organic compounds
1-[(1-Benzyl-1H-1,2,3-triazol-4-yl)methyl]-1H-1,3-benzodiazole
aLaboratoire de Chimie Organique Appliquée, Faculté des Sciences et, Techniques, Université Sidi Mohammed Ben Abdellah, Fès, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: azzeddinesahbi1982@gmail.com
The title molecule, C17H15N5, adopts a Z-shaped conformation, with the benzyl and benzodiazole substituents disposed on opposite sides of the plane of the triazole ring. A three-dimensional network is generated in the crystal by a combination of C—H⋯N hydrogen bonds and C—H⋯π(ring) interactions.
Keywords: crystal structure; triazole; benzodiazole; hydrogen bond.
CCDC reference: 1558237
Structure description
Benzimidazol-2-one derivatives are useful heterocyclic building blocks and are prominent structural elements of compounds presenting a wide variety of pharmacological and biochemical properties (Refaat, 2010; Olesen et al., 1994; Soderlind et al., 1999). As a continuation of our research devoted to the development of 1,2,3-triazole derivatives (Sahbi et al., 2017), we report in this work the synthesis by a 1,3-dipolar cycloaddition reaction of a new 1,2,3-triazole derivative containing the benzimidazole moiety.
The title molecule (Fig. 1) adopts a Z-shaped conformation with the benzyl and benzodiazole substituents disposed on opposite sides of the plane of the triazole ring. The dihedral angle between the phenyl ring of the benzyl group and the triazole ring is 74.26 (4)°, while the dihedral angle between the triazole and benzodiazole units is 72.41 (4)°. Four sets of C—H⋯N hydrogen bonds (Table 1), two sets being quite weak, as well as a set of C—H⋯π(ring) interactions form the molecules into a three-dimensional network in the crystal (Table 1 and Figs. 2 and 3).
Synthesis and crystallization
In a vial fitted with a screw cap, benzyl azide (100 mg, 0.75 mmol) and alkyled benzimidazol (90 mg, 0.58 mmol) were added to a mixture of copper(II) sulfate pentahydrate (9.3 mg, 0.037 mmol), sodium ascorbate (22.3 mg, 0.11 mmol), and β-cyclodextrin (21.33 mg, 0.019 mmol) dissolved in H2O (1 ml) at room temperature. The reaction mixture was stirred for 15 min at room temperature. The resulting mixture was poured into CH2Cl2 (3 ml) and H2O (3 ml), and the organic layer was separated. The aqueous layer was extracted with CH2Cl2 (3 ml) three times. The product was crystallized by slow evaporation from a hexane–CH2Cl2 mixture (3:1) (yield 89%).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 1558237
https://doi.org/10.1107/S2414314617009440/vm4024sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617009440/vm4024Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314617009440/vm4024Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2414314617009440/vm4024Isup4.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C17H15N5 | F(000) = 608 |
Mr = 289.34 | Dx = 1.335 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
a = 5.3483 (1) Å | Cell parameters from 8031 reflections |
b = 14.1861 (4) Å | θ = 3.9–72.4° |
c = 19.1408 (5) Å | µ = 0.67 mm−1 |
β = 97.451 (1)° | T = 150 K |
V = 1439.98 (6) Å3 | Column, colourless |
Z = 4 | 0.13 × 0.03 × 0.02 mm |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 2817 independent reflections |
Radiation source: INCOATEC IµS micro-focus source | 2427 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.037 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 72.4°, θmin = 3.9° |
ω scans | h = −6→6 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | k = −14→16 |
Tmin = 0.88, Tmax = 0.99 | l = −23→20 |
10936 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | All H-atom parameters refined |
wR(F2) = 0.097 | w = 1/[σ2(Fo2) + (0.0421P)2 + 0.4698P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
2817 reflections | Δρmax = 0.22 e Å−3 |
260 parameters | Δρmin = −0.19 e Å−3 |
0 restraints | Extinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0040 (4) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.7517 (2) | 0.58381 (8) | 0.31394 (6) | 0.0260 (3) | |
N2 | 0.5371 (2) | 0.57393 (8) | 0.34255 (7) | 0.0304 (3) | |
N3 | 0.5770 (2) | 0.50948 (8) | 0.39222 (6) | 0.0311 (3) | |
N4 | 0.8363 (2) | 0.30988 (8) | 0.42456 (6) | 0.0294 (3) | |
N5 | 0.8012 (2) | 0.17383 (9) | 0.36442 (7) | 0.0333 (3) | |
C1 | 0.8262 (3) | 0.75148 (10) | 0.28669 (7) | 0.0288 (3) | |
C2 | 0.6539 (3) | 0.82402 (11) | 0.26945 (8) | 0.0361 (4) | |
H2 | 0.501 (3) | 0.8069 (11) | 0.2382 (9) | 0.032 (4)* | |
C3 | 0.7079 (3) | 0.91481 (11) | 0.29475 (9) | 0.0400 (4) | |
H3 | 0.583 (4) | 0.9651 (14) | 0.2822 (11) | 0.054 (6)* | |
C4 | 0.9291 (3) | 0.93358 (11) | 0.33753 (9) | 0.0374 (4) | |
H4 | 0.968 (4) | 0.9963 (14) | 0.3562 (10) | 0.049 (5)* | |
C5 | 1.1014 (3) | 0.86152 (11) | 0.35485 (9) | 0.0369 (4) | |
H5 | 1.261 (4) | 0.8760 (14) | 0.3857 (11) | 0.057 (6)* | |
C6 | 1.0509 (3) | 0.77114 (10) | 0.32907 (8) | 0.0325 (3) | |
H6 | 1.180 (4) | 0.7212 (14) | 0.3406 (10) | 0.048 (5)* | |
C7 | 0.7674 (3) | 0.65365 (11) | 0.25806 (8) | 0.0345 (3) | |
H7A | 0.597 (4) | 0.6530 (13) | 0.2267 (10) | 0.046 (5)* | |
H7B | 0.906 (4) | 0.6283 (13) | 0.2324 (10) | 0.047 (5)* | |
C8 | 0.9303 (3) | 0.52577 (10) | 0.34520 (8) | 0.0304 (3) | |
H8 | 1.098 (4) | 0.5242 (14) | 0.3302 (11) | 0.057 (6)* | |
C9 | 0.8188 (3) | 0.47873 (9) | 0.39500 (7) | 0.0275 (3) | |
C10 | 0.9266 (3) | 0.40447 (10) | 0.44536 (9) | 0.0386 (4) | |
H10A | 0.865 (4) | 0.4130 (14) | 0.4933 (11) | 0.052 (5)* | |
H10B | 1.120 (4) | 0.4052 (14) | 0.4484 (11) | 0.055 (6)* | |
C11 | 0.9143 (3) | 0.25572 (10) | 0.37299 (8) | 0.0331 (3) | |
H11 | 1.051 (3) | 0.2804 (12) | 0.3460 (9) | 0.038 (4)* | |
C12 | 0.6362 (3) | 0.17317 (10) | 0.41504 (7) | 0.0283 (3) | |
C13 | 0.4702 (3) | 0.10355 (11) | 0.43167 (9) | 0.0366 (4) | |
H13 | 0.455 (4) | 0.0418 (14) | 0.4059 (10) | 0.048 (5)* | |
C14 | 0.3266 (3) | 0.12212 (13) | 0.48488 (9) | 0.0449 (4) | |
H14 | 0.209 (4) | 0.0736 (15) | 0.4972 (11) | 0.055 (6)* | |
C15 | 0.3451 (3) | 0.20763 (14) | 0.52117 (9) | 0.0468 (4) | |
H15 | 0.243 (4) | 0.2214 (15) | 0.5597 (11) | 0.059 (6)* | |
C16 | 0.5087 (3) | 0.27775 (12) | 0.50617 (8) | 0.0376 (4) | |
H16 | 0.528 (4) | 0.3390 (15) | 0.5321 (11) | 0.056 (6)* | |
C17 | 0.6542 (3) | 0.25882 (9) | 0.45272 (7) | 0.0278 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0261 (6) | 0.0254 (6) | 0.0274 (6) | −0.0019 (4) | 0.0063 (4) | −0.0013 (4) |
N2 | 0.0259 (6) | 0.0307 (6) | 0.0360 (7) | 0.0012 (5) | 0.0090 (5) | 0.0032 (5) |
N3 | 0.0319 (6) | 0.0283 (6) | 0.0345 (7) | 0.0020 (5) | 0.0092 (5) | 0.0011 (5) |
N4 | 0.0360 (6) | 0.0219 (6) | 0.0292 (6) | 0.0004 (5) | 0.0004 (5) | −0.0015 (4) |
N5 | 0.0378 (7) | 0.0295 (6) | 0.0333 (6) | 0.0010 (5) | 0.0074 (5) | −0.0056 (5) |
C1 | 0.0330 (7) | 0.0290 (7) | 0.0265 (7) | −0.0003 (5) | 0.0117 (6) | 0.0042 (5) |
C2 | 0.0345 (8) | 0.0410 (9) | 0.0333 (8) | 0.0050 (6) | 0.0058 (6) | 0.0061 (6) |
C3 | 0.0470 (9) | 0.0324 (8) | 0.0425 (9) | 0.0138 (7) | 0.0135 (7) | 0.0087 (6) |
C4 | 0.0452 (9) | 0.0246 (7) | 0.0457 (9) | −0.0017 (6) | 0.0184 (7) | 0.0031 (6) |
C5 | 0.0325 (8) | 0.0312 (8) | 0.0478 (9) | −0.0034 (6) | 0.0084 (7) | 0.0005 (6) |
C6 | 0.0316 (7) | 0.0262 (7) | 0.0410 (8) | 0.0031 (6) | 0.0093 (6) | 0.0035 (6) |
C7 | 0.0451 (9) | 0.0329 (8) | 0.0263 (7) | −0.0041 (6) | 0.0076 (6) | 0.0037 (6) |
C8 | 0.0244 (7) | 0.0274 (7) | 0.0399 (8) | −0.0006 (5) | 0.0059 (6) | −0.0018 (6) |
C9 | 0.0302 (7) | 0.0213 (6) | 0.0297 (7) | −0.0014 (5) | −0.0007 (5) | −0.0048 (5) |
C10 | 0.0479 (9) | 0.0240 (8) | 0.0398 (9) | −0.0024 (6) | −0.0100 (7) | −0.0016 (6) |
C11 | 0.0364 (8) | 0.0325 (8) | 0.0312 (7) | −0.0023 (6) | 0.0072 (6) | −0.0024 (6) |
C12 | 0.0315 (7) | 0.0268 (7) | 0.0257 (7) | 0.0033 (5) | 0.0006 (5) | 0.0003 (5) |
C13 | 0.0379 (8) | 0.0321 (8) | 0.0383 (8) | −0.0032 (6) | −0.0015 (6) | 0.0058 (6) |
C14 | 0.0390 (9) | 0.0533 (11) | 0.0420 (9) | −0.0044 (7) | 0.0041 (7) | 0.0176 (8) |
C15 | 0.0433 (9) | 0.0660 (12) | 0.0328 (8) | 0.0120 (8) | 0.0115 (7) | 0.0107 (8) |
C16 | 0.0440 (9) | 0.0419 (9) | 0.0267 (7) | 0.0128 (7) | 0.0037 (6) | −0.0018 (6) |
C17 | 0.0318 (7) | 0.0263 (7) | 0.0240 (7) | 0.0061 (5) | −0.0009 (5) | 0.0022 (5) |
N1—C8 | 1.3416 (18) | C5—H5 | 1.00 (2) |
N1—N2 | 1.3420 (16) | C6—H6 | 0.992 (19) |
N1—C7 | 1.4684 (18) | C7—H7A | 1.025 (19) |
N2—N3 | 1.3163 (17) | C7—H7B | 1.01 (2) |
N3—C9 | 1.3592 (18) | C8—C9 | 1.363 (2) |
N4—C11 | 1.3585 (19) | C8—H8 | 0.98 (2) |
N4—C17 | 1.3784 (18) | C9—C10 | 1.492 (2) |
N4—C10 | 1.4638 (18) | C10—H10A | 1.02 (2) |
N5—C11 | 1.3102 (19) | C10—H10B | 1.03 (2) |
N5—C12 | 1.3927 (18) | C11—H11 | 1.011 (18) |
C1—C6 | 1.388 (2) | C12—C13 | 1.392 (2) |
C1—C2 | 1.392 (2) | C12—C17 | 1.4100 (19) |
C1—C7 | 1.510 (2) | C13—C14 | 1.378 (2) |
C2—C3 | 1.393 (2) | C13—H13 | 1.00 (2) |
C2—H2 | 0.977 (18) | C14—C15 | 1.395 (3) |
C3—C4 | 1.374 (3) | C14—H14 | 0.98 (2) |
C3—H3 | 0.98 (2) | C15—C16 | 1.379 (3) |
C4—C5 | 1.387 (2) | C15—H15 | 0.99 (2) |
C4—H4 | 0.97 (2) | C16—C17 | 1.389 (2) |
C5—C6 | 1.388 (2) | C16—H16 | 1.00 (2) |
C8—N1—N2 | 110.57 (11) | N1—C8—C9 | 105.16 (12) |
C8—N1—C7 | 129.36 (12) | N1—C8—H8 | 120.7 (12) |
N2—N1—C7 | 120.03 (12) | C9—C8—H8 | 134.1 (12) |
N3—N2—N1 | 107.45 (11) | N3—C9—C8 | 108.42 (12) |
N2—N3—C9 | 108.41 (11) | N3—C9—C10 | 122.53 (14) |
C11—N4—C17 | 106.63 (12) | C8—C9—C10 | 129.04 (14) |
C11—N4—C10 | 126.47 (13) | N4—C10—C9 | 112.66 (12) |
C17—N4—C10 | 126.90 (13) | N4—C10—H10A | 102.7 (11) |
C11—N5—C12 | 104.06 (12) | C9—C10—H10A | 110.8 (11) |
C6—C1—C2 | 119.09 (14) | N4—C10—H10B | 108.6 (11) |
C6—C1—C7 | 121.34 (13) | C9—C10—H10B | 109.3 (11) |
C2—C1—C7 | 119.56 (14) | H10A—C10—H10B | 112.7 (16) |
C1—C2—C3 | 120.01 (15) | N5—C11—N4 | 114.34 (13) |
C1—C2—H2 | 115.8 (10) | N5—C11—H11 | 126.6 (10) |
C3—C2—H2 | 124.1 (10) | N4—C11—H11 | 119.1 (10) |
C4—C3—C2 | 120.65 (14) | C13—C12—N5 | 130.10 (13) |
C4—C3—H3 | 120.6 (12) | C13—C12—C17 | 119.86 (14) |
C2—C3—H3 | 118.8 (12) | N5—C12—C17 | 110.04 (12) |
C3—C4—C5 | 119.56 (15) | C14—C13—C12 | 117.79 (15) |
C3—C4—H4 | 121.5 (12) | C14—C13—H13 | 120.8 (11) |
C5—C4—H4 | 119.0 (12) | C12—C13—H13 | 121.4 (11) |
C4—C5—C6 | 120.22 (15) | C13—C14—C15 | 121.59 (16) |
C4—C5—H5 | 118.9 (12) | C13—C14—H14 | 118.7 (12) |
C6—C5—H5 | 120.9 (12) | C15—C14—H14 | 119.7 (12) |
C5—C6—C1 | 120.47 (14) | C16—C15—C14 | 121.96 (15) |
C5—C6—H6 | 118.9 (11) | C16—C15—H15 | 116.0 (13) |
C1—C6—H6 | 120.7 (11) | C14—C15—H15 | 122.1 (13) |
N1—C7—C1 | 112.61 (12) | C15—C16—C17 | 116.42 (15) |
N1—C7—H7A | 106.8 (11) | C15—C16—H16 | 123.4 (12) |
C1—C7—H7A | 110.3 (11) | C17—C16—H16 | 120.2 (12) |
N1—C7—H7B | 103.3 (11) | N4—C17—C16 | 132.69 (14) |
C1—C7—H7B | 112.0 (11) | N4—C17—C12 | 104.93 (12) |
H7A—C7—H7B | 111.5 (15) | C16—C17—C12 | 122.38 (14) |
C8—N1—N2—N3 | −0.05 (15) | N3—C9—C10—N4 | 74.92 (19) |
C7—N1—N2—N3 | −178.06 (12) | C8—C9—C10—N4 | −104.13 (18) |
N1—N2—N3—C9 | 0.14 (15) | C12—N5—C11—N4 | −0.66 (17) |
C6—C1—C2—C3 | −0.1 (2) | C17—N4—C11—N5 | −0.01 (18) |
C7—C1—C2—C3 | −179.06 (13) | C10—N4—C11—N5 | −179.34 (13) |
C1—C2—C3—C4 | −0.8 (2) | C11—N5—C12—C13 | −178.60 (15) |
C2—C3—C4—C5 | 0.8 (2) | C11—N5—C12—C17 | 1.07 (16) |
C3—C4—C5—C6 | 0.1 (2) | N5—C12—C13—C14 | −179.81 (15) |
C4—C5—C6—C1 | −1.0 (2) | C17—C12—C13—C14 | 0.5 (2) |
C2—C1—C6—C5 | 1.1 (2) | C12—C13—C14—C15 | 0.1 (2) |
C7—C1—C6—C5 | 179.97 (13) | C13—C14—C15—C16 | −0.4 (3) |
C8—N1—C7—C1 | −94.48 (17) | C14—C15—C16—C17 | 0.2 (2) |
N2—N1—C7—C1 | 83.11 (16) | C11—N4—C17—C16 | −179.96 (15) |
C6—C1—C7—N1 | 62.58 (18) | C10—N4—C17—C16 | −0.6 (2) |
C2—C1—C7—N1 | −118.51 (15) | C11—N4—C17—C12 | 0.66 (15) |
N2—N1—C8—C9 | −0.06 (15) | C10—N4—C17—C12 | 179.99 (13) |
C7—N1—C8—C9 | 177.71 (13) | C15—C16—C17—N4 | −178.83 (15) |
N2—N3—C9—C8 | −0.18 (16) | C15—C16—C17—C12 | 0.5 (2) |
N2—N3—C9—C10 | −179.41 (12) | C13—C12—C17—N4 | 178.63 (13) |
N1—C8—C9—N3 | 0.14 (16) | N5—C12—C17—N4 | −1.09 (15) |
N1—C8—C9—C10 | 179.30 (13) | C13—C12—C17—C16 | −0.8 (2) |
C11—N4—C10—C9 | 76.8 (2) | N5—C12—C17—C16 | 179.45 (13) |
C17—N4—C10—C9 | −102.42 (17) |
Cg3 is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7A···N5i | 1.025 (19) | 2.59 (2) | 3.602 (2) | 170.2 (15) |
C7—H7B···N5ii | 1.01 (2) | 2.66 (2) | 3.5076 (19) | 142.4 (14) |
C8—H8···N2iii | 0.98 (2) | 2.44 (2) | 3.3228 (18) | 151.1 (17) |
C16—H16···N3iv | 1.00 (2) | 2.69 (2) | 3.652 (2) | 161.2 (16) |
C15—H15···Cg3iv | 0.99 (2) | 2.77 (2) | 3.6216 (18) | 143.9 (16) |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+2, y+1/2, −z+1/2; (iii) x+1, y, z; (iv) −x+1, −y+1, −z+1. |
Acknowledgements
The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.
References
Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Olesen, S. P., Munch, E., Moldt, P. & Drejer, J. (1994). Eur. J. Pharmacol. 251, 53–59. CrossRef CAS PubMed Web of Science Google Scholar
Refaat, H. M. (2010). Eur. J. Med. Chem. 45, 2949–2956. Web of Science CrossRef CAS PubMed Google Scholar
Sahbi, A., Mague, J. T., Ben-Tama, A., El Hadrami, E. M., Gaamoussi, I. & Ouzidan, Y. (2017). IUCrData, 2, x170515. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Soderlind, K. J., Gorodetsky, B., Singh, A. K., Bachur, N., Miller, G. G. & Lown, J. W. (1999). Anticancer Drug. Des. 14, 19–36. Web of Science PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.