organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-Acetyl-4-(2,5-di­meth­­oxy­phen­yl)-6-methyl-1-(prop-2-yn­yl)-3,4-di­hydro­pyrimidin-2(1H)-one

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Bio-organique et Macromoléculaire, Faculté des Sciences et Techniques Guéliz, Marrakech, Morocco, bLaboratoire de Chimie Biomoléculaire et Médicinale, Faculté des Sciences Semlalia, Marrakech, Morocco, cLaboratoire de la Matière Condensée et des Nanostructures, Faculté des Sciences et Techniques Guéliz, Marrakech, Morocco, and dLaboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: h_kaoukabi@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 17 May 2017; accepted 1 June 2017; online 8 June 2017)

In the title compound, C18H20N2O4, the 3,4-di­hydro­pyrimidin-2(1H)-one ring has a screw-boat conformation. The mean plane through this heterocycle is almost perpendicular to the prop-2-ynyl chain and to the benzene ring, with which it makes a dihedral angle of 87.63 (6)°. The plane through the acetyl group makes a dihedral angle of 33.11 (8)° with the mean plane of the heterocycle. There is an intra­molecular C—H⋯O hydrogen bond present forming an S(6) ring motif. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming layers parallel to the bc plane. There are also C—H⋯π inter­actions present within the layers.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Di­hydro­pyrimidino­nes (DHPMs) and their derivatives have received much attention because of their biological activities and widespread pharmacological activities, such as anti­viral, anti­bacterial, anti­tumor and anti­hypertensive (Rovnyak et al., 1995[Rovnyak, G. C., Kimball, S. D., Beyere, B., Cucinotta, G., DiMarco, J. D., Gougoutas, J., Hedberg, A., Malley, M. & McCarthy, J. P. (1995). J. Med. Chem. 38, 119-129.]). Some have been used successfully as calcium channel blockers, α1a-antagonists and neuropeptide Y (NPY) antagonists (Atwal et al., 1990[Atwal, K. S., Rovnyak, G. C., Kimball, S. D., Floyd, D. M., Mereland, S., Swanson, B. N., Gougoutas, J. Z., Schwartz, J., Smillie, K. M. & Malley, M. F. (1990). J. Med. Chem. 33, 2629-2635.]). Several alkaloids, which contain the di­hydro­pyrimidine core unit, have been isolated from marine sources. Most notable among these are the batzelladine alkaloids, which were found to be potent HIVgp-120-CD4 inhibitors (Snider et al., 1996[Snider, B. B., Ashok, J. C., Patil, D. & Freyer, A. J. (1996). Tetrahedron Lett. 37, 6977-6980.]).

In connection with our studies, we chose to work on DHPMs, which have six possible sites around the DHPM ring where modification/functionalization can be achieved. Therefore, we decided to explore the feasibility of alkyl­ated DHPMs. Thus, this investigation had allowed us to describe a new efficient method for the preparation of new compounds with regioselective N1-alkyl­ation and N1/N3-bis-alkyl­ation of DHPMs analogues (Mohamadpour et al., 2016[Mohamadpour, F., Maghsoodlou, M. T., Heydari, R. & Lashkari, M. (2016). Iran. J. Catal. 6(3), 127-131.]; Zare & Nasouri 2016[Zare, A. & Nasouri, Z. (2016). J. Mol. Liq. 216, 364-369.]).

The mol­ecule of the title compound (Fig. 1[link]) is built up from a 3,4-di­hydro­pyrimidin-2(1H)-one ring linked to an acetyl group, a prop-2-ynyl chain and a 2,5-di­meth­oxy­phenyl group. The di­hydro­pyrimidine ring (atoms N1/N2/C3–C6) adopts a screw-boat conformation, as indicated by the puckering parameters: Q2 = 0.4086 (13) Å, θ = 69.29 (18)° and φ = 196.6 (2)°. The dihedral angle between the mean plane of the heterocycle and that of the benzene ring is 87.63 (6)°. The prop-2-ynyl chain is nearly perpendicular to the mean plane of the di­hydro­pyrimidine ring, with a C9—C8—N1—C4 torsion angle of −72.09 (19)°. There is an intra­molecular C—H⋯O hydrogen bond present, forming an S(6) ring motif (Fig. 1[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯O1 0.96 2.18 2.881 (2) 129
C10—H10⋯O1i 0.93 2.57 3.406 (2) 150
C14—H14⋯O1ii 0.93 2.60 3.393 (2) 144
C15—H15⋯O2iii 0.93 2.55 3.437 (2) 161
C17—H17ACg1iii 0.96 2.77 3.601 (2) 146
Symmetry codes: (i) -x, -y+1, -z+2; (ii) x, y+1, z; (iii) -x+1, -y+2, -z+1.
[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intra­molecular C—H⋯O hydrogen bond is shown as a dashed lines (see Table 1[link]).

In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming layers parallel to the bc plane. There are also C—H⋯π inter­actions present within the layers (Fig. 2[link] and Table 1[link]).

[Figure 2]
Figure 2
The crystal packing of the title compound, viewed along the a axis, showing mol­ecules linked through C—H⋯O hydrogen bonds and C—H⋯π inter­actions (dashed lines; see Table 1[link]). For clarity, only H atoms involved in these inter­actions have been included.

Synthesis and crystallization

The title compound was prepared in good yield (70%) through condensation of 5-acetyl-4-(2,5-di­meth­oxy­phen­yl)-6-methyl-3,4-di­hydro­pyrimidin-2(1H)-one with propargyl bromide in the presence of potassium tert-butoxide in dry di­methyl­formamide at room temperature. The mixture was heated with stirring for 1 h. The crude product obtained was purified using a column packed with silica gel. The title compound was crystallized by slow evaporation from a solution in methanol (m.p. 428 K). 1H NMR (DMSO-d6): δ 2.08 (s, 3H, CH3CO), 2.50 (s, 3H, CH3), 3.28 (s, 1H, CH), 3.65 (s, 3H, OCH3), 3.76 (s, 3H, OCH3), 4.34–4.68 (m, 2H, –CH2–), 5.49 (s, 1H, H-4), 6.64–6.65 (s, 1H), 6.65–6.95 (m, 2H, C—Ar), 7.80 (s, 1H, N3—H). The signal due to N1—H was not observable in the 1H NMR spectrum. 13C NMR (DMSO-d6): δ 196.34 (CO), 153.19 (C-6), 152.25, 150.07, 146.45, 131.27, 113.29 (C-Ar), 112.30 (C-5), 80.51 (C-alk­yl), 74.25 (CH-alk­yl), 55.82 (OCH3), 55.34 (OCH3), 47.72 (C-4), 31.44 (–CH3-), 29.63 (CH3 at C-4′), 15.72 (CH3 at C-6).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C18H20N2O4
Mr 328.36
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 8.5948 (15), 10.1942 (16), 10.2572 (17)
α, β, γ (°) 74.930 (7), 75.306 (7), 89.866 (7)
V3) 837.5 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.35 × 0.27 × 0.24
 
Data collection
Diffractometer Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.587, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 25426, 4005, 3333
Rint 0.043
(sin θ/λ)max−1) 0.658
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.147, 1.05
No. of reflections 4005
No. of parameters 221
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.35, −0.24
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and publCIF (Westrip, 2010).

5-Acetyl-4-(2,5-dimethoxyphenyl)-6-methyl-1-(prop-2-ynyl)-3,4-dihydropyrimidin-2(1H)-one top
Crystal data top
C18H20N2O4F(000) = 348
Mr = 328.36Dx = 1.302 Mg m3
Triclinic, P1Melting point: 428 K
a = 8.5948 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.1942 (16) ÅCell parameters from 4005 reflections
c = 10.2572 (17) Åθ = 2.5–27.9°
α = 74.930 (7)°µ = 0.09 mm1
β = 75.306 (7)°T = 296 K
γ = 89.866 (7)°Prism, colourless
V = 837.5 (2) Å30.35 × 0.27 × 0.24 mm
Z = 2
Data collection top
Bruker X8 APEX
diffractometer
4005 independent reflections
Radiation source: fine-focus sealed tube3333 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
φ and ω scansθmax = 27.9°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1111
Tmin = 0.587, Tmax = 0.746k = 1313
25426 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: mixed
wR(F2) = 0.147H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0844P)2 + 0.1806P]
where P = (Fo2 + 2Fc2)/3
4005 reflections(Δ/σ)max < 0.001
221 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5494 (2)0.41801 (18)0.84088 (19)0.0558 (4)
H1A0.53990.36840.93620.084*
H1B0.55780.51390.83230.084*
H1C0.64390.39360.78130.084*
C20.40293 (17)0.38370 (13)0.79841 (14)0.0377 (3)
C30.33613 (15)0.49333 (11)0.70720 (13)0.0306 (3)
C40.18163 (15)0.48869 (12)0.69912 (13)0.0340 (3)
C50.24167 (17)0.68119 (13)0.48927 (14)0.0365 (3)
C60.44451 (14)0.61836 (11)0.62095 (12)0.0300 (3)
H60.55530.59080.59860.036*
C70.0526 (2)0.38038 (17)0.78715 (19)0.0554 (4)
H7A0.09550.31510.85260.083*
H7B0.01530.33550.72810.083*
H7C0.03560.42100.83710.083*
C80.03898 (17)0.61963 (18)0.61831 (17)0.0489 (4)
H8A0.05150.68120.53250.059*
H8B0.09980.53450.63350.059*
C90.1038 (2)0.67832 (18)0.73473 (18)0.0537 (4)
C100.1570 (3)0.7250 (2)0.8278 (2)0.0772 (6)
H100.19940.76230.90200.093*
C110.44181 (14)0.73281 (11)0.69222 (13)0.0291 (3)
C120.32378 (15)0.73776 (12)0.80983 (13)0.0335 (3)
H120.24380.66720.85070.040*
C130.32220 (17)0.84719 (13)0.86881 (14)0.0363 (3)
C140.44185 (18)0.95137 (13)0.80889 (15)0.0398 (3)
H140.44201.02420.84780.048*
C150.56169 (17)0.94741 (13)0.69075 (15)0.0393 (3)
H150.64241.01750.65120.047*
C160.56234 (14)0.83999 (12)0.63111 (13)0.0324 (3)
C170.79489 (19)0.93614 (16)0.44539 (19)0.0546 (4)
H17A0.74471.01930.41750.082*
H17B0.86420.91660.36420.082*
H17C0.85730.94560.50830.082*
C180.1949 (3)0.94388 (18)1.0534 (2)0.0659 (5)
H18A0.29180.94531.08340.099*
H18B0.10310.92611.13320.099*
H18C0.18791.03040.99050.099*
N10.13235 (13)0.59452 (12)0.60294 (12)0.0377 (3)
N20.39836 (13)0.66749 (11)0.48902 (11)0.0351 (3)
H20.46240.72720.42240.042*
O10.34499 (16)0.26674 (10)0.83972 (14)0.0602 (3)
O20.19764 (15)0.75801 (11)0.39413 (12)0.0547 (3)
O30.19759 (15)0.84067 (11)0.98417 (12)0.0558 (3)
O40.67395 (11)0.82756 (10)0.51386 (11)0.0428 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0623 (10)0.0530 (9)0.0600 (10)0.0125 (7)0.0329 (8)0.0122 (7)
C20.0458 (7)0.0295 (6)0.0356 (6)0.0060 (5)0.0065 (5)0.0090 (5)
C30.0346 (6)0.0238 (5)0.0328 (6)0.0012 (4)0.0066 (5)0.0085 (4)
C40.0359 (6)0.0314 (6)0.0345 (6)0.0041 (5)0.0072 (5)0.0106 (5)
C50.0444 (7)0.0337 (6)0.0354 (6)0.0004 (5)0.0147 (5)0.0123 (5)
C60.0290 (6)0.0268 (5)0.0333 (6)0.0007 (4)0.0068 (5)0.0080 (5)
C70.0465 (8)0.0522 (9)0.0584 (10)0.0194 (7)0.0119 (7)0.0009 (7)
C80.0353 (7)0.0679 (10)0.0505 (8)0.0064 (7)0.0175 (6)0.0219 (7)
C90.0421 (8)0.0653 (10)0.0563 (9)0.0110 (7)0.0154 (7)0.0186 (8)
C100.0824 (15)0.0867 (15)0.0677 (12)0.0240 (12)0.0142 (11)0.0352 (11)
C110.0297 (6)0.0244 (5)0.0346 (6)0.0000 (4)0.0133 (5)0.0056 (4)
C120.0358 (6)0.0269 (5)0.0365 (6)0.0050 (5)0.0085 (5)0.0071 (5)
C130.0425 (7)0.0311 (6)0.0358 (6)0.0003 (5)0.0099 (5)0.0100 (5)
C140.0471 (7)0.0291 (6)0.0478 (8)0.0022 (5)0.0172 (6)0.0134 (5)
C150.0373 (7)0.0284 (6)0.0514 (8)0.0075 (5)0.0150 (6)0.0060 (5)
C160.0281 (6)0.0296 (6)0.0387 (6)0.0005 (4)0.0118 (5)0.0047 (5)
C170.0374 (8)0.0484 (8)0.0628 (10)0.0105 (6)0.0009 (7)0.0006 (7)
C180.0874 (14)0.0520 (9)0.0549 (10)0.0101 (9)0.0030 (9)0.0295 (8)
N10.0318 (5)0.0425 (6)0.0395 (6)0.0005 (4)0.0116 (5)0.0098 (5)
N20.0371 (6)0.0350 (5)0.0298 (5)0.0051 (4)0.0048 (4)0.0066 (4)
O10.0716 (8)0.0285 (5)0.0726 (8)0.0021 (5)0.0178 (6)0.0008 (5)
O20.0619 (7)0.0534 (6)0.0487 (6)0.0029 (5)0.0290 (5)0.0006 (5)
O30.0667 (7)0.0448 (6)0.0493 (6)0.0138 (5)0.0084 (5)0.0241 (5)
O40.0338 (5)0.0388 (5)0.0482 (6)0.0059 (4)0.0014 (4)0.0078 (4)
Geometric parameters (Å, º) top
C1—C21.502 (2)C9—C101.167 (3)
C1—H1A0.9600C10—H100.9300
C1—H1B0.9600C11—C121.3775 (18)
C1—H1C0.9600C11—C161.4070 (16)
C2—O11.2174 (17)C12—C131.3991 (17)
C2—C31.4764 (17)C12—H120.9300
C3—C41.3529 (18)C13—O31.3668 (17)
C3—C61.5087 (16)C13—C141.3814 (19)
C4—N11.4046 (17)C14—C151.387 (2)
C4—C71.4978 (18)C14—H140.9300
C5—O21.2237 (16)C15—C161.3856 (18)
C5—N21.3530 (18)C15—H150.9300
C5—N11.3912 (18)C16—O41.3698 (16)
C6—N21.4691 (16)C17—O41.4246 (17)
C6—C111.5267 (16)C17—H17A0.9600
C6—H60.9800C17—H17B0.9600
C7—H7A0.9600C17—H17C0.9600
C7—H7B0.9600C18—O31.4110 (18)
C7—H7C0.9600C18—H18A0.9600
C8—C91.458 (2)C18—H18B0.9600
C8—N11.4697 (18)C18—H18C0.9600
C8—H8A0.9700N2—H20.8572
C8—H8B0.9700
C2—C1—H1A109.5C12—C11—C16119.07 (11)
C2—C1—H1B109.5C12—C11—C6122.88 (10)
H1A—C1—H1B109.5C16—C11—C6118.01 (11)
C2—C1—H1C109.5C11—C12—C13121.09 (11)
H1A—C1—H1C109.5C11—C12—H12119.5
H1B—C1—H1C109.5C13—C12—H12119.5
O1—C2—C3122.78 (13)O3—C13—C14125.23 (12)
O1—C2—C1118.74 (13)O3—C13—C12115.32 (12)
C3—C2—C1118.48 (12)C14—C13—C12119.45 (12)
C4—C3—C2123.36 (11)C13—C14—C15120.03 (12)
C4—C3—C6118.25 (11)C13—C14—H14120.0
C2—C3—C6118.38 (11)C15—C14—H14120.0
C3—C4—N1118.96 (11)C16—C15—C14120.61 (12)
C3—C4—C7125.79 (13)C16—C15—H15119.7
N1—C4—C7115.24 (12)C14—C15—H15119.7
O2—C5—N2123.43 (13)O4—C16—C15125.03 (11)
O2—C5—N1121.63 (13)O4—C16—C11115.24 (11)
N2—C5—N1114.83 (11)C15—C16—C11119.73 (12)
N2—C6—C3107.64 (10)O4—C17—H17A109.5
N2—C6—C11110.29 (9)O4—C17—H17B109.5
C3—C6—C11114.99 (10)H17A—C17—H17B109.5
N2—C6—H6107.9O4—C17—H17C109.5
C3—C6—H6107.9H17A—C17—H17C109.5
C11—C6—H6107.9H17B—C17—H17C109.5
C4—C7—H7A109.5O3—C18—H18A109.5
C4—C7—H7B109.5O3—C18—H18B109.5
H7A—C7—H7B109.5H18A—C18—H18B109.5
C4—C7—H7C109.5O3—C18—H18C109.5
H7A—C7—H7C109.5H18A—C18—H18C109.5
H7B—C7—H7C109.5H18B—C18—H18C109.5
C9—C8—N1111.79 (12)C5—N1—C4122.27 (11)
C9—C8—H8A109.3C5—N1—C8116.49 (12)
N1—C8—H8A109.3C4—N1—C8121.24 (12)
C9—C8—H8B109.3C5—N2—C6120.61 (11)
N1—C8—H8B109.3C5—N2—H2112.9
H8A—C8—H8B107.9C6—N2—H2117.8
C10—C9—C8179.4 (2)C13—O3—C18117.94 (13)
C9—C10—H10180.0C16—O4—C17117.23 (11)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of ring C11-C16.
D—H···AD—HH···AD···AD—H···A
C7—H7A···O10.962.182.881 (2)129
C10—H10···O1i0.932.573.406 (2)150
C14—H14···O1ii0.932.603.393 (2)144
C15—H15···O2iii0.932.553.437 (2)161
C17—H17A···Cg1iii0.962.773.601 (2)146
Symmetry codes: (i) x, y+1, z+2; (ii) x, y+1, z; (iii) x+1, y+2, z+1.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAtwal, K. S., Rovnyak, G. C., Kimball, S. D., Floyd, D. M., Mereland, S., Swanson, B. N., Gougoutas, J. Z., Schwartz, J., Smillie, K. M. & Malley, M. F. (1990). J. Med. Chem. 33, 2629–2635.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMohamadpour, F., Maghsoodlou, M. T., Heydari, R. & Lashkari, M. (2016). Iran. J. Catal. 6(3), 127–131.  Google Scholar
First citationRovnyak, G. C., Kimball, S. D., Beyere, B., Cucinotta, G., DiMarco, J. D., Gougoutas, J., Hedberg, A., Malley, M. & McCarthy, J. P. (1995). J. Med. Chem. 38, 119–129.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSnider, B. B., Ashok, J. C., Patil, D. & Freyer, A. J. (1996). Tetrahedron Lett. 37, 6977–6980.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZare, A. & Nasouri, Z. (2016). J. Mol. Liq. 216, 364–369.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds