organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-[(1-Benzyl-1H-1,2,3-triazol-4-yl)meth­yl]-1H-1,3-benzo­diazole

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Appliquée, Faculté des Sciences et, Techniques, Université Sidi Mohammed Ben Abdellah, Fès, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: azzeddinesahbi1982@gmail.com

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 21 June 2017; accepted 24 June 2017; online 30 July 2017)

The title mol­ecule, C17H15N5, adopts a Z-shaped conformation, with the benzyl and benzo­diazole substituents disposed on opposite sides of the plane of the triazole ring. A three-dimensional network is generated in the crystal by a combination of C—H⋯N hydrogen bonds and C—H⋯π(ring) inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Benzimidazol-2-one derivatives are useful heterocyclic building blocks and are prominent structural elements of compounds presenting a wide variety of pharmacological and biochemical properties (Refaat, 2010[Refaat, H. M. (2010). Eur. J. Med. Chem. 45, 2949-2956.]; Olesen et al., 1994[Olesen, S. P., Munch, E., Moldt, P. & Drejer, J. (1994). Eur. J. Pharmacol. 251, 53-59.]; Soderlind et al., 1999[Soderlind, K. J., Gorodetsky, B., Singh, A. K., Bachur, N., Miller, G. G. & Lown, J. W. (1999). Anticancer Drug. Des. 14, 19-36.]). As a continuation of our research devoted to the development of 1,2,3-triazole derivatives (Sahbi et al., 2017[Sahbi, A., Mague, J. T., Ben-Tama, A., El Hadrami, E. M., Gaamoussi, I. & Ouzidan, Y. (2017). IUCrData, 2, x170515.]), we report in this work the synthesis by a 1,3-dipolar cyclo­addition reaction of a new 1,2,3-triazole derivative containing the benzimidazole moiety.

The title mol­ecule (Fig. 1[link]) adopts a Z-shaped conformation with the benzyl and benzo­diazole substituents disposed on opposite sides of the plane of the triazole ring. The dihedral angle between the phenyl ring of the benzyl group and the triazole ring is 74.26 (4)°, while the dihedral angle between the triazole and benzo­diazole units is 72.41 (4)°. Four sets of C—H⋯N hydrogen bonds (Table 1[link]), two sets being quite weak, as well as a set of C—H⋯π(ring) inter­actions form the mol­ecules into a three-dimensional network in the crystal (Table 1[link] and Figs. 2[link] and 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯N5i 1.03 (2) 2.59 (2) 3.602 (2) 170 (2)
C7—H7B⋯N5ii 1.01 (2) 2.66 (2) 3.508 (2) 142 (1)
C8—H8⋯N2iii 0.98 (2) 2.44 (2) 3.323 (2) 151 (2)
C16—H16⋯N3iv 1.00 (2) 2.69 (2) 3.652 (2) 161 (2)
C15—H15⋯Cg3iv 0.99 (2) 2.77 (2) 3.622 (2) 144 (2)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x+1, y, z; (iv) -x+1, -y+1, -z+1.
[Figure 1]
Figure 1
The structure of the title mol­ecule with the labeling scheme and 50% probability displacement ellipsoids.
[Figure 2]
Figure 2
Detail of the inter­molecular inter­actions. C—H⋯N hydrogen bonds and C—H⋯π(ring) inter­actions are shown, respectively, as black and green dashed lines.
[Figure 3]
Figure 3
Packing viewed along the a-axis direction. The inter­molecular inter­actions are depicted as in Fig. 2[link].

Synthesis and crystallization

In a vial fitted with a screw cap, benzyl azide (100 mg, 0.75 mmol) and alkyled benzimidazol (90 mg, 0.58 mmol) were added to a mixture of copper(II) sulfate penta­hydrate (9.3 mg, 0.037 mmol), sodium ascorbate (22.3 mg, 0.11 mmol), and β-cyclo­dextrin (21.33 mg, 0.019 mmol) dissolved in H2O (1 ml) at room temperature. The reaction mixture was stirred for 15 min at room temperature. The resulting mixture was poured into CH2Cl2 (3 ml) and H2O (3 ml), and the organic layer was separated. The aqueous layer was extracted with CH2Cl2 (3 ml) three times. The product was crystallized by slow evaporation from a hexa­ne–CH2Cl2 mixture (3:1) (yield 89%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C17H15N5
Mr 289.34
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 5.3483 (1), 14.1861 (4), 19.1408 (5)
β (°) 97.451 (1)
V3) 1439.98 (6)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.67
Crystal size (mm) 0.13 × 0.03 × 0.02
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.88, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 10936, 2817, 2427
Rint 0.037
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.097, 1.04
No. of reflections 2817
No. of parameters 260
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.22, −0.19
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

1-[(1-Benzyl-1H-1,2,3-triazol-4-yl)methyl]-1H-1,3-benzodiazole top
Crystal data top
C17H15N5F(000) = 608
Mr = 289.34Dx = 1.335 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 5.3483 (1) ÅCell parameters from 8031 reflections
b = 14.1861 (4) Åθ = 3.9–72.4°
c = 19.1408 (5) ŵ = 0.67 mm1
β = 97.451 (1)°T = 150 K
V = 1439.98 (6) Å3Column, colourless
Z = 40.13 × 0.03 × 0.02 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2817 independent reflections
Radiation source: INCOATEC IµS micro-focus source2427 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.037
Detector resolution: 10.4167 pixels mm-1θmax = 72.4°, θmin = 3.9°
ω scansh = 66
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1416
Tmin = 0.88, Tmax = 0.99l = 2320
10936 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040All H-atom parameters refined
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0421P)2 + 0.4698P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2817 reflectionsΔρmax = 0.22 e Å3
260 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0040 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7517 (2)0.58381 (8)0.31394 (6)0.0260 (3)
N20.5371 (2)0.57393 (8)0.34255 (7)0.0304 (3)
N30.5770 (2)0.50948 (8)0.39222 (6)0.0311 (3)
N40.8363 (2)0.30988 (8)0.42456 (6)0.0294 (3)
N50.8012 (2)0.17383 (9)0.36442 (7)0.0333 (3)
C10.8262 (3)0.75148 (10)0.28669 (7)0.0288 (3)
C20.6539 (3)0.82402 (11)0.26945 (8)0.0361 (4)
H20.501 (3)0.8069 (11)0.2382 (9)0.032 (4)*
C30.7079 (3)0.91481 (11)0.29475 (9)0.0400 (4)
H30.583 (4)0.9651 (14)0.2822 (11)0.054 (6)*
C40.9291 (3)0.93358 (11)0.33753 (9)0.0374 (4)
H40.968 (4)0.9963 (14)0.3562 (10)0.049 (5)*
C51.1014 (3)0.86152 (11)0.35485 (9)0.0369 (4)
H51.261 (4)0.8760 (14)0.3857 (11)0.057 (6)*
C61.0509 (3)0.77114 (10)0.32907 (8)0.0325 (3)
H61.180 (4)0.7212 (14)0.3406 (10)0.048 (5)*
C70.7674 (3)0.65365 (11)0.25806 (8)0.0345 (3)
H7A0.597 (4)0.6530 (13)0.2267 (10)0.046 (5)*
H7B0.906 (4)0.6283 (13)0.2324 (10)0.047 (5)*
C80.9303 (3)0.52577 (10)0.34520 (8)0.0304 (3)
H81.098 (4)0.5242 (14)0.3302 (11)0.057 (6)*
C90.8188 (3)0.47873 (9)0.39500 (7)0.0275 (3)
C100.9266 (3)0.40447 (10)0.44536 (9)0.0386 (4)
H10A0.865 (4)0.4130 (14)0.4933 (11)0.052 (5)*
H10B1.120 (4)0.4052 (14)0.4484 (11)0.055 (6)*
C110.9143 (3)0.25572 (10)0.37299 (8)0.0331 (3)
H111.051 (3)0.2804 (12)0.3460 (9)0.038 (4)*
C120.6362 (3)0.17317 (10)0.41504 (7)0.0283 (3)
C130.4702 (3)0.10355 (11)0.43167 (9)0.0366 (4)
H130.455 (4)0.0418 (14)0.4059 (10)0.048 (5)*
C140.3266 (3)0.12212 (13)0.48488 (9)0.0449 (4)
H140.209 (4)0.0736 (15)0.4972 (11)0.055 (6)*
C150.3451 (3)0.20763 (14)0.52117 (9)0.0468 (4)
H150.243 (4)0.2214 (15)0.5597 (11)0.059 (6)*
C160.5087 (3)0.27775 (12)0.50617 (8)0.0376 (4)
H160.528 (4)0.3390 (15)0.5321 (11)0.056 (6)*
C170.6542 (3)0.25882 (9)0.45272 (7)0.0278 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0261 (6)0.0254 (6)0.0274 (6)0.0019 (4)0.0063 (4)0.0013 (4)
N20.0259 (6)0.0307 (6)0.0360 (7)0.0012 (5)0.0090 (5)0.0032 (5)
N30.0319 (6)0.0283 (6)0.0345 (7)0.0020 (5)0.0092 (5)0.0011 (5)
N40.0360 (6)0.0219 (6)0.0292 (6)0.0004 (5)0.0004 (5)0.0015 (4)
N50.0378 (7)0.0295 (6)0.0333 (6)0.0010 (5)0.0074 (5)0.0056 (5)
C10.0330 (7)0.0290 (7)0.0265 (7)0.0003 (5)0.0117 (6)0.0042 (5)
C20.0345 (8)0.0410 (9)0.0333 (8)0.0050 (6)0.0058 (6)0.0061 (6)
C30.0470 (9)0.0324 (8)0.0425 (9)0.0138 (7)0.0135 (7)0.0087 (6)
C40.0452 (9)0.0246 (7)0.0457 (9)0.0017 (6)0.0184 (7)0.0031 (6)
C50.0325 (8)0.0312 (8)0.0478 (9)0.0034 (6)0.0084 (7)0.0005 (6)
C60.0316 (7)0.0262 (7)0.0410 (8)0.0031 (6)0.0093 (6)0.0035 (6)
C70.0451 (9)0.0329 (8)0.0263 (7)0.0041 (6)0.0076 (6)0.0037 (6)
C80.0244 (7)0.0274 (7)0.0399 (8)0.0006 (5)0.0059 (6)0.0018 (6)
C90.0302 (7)0.0213 (6)0.0297 (7)0.0014 (5)0.0007 (5)0.0048 (5)
C100.0479 (9)0.0240 (8)0.0398 (9)0.0024 (6)0.0100 (7)0.0016 (6)
C110.0364 (8)0.0325 (8)0.0312 (7)0.0023 (6)0.0072 (6)0.0024 (6)
C120.0315 (7)0.0268 (7)0.0257 (7)0.0033 (5)0.0006 (5)0.0003 (5)
C130.0379 (8)0.0321 (8)0.0383 (8)0.0032 (6)0.0015 (6)0.0058 (6)
C140.0390 (9)0.0533 (11)0.0420 (9)0.0044 (7)0.0041 (7)0.0176 (8)
C150.0433 (9)0.0660 (12)0.0328 (8)0.0120 (8)0.0115 (7)0.0107 (8)
C160.0440 (9)0.0419 (9)0.0267 (7)0.0128 (7)0.0037 (6)0.0018 (6)
C170.0318 (7)0.0263 (7)0.0240 (7)0.0061 (5)0.0009 (5)0.0022 (5)
Geometric parameters (Å, º) top
N1—C81.3416 (18)C5—H51.00 (2)
N1—N21.3420 (16)C6—H60.992 (19)
N1—C71.4684 (18)C7—H7A1.025 (19)
N2—N31.3163 (17)C7—H7B1.01 (2)
N3—C91.3592 (18)C8—C91.363 (2)
N4—C111.3585 (19)C8—H80.98 (2)
N4—C171.3784 (18)C9—C101.492 (2)
N4—C101.4638 (18)C10—H10A1.02 (2)
N5—C111.3102 (19)C10—H10B1.03 (2)
N5—C121.3927 (18)C11—H111.011 (18)
C1—C61.388 (2)C12—C131.392 (2)
C1—C21.392 (2)C12—C171.4100 (19)
C1—C71.510 (2)C13—C141.378 (2)
C2—C31.393 (2)C13—H131.00 (2)
C2—H20.977 (18)C14—C151.395 (3)
C3—C41.374 (3)C14—H140.98 (2)
C3—H30.98 (2)C15—C161.379 (3)
C4—C51.387 (2)C15—H150.99 (2)
C4—H40.97 (2)C16—C171.389 (2)
C5—C61.388 (2)C16—H161.00 (2)
C8—N1—N2110.57 (11)N1—C8—C9105.16 (12)
C8—N1—C7129.36 (12)N1—C8—H8120.7 (12)
N2—N1—C7120.03 (12)C9—C8—H8134.1 (12)
N3—N2—N1107.45 (11)N3—C9—C8108.42 (12)
N2—N3—C9108.41 (11)N3—C9—C10122.53 (14)
C11—N4—C17106.63 (12)C8—C9—C10129.04 (14)
C11—N4—C10126.47 (13)N4—C10—C9112.66 (12)
C17—N4—C10126.90 (13)N4—C10—H10A102.7 (11)
C11—N5—C12104.06 (12)C9—C10—H10A110.8 (11)
C6—C1—C2119.09 (14)N4—C10—H10B108.6 (11)
C6—C1—C7121.34 (13)C9—C10—H10B109.3 (11)
C2—C1—C7119.56 (14)H10A—C10—H10B112.7 (16)
C1—C2—C3120.01 (15)N5—C11—N4114.34 (13)
C1—C2—H2115.8 (10)N5—C11—H11126.6 (10)
C3—C2—H2124.1 (10)N4—C11—H11119.1 (10)
C4—C3—C2120.65 (14)C13—C12—N5130.10 (13)
C4—C3—H3120.6 (12)C13—C12—C17119.86 (14)
C2—C3—H3118.8 (12)N5—C12—C17110.04 (12)
C3—C4—C5119.56 (15)C14—C13—C12117.79 (15)
C3—C4—H4121.5 (12)C14—C13—H13120.8 (11)
C5—C4—H4119.0 (12)C12—C13—H13121.4 (11)
C4—C5—C6120.22 (15)C13—C14—C15121.59 (16)
C4—C5—H5118.9 (12)C13—C14—H14118.7 (12)
C6—C5—H5120.9 (12)C15—C14—H14119.7 (12)
C5—C6—C1120.47 (14)C16—C15—C14121.96 (15)
C5—C6—H6118.9 (11)C16—C15—H15116.0 (13)
C1—C6—H6120.7 (11)C14—C15—H15122.1 (13)
N1—C7—C1112.61 (12)C15—C16—C17116.42 (15)
N1—C7—H7A106.8 (11)C15—C16—H16123.4 (12)
C1—C7—H7A110.3 (11)C17—C16—H16120.2 (12)
N1—C7—H7B103.3 (11)N4—C17—C16132.69 (14)
C1—C7—H7B112.0 (11)N4—C17—C12104.93 (12)
H7A—C7—H7B111.5 (15)C16—C17—C12122.38 (14)
C8—N1—N2—N30.05 (15)N3—C9—C10—N474.92 (19)
C7—N1—N2—N3178.06 (12)C8—C9—C10—N4104.13 (18)
N1—N2—N3—C90.14 (15)C12—N5—C11—N40.66 (17)
C6—C1—C2—C30.1 (2)C17—N4—C11—N50.01 (18)
C7—C1—C2—C3179.06 (13)C10—N4—C11—N5179.34 (13)
C1—C2—C3—C40.8 (2)C11—N5—C12—C13178.60 (15)
C2—C3—C4—C50.8 (2)C11—N5—C12—C171.07 (16)
C3—C4—C5—C60.1 (2)N5—C12—C13—C14179.81 (15)
C4—C5—C6—C11.0 (2)C17—C12—C13—C140.5 (2)
C2—C1—C6—C51.1 (2)C12—C13—C14—C150.1 (2)
C7—C1—C6—C5179.97 (13)C13—C14—C15—C160.4 (3)
C8—N1—C7—C194.48 (17)C14—C15—C16—C170.2 (2)
N2—N1—C7—C183.11 (16)C11—N4—C17—C16179.96 (15)
C6—C1—C7—N162.58 (18)C10—N4—C17—C160.6 (2)
C2—C1—C7—N1118.51 (15)C11—N4—C17—C120.66 (15)
N2—N1—C8—C90.06 (15)C10—N4—C17—C12179.99 (13)
C7—N1—C8—C9177.71 (13)C15—C16—C17—N4178.83 (15)
N2—N3—C9—C80.18 (16)C15—C16—C17—C120.5 (2)
N2—N3—C9—C10179.41 (12)C13—C12—C17—N4178.63 (13)
N1—C8—C9—N30.14 (16)N5—C12—C17—N41.09 (15)
N1—C8—C9—C10179.30 (13)C13—C12—C17—C160.8 (2)
C11—N4—C10—C976.8 (2)N5—C12—C17—C16179.45 (13)
C17—N4—C10—C9102.42 (17)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7A···N5i1.025 (19)2.59 (2)3.602 (2)170.2 (15)
C7—H7B···N5ii1.01 (2)2.66 (2)3.5076 (19)142.4 (14)
C8—H8···N2iii0.98 (2)2.44 (2)3.3228 (18)151.1 (17)
C16—H16···N3iv1.00 (2)2.69 (2)3.652 (2)161.2 (16)
C15—H15···Cg3iv0.99 (2)2.77 (2)3.6216 (18)143.9 (16)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+2, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x+1, y+1, z+1.
 

Acknowledgements

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationOlesen, S. P., Munch, E., Moldt, P. & Drejer, J. (1994). Eur. J. Pharmacol. 251, 53–59.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRefaat, H. M. (2010). Eur. J. Med. Chem. 45, 2949–2956.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSahbi, A., Mague, J. T., Ben-Tama, A., El Hadrami, E. M., Gaamoussi, I. & Ouzidan, Y. (2017). IUCrData, 2, x170515.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSoderlind, K. J., Gorodetsky, B., Singh, A. K., Bachur, N., Miller, G. G. & Lown, J. W. (1999). Anticancer Drug. Des. 14, 19–36.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds