organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

6-Amino-3,4-di­methyl-1,2,4-triazin-1-ium 2-anilino­benzoate–3-amino-5,6-di­methyl-1,2,4-triazine (1/1)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Government Arts College (Autonomous), Thanthonimalai, Karur 639 005, Tamil Nadu, India, bDepartment of Chemistry, Government Arts College, Thiruchirappalli 620 022, Tamilnadu, India, and cSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: manavaibala@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 12 May 2017; accepted 5 June 2017; online 8 June 2017)

In the title mol­ecular salt, C5H9N4+·C13H10NO2·C5H8N4, the asymmetric unit consists of a 6-amino-3,4-dimethyl-1,2,4-triazin-1-ium cation, a 2-anilino­benzoate anion and a neutral 3-amino-5,6-dimethyl-1,2,4-triazine mol­ecule. The typical intra­molecular N⋯H—O hydrogen bond is observed in the 2-anilino­benzoate anion. In the crystal, the protonated N atom and the 3-amino group are hydrogen bonded to the carboxyl­ate oxygen atoms via a pair of N—H⋯O hydrogen bonds, forming an R22 (8) ring motif. These motifs are further linked with adjacent neutral 3-amino-5,6-dimethyl-1,2,4-triazine mol­ecules by N—H⋯O and N—H⋯N hydrogen bonds to produce centrosymmetric six-membered units, enclosing R22(8) and R34(9) ring motifs. They are reinforced by a C—H⋯N hydrogen bond and stack up the b-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Heterocyclic compounds play a role in the design of new drugs and materials (García-Valverde & Torroba, 2005[García-Valverde, M. & Torroba, T. (2005). Molecules, 10, 318-320.]; Kumar et al., 2014[Kumar, R., Sirohi, T. S., Singh, H., Yadav, R., Roy, R. K., Chaudhary, A. & Pandeya, S. N. (2014). Mini Rev. Med. Chem. 14, 168-207.]). 1,2,4-Triazines and their analogues occupy a important position in medicinal chemistry as a result of their pharmacological activities (Abdel-Monem, 2010[Abdel-Monem, W. R. (2010). E-J. Chem. 1, 168-172.]). Drugs containing a 1,2,4-triazine ring are present in natural and many synthetic products, for example aza­ribine and lamotrigine, that have important biological activities. The crystal structure of 3-amino-5,6-dimethyl-1,2,4-triazine (Wu et al., 2012[Wu, M.-H., Qiu, Q.-M., Gao, S., Jin, Q.-H. & Zhang, C.-L. (2012). Acta Cryst. E68, o39.]) and 3-amino-5,6-dimethyl-1,2,4-triazin-2-ium nitrate (Bel Haj Salah et al., 2013[Bel Haj Salah, S., Mrad, M. L., Ferretti, V., Lefebvre, F. & Ben Nasr, C. (2013). Acta Cryst. E69, o844.]) have been reported. In order to study potential hydrogen-bonding inter­actions, the crystal structure determination of the title mol­ecular salt was carried out.

The structure of the title mol­ecular salt is illustrated in Fig. 1[link]. It is composed of a 6-amino-3,4-dimethyl-1,2,4-triazinium cation, a 2-anilino­benzoate anion and one neutral 3-amino-5,6-dimethyl-1,2,4-triazine mol­ecule. Proton transfer from one of the carboxyl­ate oxygen atoms (O1) to atom N2A of the cation results in widening of the C1A—N2A—N1A angle of the triazinium ring to 123.40 (13)°, compared to the corresponding angle of 117.9 (3)° in neutral 3-amino-5,6-dimethyl-1,2,4-triazine (Wu et al., 2012[Wu, M.-H., Qiu, Q.-M., Gao, S., Jin, Q.-H. & Zhang, C.-L. (2012). Acta Cryst. E68, o39.]), and that of the neutral 3-amino-5,6-dimethyl-1,2,4-triazine mol­ecule present in the title mol­ecular salt, where angle N1B—N2B—C1B is 117.46 (12) °. The dihedral angle between the rings in the anion is 44.55 (11)°. There is a typical intra­molecular hydrogen bond N5—H1N5⋯O1 between the NH and carboxyl­ate group of the 2-anilino­benzoate anion, forming an S(6) ring motif (Fig. 1[link]).

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title mol­ecular salt, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

In the crystal, the protonated N atom, N2A, and the 3-amino group (N3A) are hydrogen bonded to the carboxyl­ate oxygen atoms (O1 and O2) via a pair of N2A—H1N2⋯O1i and N3A—H1NA⋯O2i hydrogen bonds, forming an R22 (8) ring motif (Table 1[link] and Fig. 2[link]). These motifs are further linked with adjacent neutral 3-amino-5,6-dimethyl-1,2,4-triazine mol­ecules by N3B—H2NB⋯O2, N3A—H2NA⋯N1Bii and N3B—H1NB⋯N2Biii hydrogen bonds to produce a complementary DDAA (D = donor, A = acceptor) hydrogen-bonded array (Table 1[link] and Fig. 2[link]). These centrosymmetric six-membered units enclose R22(8) and R43(9) ring motifs, are reinforced by a C—H⋯N hydrogen bond, and stack up the b-axis direction (Table 1[link], Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5N⋯O1 0.85 (2) 1.92 (2) 2.619 (2) 138 (2)
N2A—H2AA⋯O1i 1.02 (2) 1.58 (2) 2.593 (2) 179 (2)
N3A—H3AA⋯O2i 0.93 (2) 1.90 (2) 2.834 (2) 175 (2)
N3A—H3AB⋯N1Bii 0.92 (2) 2.07 (2) 2.986 (2) 172 (2)
N3B—H3BA⋯N2Biii 0.89 (2) 2.20 (2) 3.089 (2) 179 (2)
N3B—H3BB⋯O2 0.97 (2) 1.98 (2) 2.915 (2) 163 (2)
C4B—H4BC⋯N4Aii 0.96 2.52 3.483 (2) 177
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y, -z; (iii) -x, -y, -z.
[Figure 2]
Figure 2
A view of the hydrogen bonded six-membered unit, involving the neutral triazine mol­ecule, the triazinium cation and the benzoate anion. Hydrogen bonds are shown as dashed lines [symmetry codes for this figure are: (i) x + 1, y, z; (ii) −x + 1, −y, z; (iii) −x + 2, −y, −z], and H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 3]
Figure 3
The crystal packing of the title mol­ecular salt, viewed along the normal to (110). H atoms not involved in hydrogen bonding (dashed lines; see Table 1[link]) have been omitted for clarity.

Synthesis and crystallization

A hot methanol solution (20 ml) of 3-amino-5,6-dimethyl-1,2,4-triazine (62 mg, Aldrich) and 2-anilino­benzoic acid (100 mg, Merk) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and green plate-like crystals of the title compound appeared after a few days.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C13H10NO2·C5H9N4·C5H8N4
Mr 461.53
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 7.5018 (3), 7.6661 (3), 21.4332 (9)
α, β, γ (°) 93.743 (1), 94.776 (1), 106.197 (1)
V3) 1174.52 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.61 × 0.49 × 0.18
 
Data collection
Diffractometer Bruker SMART APEXII CCD area-detector diffractometer
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.947, 0.984
No. of measured, independent and observed [I > 2σ(I)] reflections 35176, 4622, 3468
Rint 0.049
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.133, 1.04
No. of reflections 4622
No. of parameters 335
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.17, −0.15
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015) and PLATON (Spek, 2009).

6-Amino-3,4-dimethyl-1,2,4-triazin-1-ium 2-anilinobenzoate; 3-amino-5,6-dimethyl-1,2,4-triazine top
Crystal data top
C5H9N4+·C13H10NO2·C5H8N4Z = 2
Mr = 461.53F(000) = 488
Triclinic, P1Dx = 1.305 Mg m3
a = 7.5018 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.6661 (3) ÅCell parameters from 2760 reflections
c = 21.4332 (9) Åθ = 1.0–29.0°
α = 93.743 (1)°µ = 0.09 mm1
β = 94.776 (1)°T = 293 K
γ = 106.197 (1)°Plate, green
V = 1174.52 (8) Å30.61 × 0.49 × 0.18 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4622 independent reflections
Radiation source: fine-focus sealed tube3468 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
φ and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 99
Tmin = 0.947, Tmax = 0.984k = 99
35176 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: mixed
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0628P)2 + 0.222P]
where P = (Fo2 + 2Fc2)/3
4622 reflections(Δ/σ)max = 0.001
335 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.15 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.06951 (14)0.41109 (18)0.27879 (6)0.0645 (4)
O20.04258 (14)0.29631 (16)0.19905 (5)0.0577 (3)
N50.1635 (2)0.6138 (2)0.37067 (7)0.0626 (4)
H5N0.052 (3)0.560 (3)0.3544 (9)0.067 (6)*
C60.06398 (19)0.4021 (2)0.24742 (7)0.0426 (3)
C70.25436 (19)0.52475 (19)0.27027 (7)0.0406 (3)
C80.3935 (2)0.5411 (2)0.23022 (8)0.0484 (4)
H80.36520.47480.19100.058*
C90.5720 (2)0.6525 (2)0.24700 (9)0.0596 (5)
H90.66360.65980.21980.071*
C100.6127 (2)0.7530 (3)0.30453 (10)0.0638 (5)
H100.73250.82990.31600.077*
C110.4795 (2)0.7416 (2)0.34506 (9)0.0602 (5)
H110.51000.81250.38340.072*
C120.2980 (2)0.6253 (2)0.33008 (7)0.0472 (4)
C130.1844 (3)0.6725 (2)0.43498 (8)0.0601 (5)
C140.3339 (3)0.6662 (4)0.47597 (10)0.0913 (7)
H140.43050.62700.46100.110*
C150.3400 (4)0.7182 (5)0.53918 (12)0.1181 (10)
H150.44120.71340.56650.142*
C160.2015 (5)0.7762 (4)0.56239 (12)0.1152 (10)
H160.20790.81220.60500.138*
C170.0526 (5)0.7806 (4)0.52206 (13)0.1038 (9)
H170.04400.81870.53750.125*
C180.0435 (3)0.7293 (3)0.45877 (10)0.0760 (6)
H180.05900.73320.43190.091*
N1A0.48051 (18)0.19326 (19)0.29896 (6)0.0516 (3)
N2A0.59717 (17)0.18820 (18)0.25468 (6)0.0474 (3)
H2AA0.727 (3)0.276 (3)0.2642 (9)0.072 (5)*
N3A0.67322 (19)0.0737 (2)0.16252 (7)0.0519 (4)
H3AA0.796 (3)0.147 (2)0.1719 (8)0.059 (5)*
H3AB0.633 (3)0.001 (3)0.1252 (9)0.063 (5)*
N4A0.36953 (16)0.02836 (18)0.18697 (6)0.0479 (3)
C1A0.54793 (19)0.0788 (2)0.20174 (7)0.0425 (3)
C2A0.2532 (2)0.0255 (2)0.22879 (8)0.0478 (4)
C3A0.3111 (2)0.0859 (2)0.28723 (8)0.0500 (4)
C4A0.1833 (3)0.0886 (3)0.33697 (10)0.0702 (5)
H4AA0.15440.02620.35500.105*
H4AC0.07030.10870.31870.105*
H4AB0.24330.18500.36920.105*
C5A0.0571 (2)0.1422 (3)0.21318 (10)0.0635 (5)
H5AB0.04530.20960.17300.095*
H5AA0.02560.06660.21180.095*
H5AC0.02530.22570.24470.095*
N1B0.41507 (18)0.15155 (19)0.03886 (6)0.0511 (3)
N2B0.25699 (17)0.11190 (18)0.01023 (6)0.0485 (3)
N3B0.1073 (2)0.1583 (2)0.07556 (7)0.0583 (4)
H3BA0.003 (3)0.080 (3)0.0562 (9)0.063 (5)*
H3BB0.112 (3)0.218 (3)0.1170 (10)0.067 (5)*
N4B0.41980 (17)0.30830 (18)0.07997 (6)0.0496 (3)
C1B0.2648 (2)0.1919 (2)0.04733 (7)0.0442 (4)
C2B0.5721 (2)0.3445 (2)0.05112 (7)0.0458 (4)
C3B0.5703 (2)0.2650 (2)0.01015 (8)0.0462 (4)
C4B0.7392 (2)0.3046 (3)0.04550 (9)0.0610 (5)
H4BC0.70990.23250.08530.092*
H4BB0.83900.27500.02160.092*
H4BA0.77690.43170.05230.092*
C5B0.7458 (2)0.4714 (3)0.08573 (9)0.0647 (5)
H5BA0.78910.57530.06250.097*
H5BC0.84030.40930.09040.097*
H5BB0.71970.51110.12650.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0336 (6)0.0799 (8)0.0667 (7)0.0027 (5)0.0164 (5)0.0197 (6)
O20.0390 (6)0.0671 (7)0.0558 (7)0.0016 (5)0.0124 (5)0.0122 (6)
N50.0453 (8)0.0807 (11)0.0498 (8)0.0014 (7)0.0105 (7)0.0138 (7)
C60.0343 (7)0.0445 (8)0.0463 (8)0.0055 (6)0.0089 (6)0.0049 (7)
C70.0318 (7)0.0410 (8)0.0479 (8)0.0072 (6)0.0080 (6)0.0061 (6)
C80.0389 (8)0.0501 (9)0.0542 (9)0.0073 (7)0.0124 (7)0.0035 (7)
C90.0355 (8)0.0656 (11)0.0727 (12)0.0035 (7)0.0179 (8)0.0042 (9)
C100.0344 (8)0.0642 (11)0.0804 (13)0.0047 (7)0.0055 (8)0.0002 (9)
C110.0458 (9)0.0623 (11)0.0613 (10)0.0005 (8)0.0029 (8)0.0065 (8)
C120.0391 (8)0.0489 (9)0.0502 (9)0.0073 (6)0.0071 (7)0.0014 (7)
C130.0631 (11)0.0580 (10)0.0490 (9)0.0003 (8)0.0144 (8)0.0030 (8)
C140.0760 (14)0.127 (2)0.0610 (13)0.0152 (13)0.0033 (11)0.0005 (13)
C150.106 (2)0.161 (3)0.0582 (14)0.0041 (19)0.0043 (14)0.0025 (16)
C160.148 (3)0.118 (2)0.0536 (14)0.005 (2)0.0274 (17)0.0105 (14)
C170.146 (3)0.0996 (19)0.0746 (16)0.0367 (18)0.0564 (18)0.0055 (14)
C180.0891 (15)0.0833 (14)0.0600 (11)0.0244 (12)0.0320 (11)0.0092 (10)
N1A0.0436 (7)0.0580 (8)0.0523 (8)0.0101 (6)0.0131 (6)0.0076 (6)
N2A0.0345 (7)0.0522 (7)0.0510 (8)0.0033 (6)0.0099 (6)0.0052 (6)
N3A0.0349 (7)0.0623 (9)0.0525 (8)0.0031 (6)0.0103 (6)0.0020 (7)
N4A0.0324 (6)0.0512 (8)0.0563 (8)0.0050 (5)0.0059 (6)0.0062 (6)
C1A0.0316 (7)0.0459 (8)0.0485 (8)0.0065 (6)0.0072 (6)0.0107 (7)
C2A0.0339 (8)0.0473 (9)0.0637 (10)0.0092 (6)0.0119 (7)0.0174 (8)
C3A0.0405 (8)0.0532 (9)0.0587 (10)0.0121 (7)0.0151 (7)0.0166 (8)
C4A0.0587 (11)0.0821 (13)0.0730 (12)0.0164 (10)0.0305 (10)0.0170 (10)
C5A0.0335 (8)0.0637 (11)0.0876 (13)0.0016 (7)0.0115 (8)0.0130 (10)
N1B0.0418 (7)0.0583 (8)0.0508 (8)0.0079 (6)0.0137 (6)0.0046 (6)
N2B0.0366 (7)0.0562 (8)0.0480 (7)0.0047 (6)0.0097 (6)0.0033 (6)
N3B0.0374 (8)0.0774 (10)0.0518 (9)0.0030 (7)0.0126 (6)0.0048 (8)
N4B0.0406 (7)0.0559 (8)0.0493 (7)0.0082 (6)0.0069 (6)0.0039 (6)
C1B0.0363 (8)0.0500 (8)0.0460 (8)0.0103 (6)0.0073 (6)0.0080 (7)
C2B0.0378 (8)0.0454 (8)0.0524 (9)0.0076 (6)0.0062 (7)0.0088 (7)
C3B0.0371 (8)0.0460 (8)0.0554 (9)0.0089 (6)0.0111 (7)0.0090 (7)
C4B0.0455 (9)0.0643 (11)0.0695 (11)0.0064 (8)0.0199 (8)0.0037 (9)
C5B0.0454 (9)0.0691 (11)0.0681 (11)0.0008 (8)0.0042 (8)0.0018 (9)
Geometric parameters (Å, º) top
O1—C61.2665 (17)N3A—C1A1.3189 (19)
O2—C61.2445 (18)N3A—H3AA0.933 (19)
N5—C121.375 (2)N3A—H3AB0.92 (2)
N5—C131.404 (2)N4A—C2A1.3056 (19)
N5—H5N0.85 (2)N4A—C1A1.3595 (18)
C6—C71.496 (2)C2A—C3A1.431 (2)
C7—C81.390 (2)C2A—C5A1.490 (2)
C7—C121.416 (2)C3A—C4A1.494 (2)
C8—C91.376 (2)C4A—H4AA0.9600
C8—H80.9300C4A—H4AC0.9600
C9—C101.375 (3)C4A—H4AB0.9600
C9—H90.9300C5A—H5AB0.9600
C10—C111.366 (2)C5A—H5AA0.9600
C10—H100.9300C5A—H5AC0.9600
C11—C121.402 (2)N1B—C3B1.318 (2)
C11—H110.9300N1B—N2B1.3490 (17)
C13—C181.373 (3)N2B—C1B1.331 (2)
C13—C141.380 (3)N3B—C1B1.3412 (19)
C14—C151.380 (3)N3B—H3BA0.89 (2)
C14—H140.9300N3B—H3BB0.97 (2)
C15—C161.356 (4)N4B—C2B1.3142 (19)
C15—H150.9300N4B—C1B1.3572 (19)
C16—C171.364 (4)C2B—C3B1.409 (2)
C16—H160.9300C2B—C5B1.494 (2)
C17—C181.378 (3)C3B—C4B1.499 (2)
C17—H170.9300C4B—H4BC0.9600
C18—H180.9300C4B—H4BB0.9600
N1A—C3A1.301 (2)C4B—H4BA0.9600
N1A—N2A1.3493 (17)C5B—H5BA0.9600
N2A—C1A1.327 (2)C5B—H5BC0.9600
N2A—H2AA1.02 (2)C5B—H5BB0.9600
C12—N5—C13129.15 (16)C2A—N4A—C1A116.78 (14)
C12—N5—H5N114.8 (13)N3A—C1A—N2A119.79 (13)
C13—N5—H5N116.0 (13)N3A—C1A—N4A119.16 (14)
O2—C6—O1122.75 (13)N2A—C1A—N4A121.05 (13)
O2—C6—C7119.44 (12)N4A—C2A—C3A121.44 (13)
O1—C6—C7117.81 (13)N4A—C2A—C5A117.34 (15)
C8—C7—C12118.97 (14)C3A—C2A—C5A121.22 (14)
C8—C7—C6117.89 (13)N1A—C3A—C2A120.46 (14)
C12—C7—C6123.13 (13)N1A—C3A—C4A116.60 (16)
C9—C8—C7121.86 (16)C2A—C3A—C4A122.94 (15)
C9—C8—H8119.1C3A—C4A—H4AA109.5
C7—C8—H8119.1C3A—C4A—H4AC109.5
C10—C9—C8118.98 (15)H4AA—C4A—H4AC109.5
C10—C9—H9120.5C3A—C4A—H4AB109.5
C8—C9—H9120.5H4AA—C4A—H4AB109.5
C11—C10—C9120.92 (15)H4AC—C4A—H4AB109.5
C11—C10—H10119.5C2A—C5A—H5AB109.5
C9—C10—H10119.5C2A—C5A—H5AA109.5
C10—C11—C12121.42 (16)H5AB—C5A—H5AA109.5
C10—C11—H11119.3C2A—C5A—H5AC109.5
C12—C11—H11119.3H5AB—C5A—H5AC109.5
N5—C12—C11121.59 (15)H5AA—C5A—H5AC109.5
N5—C12—C7120.56 (14)C3B—N1B—N2B120.50 (13)
C11—C12—C7117.79 (14)C1B—N2B—N1B117.46 (12)
C18—C13—C14118.46 (18)C1B—N3B—H3BA119.5 (11)
C18—C13—N5118.06 (18)C1B—N3B—H3BB118.4 (11)
C14—C13—N5123.37 (18)H3BA—N3B—H3BB122.0 (16)
C15—C14—C13119.9 (3)C2B—N4B—C1B116.13 (13)
C15—C14—H14120.0N2B—C1B—N3B118.09 (14)
C13—C14—H14120.0N2B—C1B—N4B125.25 (13)
C16—C15—C14121.5 (3)N3B—C1B—N4B116.65 (14)
C16—C15—H15119.3N4B—C2B—C3B120.74 (14)
C14—C15—H15119.3N4B—C2B—C5B117.67 (14)
C15—C16—C17118.7 (2)C3B—C2B—C5B121.59 (14)
C15—C16—H16120.6N1B—C3B—C2B119.91 (13)
C17—C16—H16120.6N1B—C3B—C4B117.31 (15)
C16—C17—C18120.8 (3)C2B—C3B—C4B122.79 (14)
C16—C17—H17119.6C3B—C4B—H4BC109.5
C18—C17—H17119.6C3B—C4B—H4BB109.5
C13—C18—C17120.6 (2)H4BC—C4B—H4BB109.5
C13—C18—H18119.7C3B—C4B—H4BA109.5
C17—C18—H18119.7H4BC—C4B—H4BA109.5
C3A—N1A—N2A116.69 (14)H4BB—C4B—H4BA109.5
C1A—N2A—N1A123.40 (13)C2B—C5B—H5BA109.5
C1A—N2A—H2AA121.3 (11)C2B—C5B—H5BC109.5
N1A—N2A—H2AA115.3 (11)H5BA—C5B—H5BC109.5
C1A—N3A—H3AA120.2 (11)C2B—C5B—H5BB109.5
C1A—N3A—H3AB117.7 (11)H5BA—C5B—H5BB109.5
H3AA—N3A—H3AB122.0 (16)H5BC—C5B—H5BB109.5
O2—C6—C7—C812.1 (2)C3A—N1A—N2A—C1A1.2 (2)
O1—C6—C7—C8168.01 (14)N1A—N2A—C1A—N3A175.83 (13)
O2—C6—C7—C12168.55 (15)N1A—N2A—C1A—N4A4.4 (2)
O1—C6—C7—C1211.4 (2)C2A—N4A—C1A—N3A176.54 (14)
C12—C7—C8—C90.2 (2)C2A—N4A—C1A—N2A3.7 (2)
C6—C7—C8—C9179.15 (15)C1A—N4A—C2A—C3A0.2 (2)
C7—C8—C9—C101.2 (3)C1A—N4A—C2A—C5A179.96 (14)
C8—C9—C10—C110.8 (3)N2A—N1A—C3A—C2A2.3 (2)
C9—C10—C11—C121.1 (3)N2A—N1A—C3A—C4A178.65 (14)
C13—N5—C12—C1116.2 (3)N4A—C2A—C3A—N1A2.9 (2)
C13—N5—C12—C7166.56 (17)C5A—C2A—C3A—N1A176.87 (15)
C10—C11—C12—N5179.81 (17)N4A—C2A—C3A—C4A178.16 (15)
C10—C11—C12—C72.5 (3)C5A—C2A—C3A—C4A2.1 (2)
C8—C7—C12—N5179.39 (15)C3B—N1B—N2B—C1B0.2 (2)
C6—C7—C12—N50.0 (2)N1B—N2B—C1B—N3B177.90 (14)
C8—C7—C12—C112.0 (2)N1B—N2B—C1B—N4B1.0 (2)
C6—C7—C12—C11177.32 (14)C2B—N4B—C1B—N2B0.9 (2)
C12—N5—C13—C18148.89 (19)C2B—N4B—C1B—N3B178.02 (14)
C12—N5—C13—C1434.9 (3)C1B—N4B—C2B—C3B0.0 (2)
C18—C13—C14—C150.7 (4)C1B—N4B—C2B—C5B179.67 (15)
N5—C13—C14—C15176.9 (2)N2B—N1B—C3B—C2B0.6 (2)
C13—C14—C15—C160.1 (5)N2B—N1B—C3B—C4B178.99 (13)
C14—C15—C16—C170.8 (5)N4B—C2B—C3B—N1B0.7 (2)
C15—C16—C17—C180.8 (5)C5B—C2B—C3B—N1B178.95 (15)
C14—C13—C18—C170.7 (3)N4B—C2B—C3B—C4B178.86 (15)
N5—C13—C18—C17177.1 (2)C5B—C2B—C3B—C4B1.5 (2)
C16—C17—C18—C130.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5N···O10.85 (2)1.92 (2)2.619 (2)138 (2)
N2A—H2AA···O1i1.02 (2)1.58 (2)2.593 (2)179 (2)
N3A—H3AA···O2i0.93 (2)1.90 (2)2.834 (2)175 (2)
N3A—H3AB···N1Bii0.92 (2)2.07 (2)2.986 (2)172 (2)
N3B—H3BA···N2Biii0.89 (2)2.20 (2)3.089 (2)179 (2)
N3B—H3BB···O20.97 (2)1.98 (2)2.915 (2)163 (2)
C4B—H4BC···N4Aii0.962.523.483 (2)177
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z; (iii) x, y, z.
 

Acknowledgements

KB thanks the Department of Science and Technology (DST-SERB), New Delhi, India, for financial support (grant No. SB/ FT/CS-058/2013), RS thanks the Department of Science and Technology (DST), New Delhi, India, for financial support in the form of an INSPIRE fellowship (INSPIRE code No. IF131050).

References

First citationAbdel-Monem, W. R. (2010). E-J. Chem. 1, 168–172.  CAS Google Scholar
First citationBel Haj Salah, S., Mrad, M. L., Ferretti, V., Lefebvre, F. & Ben Nasr, C. (2013). Acta Cryst. E69, o844.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGarcía-Valverde, M. & Torroba, T. (2005). Molecules, 10, 318–320.  Google Scholar
First citationKumar, R., Sirohi, T. S., Singh, H., Yadav, R., Roy, R. K., Chaudhary, A. & Pandeya, S. N. (2014). Mini Rev. Med. Chem. 14, 168–207.  CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, M.-H., Qiu, Q.-M., Gao, S., Jin, Q.-H. & Zhang, C.-L. (2012). Acta Cryst. E68, o39.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds