecular C—H⋯O hydrogen bond stabilizes the mol­ecular conformation.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The methyl­erythritolphosphate (MEP) pathway is an essential enzymatic pathway for the biosynthesis of isoprenoid precursors present in most bacteria, some protozoa and plants (Persch et al., 2015[Persch, E., Dumele, O. & Diederich, F. (2015). Angew. Chem. Int. Ed. 54, 3290-3327.]; Frank & Groll, 2017[Frank, A. & Groll, M. (2017). Chem. Rev. 117, 5675-5703.]; Hunter, 2007[Hunter, W. N. (2007). J. Biol. Chem. 282, 21573-21577.]; Masini & Hirsch, 2014[Masini, T. & Hirsch, A. K. H. (2014). J. Med. Chem. 57, 9740-9763.]; Odom, 2011[Odom, A. R. (2011). PLoS Pathog. 7, e1002323.]; Hale et al., 2012[Hale, I., O'Neill, P. M., Berry, N. G., Odom, A. & Sharma, R. (2012). MedChemComm, 3, 418-433.]). Inhibition of enzymes from this pathway has tremendous potential to generate new anti-infective agents or herbicides (Frank & Groll, 2017[Frank, A. & Groll, M. (2017). Chem. Rev. 117, 5675-5703.]; Witschel et al., 2013[Witschel, M., Röhl, F., Niggeweg, R. & Newton, T. (2013). Pest. Manag. Sci. 69, 559-563.]). The enzyme 2-methyl­erythritol 2,4-cyclo­diphosphate synthase (IspF) is present in the MEP pathway (Zhang et al., 2013[Zhang, Z., Jakkaraju, S., Blain, J., Gogol, K., Zhao, L., Hartley, R. C., Karlsson, C. A., Staker, B. L., Edwards, T. E., Stewart, L. J., Myler, P. J., Clare, M., Begley, D. W., Horn, J. R. & Hagen, T. J. (2013). Bioorg. Med. Chem. Lett. 23, 6860-6863.], Geist et al., 2010[Geist, J. G., Lauw, S., Illarionova, V., Illarionov, B., Fischer, M., Gräwert, T., Rohdich, F., Eisenreich, W., Kaiser, J., Groll, M., Scheurer, C., Wittlin, S., Alonso-Gómez, J. L., Schweizer, W. B., Bacher, A. & Diederich, F. (2010). ChemMedChem, 5, 1092-1101.], Crane et al., 2006[Crane, C. M., Kaiser, J., Ramsden, N. L., Lauw, S., Rohdich, F., Eisenreich, W., Hunter, W. N., Bacher, A. & Diederich, F. (2006). Angew. Chem. Int. Ed. 45, 1069-1074.]). Recently, bis-sulfonamides of ortho-phenyl­enedi­amine have been shown to have micromolar inhibitory activity against IspF from Arabidopsis thaliana, Plasmodium falciparum, or Burkholderia pseudomallei (Thelemann et al., 2015[Thelemann, J., Illarionov, B., Barylyuk, K., Geist, J., Kirchmair, J., Schneider, P., Anthore, L., Root, K., Trapp, N., Bacher, A., Witschel, M., Zenobi, R., Fischer, M., Schneider, G. & Diederich, F. (2015). ChemMedChem, 10, 2090-2098.]). In our quest to discover inhibitors of IspF, we synthesized a series of sulfonamide and bis-sulfonamide analogs of 2-amino­benzthia­zole that would be capable of binding to the zinc ion of the IspF enzyme. This work resulted in the synthesis of the title compound.

The title compound, shown in Fig. 1[link], is closely related to a di­tosyl­ated 2-imino­benzo­thia­zole (Castanheiro et al., 2017[Castanheiro, T., Suffert, J., Donnard, M. & Gulea, M. (2017). Phosphorus Sulfur Silicon, 192, 162-165.]) with the two methyl groups on the two phenyl groups replaced by chlorine. However, there are significant structural differences between the structures of the two compounds. The title compound crystallizes in the space group P[\overline{1}], whereas the methyl compound crystallizes in P21/c. Furthermore, the phenyl rings of the title compound lie on one side of the imino­benzo­thia­zole plane, whereas they are on the other side in the methyl compound, as shown in Fig. 2[link]. The torsion angles C31—N32—S2—C24 and C31—N1—S1—C14 in the title compound are −57.91 (16) and −122.8 (2)°, respectively. The corresponding torsion angles of the methyl compound are 60.9 (2) and 107.2 (2)°, respectively. Weak non-classical hydrogen bonds of the type C—H⋯O (Table 1[link]) consolidate the mol­ecular packing in the crystal (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O11i 0.93 2.53 3.203 (3) 130
C22—H22⋯O22i 0.93 2.59 3.249 (3) 128
C37—H37⋯O21ii 0.93 2.50 3.339 (3) 151
C34—H34⋯O21 0.93 2.22 2.837 (3) 123
Symmetry codes: (i) x-1, y, z; (ii) x, y-1, z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
The mol­ecular conformations of the title compound (left) and the methyl analog (right). The two phenyl groups of the title compound are above the plane of the imino­benzo­thia­zole rings (the plane of the paper), while they are below the plane in the methyl analog.
[Figure 3]
Figure 3
Packing of the title mol­ecules viewed down the b axis. The white, grey, blue, red, yellow and green spheres are H, C, N, O, S and Cl atoms, respectively.

Synthesis and crystallization

2-Amino­benzo­thia­zole (0.98 mmol) was dissolved in methyl­ene chloride (5 ml) and pyridine (3.8 mmol) in an ice bath. 4-Chloro­benzene­sulfonyl chloride (1.0 mmol) was added while stirring, and the reaction was allowed to come to room temperature. The reaction was monitored by TLC, and after 18 h the mixture was concentrated and the remaining solution in pyridine was extracted with water (100 ml) and ethyl acetate (80 ml). The organic layer was washed with brine (30 ml) and dried over anhydrous sodium sulfate. The combined extracts were concentrated to obtain the crude product, which was chromatographed (1: 2 v/v ethyl acetate/hexa­ne) to yield the title compound (0.11 mmol, 11%). The material was recrystallized from a CDCl3 solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C19H12Cl2N2O4S3
Mr 499.39
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 7.1330 (9), 8.1155 (11), 17.798 (2)
α, β, γ (°) 87.747 (2), 81.840 (2), 87.849 (2)
V3) 1018.5 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.66
Crystal size (mm) 0.60 × 0.30 × 0.25
 
Data collection
Diffractometer Bruker SMART CCD PLATFORM
Absorption correction Multi-scan (SADABS; Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.186, 0.264
No. of measured, independent and observed [I > 2σ(I)] reflections 7549, 3530, 3301
Rint 0.016
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.096, 1.04
No. of reflections 3530
No. of parameters 271
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.58, −0.62
Computer programs: SMART and SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

(Z)-4-Chloro-N-{3-[(4-chlorophenyl)sulfonyl]-2,3-dihydrobenzo[d]thiazol-2-ylidene}benzenesulfonamide top
Crystal data top
C19H12Cl2N2O4S3Z = 2
Mr = 499.39F(000) = 508
Triclinic, P1Dx = 1.628 Mg m3
a = 7.1330 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.1155 (11) ÅCell parameters from 906 reflections
c = 17.798 (2) Åθ = 2–14°
α = 87.747 (2)°µ = 0.66 mm1
β = 81.840 (2)°T = 293 K
γ = 87.849 (2)°Fragment, colorless
V = 1018.5 (2) Å30.60 × 0.30 × 0.25 mm
Data collection top
Bruker SMART CCD PLATFORM
diffractometer
3530 independent reflections
Radiation source: fine-focus sealed tube3301 reflections with I > 2σ(I)
Detector resolution: 0 pixels mm-1Rint = 0.016
ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 88
Tmin = 0.186, Tmax = 0.264k = 99
7549 measured reflectionsl = 2121
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0448P)2 + 0.6375P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.003
3530 reflectionsΔρmax = 0.58 e Å3
271 parametersΔρmin = 0.62 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.37024 (8)0.03706 (7)0.77485 (3)0.04724 (16)
S20.28022 (8)0.43662 (6)0.60143 (3)0.04326 (16)
S30.29160 (7)0.08482 (6)0.60835 (3)0.03773 (15)
Cl10.25853 (15)0.26317 (14)1.03311 (5)0.1060 (4)
Cl20.35272 (13)0.55565 (14)0.87265 (5)0.1002 (3)
N10.3383 (3)0.1643 (2)0.70469 (10)0.0446 (4)
C110.0832 (4)0.2042 (4)0.95977 (15)0.0698 (8)
O110.5492 (2)0.0699 (3)0.79694 (10)0.0662 (5)
C120.1312 (4)0.1098 (4)0.90386 (16)0.0744 (8)
H120.2559490.0798250.9044700.089*
O120.3336 (3)0.1291 (2)0.75832 (9)0.0611 (5)
C130.0077 (4)0.0596 (4)0.84652 (15)0.0634 (7)
H130.0226730.0049850.8082280.076*
C140.1913 (3)0.1057 (3)0.84637 (12)0.0486 (5)
C150.2376 (4)0.2030 (4)0.90258 (15)0.0651 (7)
H150.3616470.2350040.9018320.078*
C160.0982 (5)0.2520 (4)0.95971 (16)0.0771 (8)
H160.1275490.3172780.9979690.092*
C210.1739 (4)0.5178 (3)0.79780 (14)0.0581 (6)
O210.2169 (3)0.52024 (18)0.53771 (9)0.0608 (5)
C220.2195 (3)0.4463 (3)0.73429 (15)0.0568 (6)
H220.3430840.4165160.7318650.068*
O220.4612 (2)0.4680 (2)0.62072 (10)0.0604 (5)
C230.0786 (3)0.4197 (3)0.67448 (13)0.0481 (5)
H230.1067090.3744680.6303320.058*
C240.1050 (3)0.4603 (2)0.68022 (11)0.0390 (4)
C250.1500 (3)0.5307 (3)0.74424 (14)0.0527 (6)
H250.2742760.5570630.7475880.063*
C260.0074 (4)0.5613 (3)0.80321 (14)0.0634 (7)
H260.0339450.6112110.8464820.076*
C310.3056 (3)0.1145 (2)0.63973 (11)0.0364 (4)
N320.2750 (2)0.23124 (19)0.58320 (9)0.0380 (4)
C330.2499 (3)0.1635 (2)0.51252 (11)0.0341 (4)
C340.2275 (3)0.2439 (3)0.44425 (12)0.0421 (5)
H340.2238530.3585270.4397810.051*
C350.2108 (3)0.1491 (3)0.38283 (12)0.0444 (5)
H350.1941700.2012330.3366510.053*
C360.2181 (3)0.0213 (3)0.38840 (12)0.0446 (5)
H360.2076260.0818490.3460030.054*
C370.2409 (3)0.1021 (3)0.45611 (12)0.0408 (4)
H370.2459050.2167610.4601030.049*
C380.2561 (3)0.0077 (2)0.51843 (11)0.0344 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0575 (3)0.0479 (3)0.0374 (3)0.0024 (2)0.0118 (2)0.0003 (2)
S20.0554 (3)0.0303 (3)0.0419 (3)0.0057 (2)0.0020 (2)0.0013 (2)
S30.0444 (3)0.0310 (3)0.0382 (3)0.00082 (19)0.0080 (2)0.00066 (19)
Cl10.1077 (7)0.1351 (8)0.0629 (5)0.0373 (6)0.0185 (4)0.0011 (5)
Cl20.0861 (6)0.1271 (8)0.0752 (5)0.0237 (5)0.0257 (4)0.0123 (5)
N10.0580 (11)0.0396 (9)0.0371 (9)0.0001 (8)0.0102 (8)0.0020 (7)
C110.0794 (19)0.0823 (19)0.0431 (14)0.0196 (15)0.0004 (13)0.0029 (13)
O110.0552 (10)0.0930 (14)0.0529 (10)0.0019 (9)0.0177 (8)0.0013 (9)
C120.0550 (15)0.106 (2)0.0613 (17)0.0027 (15)0.0084 (13)0.0035 (16)
O120.0945 (13)0.0420 (9)0.0471 (9)0.0052 (8)0.0141 (9)0.0016 (7)
C130.0618 (16)0.0836 (19)0.0475 (13)0.0034 (13)0.0154 (12)0.0072 (12)
C140.0582 (13)0.0509 (13)0.0373 (11)0.0007 (10)0.0100 (10)0.0009 (9)
C150.0734 (17)0.0726 (17)0.0507 (14)0.0130 (14)0.0076 (12)0.0140 (12)
C160.097 (2)0.084 (2)0.0501 (15)0.0054 (17)0.0037 (15)0.0209 (14)
C210.0602 (15)0.0570 (14)0.0524 (14)0.0115 (11)0.0045 (11)0.0013 (11)
O210.1006 (14)0.0339 (8)0.0444 (9)0.0050 (8)0.0013 (8)0.0044 (7)
C220.0466 (13)0.0589 (14)0.0638 (15)0.0001 (11)0.0053 (11)0.0003 (12)
O220.0537 (10)0.0565 (10)0.0687 (11)0.0206 (8)0.0060 (8)0.0099 (8)
C230.0537 (13)0.0443 (12)0.0478 (12)0.0029 (10)0.0115 (10)0.0051 (9)
C240.0473 (11)0.0286 (9)0.0405 (11)0.0001 (8)0.0041 (9)0.0028 (8)
C250.0536 (13)0.0529 (13)0.0537 (13)0.0041 (10)0.0096 (10)0.0158 (11)
C260.0749 (18)0.0683 (16)0.0480 (14)0.0060 (13)0.0088 (12)0.0228 (12)
C310.0372 (10)0.0342 (10)0.0371 (10)0.0003 (8)0.0032 (8)0.0004 (8)
N320.0482 (9)0.0302 (8)0.0349 (8)0.0010 (7)0.0039 (7)0.0014 (6)
C330.0310 (9)0.0351 (10)0.0352 (10)0.0003 (7)0.0014 (7)0.0028 (8)
C340.0455 (11)0.0394 (11)0.0405 (11)0.0004 (9)0.0046 (9)0.0032 (9)
C350.0461 (11)0.0517 (12)0.0360 (11)0.0025 (9)0.0092 (9)0.0039 (9)
C360.0457 (11)0.0500 (12)0.0393 (11)0.0057 (9)0.0077 (9)0.0063 (9)
C370.0420 (11)0.0370 (10)0.0441 (11)0.0045 (8)0.0067 (9)0.0049 (9)
C380.0303 (9)0.0357 (10)0.0367 (10)0.0017 (7)0.0033 (7)0.0008 (8)
Geometric parameters (Å, º) top
S1—O111.4252 (18)C21—C261.370 (4)
S1—O121.4331 (18)C21—C221.375 (4)
S1—N11.6244 (18)C22—C231.374 (3)
S1—C141.761 (2)C22—H220.9300
S2—O221.4165 (18)C23—C241.381 (3)
S2—O211.4186 (17)C23—H230.9300
S2—N321.7133 (16)C24—C251.377 (3)
S2—C241.752 (2)C25—C261.377 (3)
S3—C311.743 (2)C25—H250.9300
S3—C381.7439 (19)C26—H260.9300
Cl1—C111.743 (3)C31—N321.389 (3)
Cl2—C211.737 (2)N32—C331.429 (2)
N1—C311.294 (3)C33—C341.383 (3)
C11—C161.365 (4)C33—C381.389 (3)
C11—C121.368 (4)C34—C351.383 (3)
C12—C131.380 (4)C34—H340.9300
C12—H120.9300C35—C361.382 (3)
C13—C141.375 (3)C35—H350.9300
C13—H130.9300C36—C371.376 (3)
C14—C151.381 (3)C36—H360.9300
C15—C161.377 (4)C37—C381.391 (3)
C15—H150.9300C37—H370.9300
C16—H160.9300
O11—S1—O12118.29 (12)C21—C22—H22120.7
O11—S1—N1107.50 (11)C22—C23—C24119.7 (2)
O12—S1—N1111.51 (9)C22—C23—H23120.2
O11—S1—C14108.24 (11)C24—C23—H23120.2
O12—S1—C14108.49 (11)C25—C24—C23121.4 (2)
N1—S1—C14101.45 (10)C25—C24—S2119.38 (17)
O22—S2—O21119.94 (11)C23—C24—S2119.02 (16)
O22—S2—N32108.05 (10)C26—C25—C24118.7 (2)
O21—S2—N32104.94 (9)C26—C25—H25120.7
O22—S2—C24110.58 (10)C24—C25—H25120.7
O21—S2—C24108.54 (10)C21—C26—C25119.7 (2)
N32—S2—C24103.39 (9)C21—C26—H26120.2
C31—S3—C3890.95 (9)C25—C26—H26120.2
C31—N1—S1122.39 (15)N1—C31—N32118.90 (18)
C16—C11—C12121.6 (3)N1—C31—S3130.18 (16)
C16—C11—Cl1119.4 (2)N32—C31—S3110.92 (14)
C12—C11—Cl1118.9 (3)C31—N32—C33114.44 (16)
C11—C12—C13119.2 (3)C31—N32—S2119.26 (13)
C11—C12—H12120.4C33—N32—S2126.24 (13)
C13—C12—H12120.4C34—C33—C38120.44 (18)
C14—C13—C12119.6 (3)C34—C33—N32129.24 (18)
C14—C13—H13120.2C38—C33—N32110.29 (16)
C12—C13—H13120.2C35—C34—C33118.10 (19)
C13—C14—C15120.7 (2)C35—C34—H34120.9
C13—C14—S1119.75 (18)C33—C34—H34120.9
C15—C14—S1119.6 (2)C36—C35—C34121.6 (2)
C16—C15—C14119.4 (3)C36—C35—H35119.2
C16—C15—H15120.3C34—C35—H35119.2
C14—C15—H15120.3C37—C36—C35120.63 (19)
C11—C16—C15119.5 (3)C37—C36—H36119.7
C11—C16—H16120.2C35—C36—H36119.7
C15—C16—H16120.2C36—C37—C38118.20 (19)
C26—C21—C22121.9 (2)C36—C37—H37120.9
C26—C21—Cl2119.4 (2)C38—C37—H37120.9
C22—C21—Cl2118.7 (2)C33—C38—C37121.04 (18)
C23—C22—C21118.6 (2)C33—C38—S3113.31 (14)
C23—C22—H22120.7C37—C38—S3125.62 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O11i0.932.533.203 (3)130
C22—H22···O22i0.932.593.249 (3)128
C37—H37···O21ii0.932.503.339 (3)151
C34—H34···O210.932.222.837 (3)123
Symmetry codes: (i) x1, y, z; (ii) x, y1, z.
 

Funding information

Funding for this research was provided by: NIH (award No. 1R15AI113653-01 to TJH).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (1999). SMART and SAINT. Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastanheiro, T., Suffert, J., Donnard, M. & Gulea, M. (2017). Phosphorus Sulfur Silicon, 192, 162–165.  CSD CrossRef CAS Google Scholar
First citationCrane, C. M., Kaiser, J., Ramsden, N. L., Lauw, S., Rohdich, F., Eisenreich, W., Hunter, W. N., Bacher, A. & Diederich, F. (2006). Angew. Chem. Int. Ed. 45, 1069–1074.  CrossRef CAS Google Scholar
First citationFrank, A. & Groll, M. (2017). Chem. Rev. 117, 5675–5703.  CrossRef CAS PubMed Google Scholar
First citationGeist, J. G., Lauw, S., Illarionova, V., Illarionov, B., Fischer, M., Gräwert, T., Rohdich, F., Eisenreich, W., Kaiser, J., Groll, M., Scheurer, C., Wittlin, S., Alonso-Gómez, J. L., Schweizer, W. B., Bacher, A. & Diederich, F. (2010). ChemMedChem, 5, 1092–1101.  CSD CrossRef CAS PubMed Google Scholar
First citationHale, I., O'Neill, P. M., Berry, N. G., Odom, A. & Sharma, R. (2012). MedChemComm, 3, 418–433.  CrossRef CAS Google Scholar
First citationHunter, W. N. (2007). J. Biol. Chem. 282, 21573–21577.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMasini, T. & Hirsch, A. K. H. (2014). J. Med. Chem. 57, 9740–9763.  CrossRef CAS PubMed Google Scholar
First citationOdom, A. R. (2011). PLoS Pathog. 7, e1002323.  CrossRef PubMed Google Scholar
First citationPersch, E., Dumele, O. & Diederich, F. (2015). Angew. Chem. Int. Ed. 54, 3290–3327.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThelemann, J., Illarionov, B., Barylyuk, K., Geist, J., Kirchmair, J., Schneider, P., Anthore, L., Root, K., Trapp, N., Bacher, A., Witschel, M., Zenobi, R., Fischer, M., Schneider, G. & Diederich, F. (2015). ChemMedChem, 10, 2090–2098.  CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWitschel, M., Röhl, F., Niggeweg, R. & Newton, T. (2013). Pest. Manag. Sci. 69, 559–563.  CrossRef CAS PubMed Google Scholar
First citationZhang, Z., Jakkaraju, S., Blain, J., Gogol, K., Zhao, L., Hartley, R. C., Karlsson, C. A., Staker, B. L., Edwards, T. E., Stewart, L. J., Myler, P. J., Clare, M., Begley, D. W., Horn, J. R. & Hagen, T. J. (2013). Bioorg. Med. Chem. Lett. 23, 6860–6863.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds