organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Methyl (6R*,6aR*,12bR*)-2,4-di­methyl-6-(2-methyl­phenyl)-1,3-dioxo-2,3,4,6a,7,12b-hexa­hydro-1H,6H-chromeno[4′,3′:4,5]pyrano[2,3-d]pyrimidine-6a-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Bhaktavatsalam Memorial College for women, Koratur, Chennai 600 080, Tamilnadu, India, bPG and Research Department of Physics, Queen Mary's College, Chennai-4, Tamilnadu, India, cDepartment of Organic Chemistry, University of Madras, Maraimalai campus,Chennai-600 025, India, and dDepartment of Physics, Sree Abiraami College of Arts and Science, Gudiyattum,Vellore 635 803, Tamilnadu, India
*Correspondence e-mail: guqmc@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 26 April 2017; accepted 1 June 2017; online 8 June 2017)

In the title compound, C24H24N2O6, the mean planes of the pyran rings (A and B) are inclined to one another by 69.2 (1)°, while the aromatic ring (D) of the chromene ring system makes dihedral angles of 63.42 (11) and 66.81 (12)° with the pyrimidine (C) and benzene (E) rings, respectively. Pyran ring A has an half-chair conformation, while pyran ring B has an envelope conformation, with the spiro C atom as the flap. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming a supra­molecular three-dimensional network. There are also a number of C—H⋯π inter­actions present.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Chromenes are used in the fields of medicine, cosmetics and as fluorescent dyes. 2-Oxo-2H-chromenes are efficient fluoro­phores characterized by good emission quantum yields and are used as materials for lasers in organic light-emitting devices, non-linear optical chromeophores and fluorescent labels (Sreenivasa et al., 2013[Sreenivasa, S., Srinivasa, H. T., Palakshamurthy, B. S., Kumar, V. & Devarajegowda, H. C. (2013). Acta Cryst. E69, o266.]). They exhibit anti­cancer, anti-Alzheimer's and anti-Parkinson's activity and are used to treat Huntington's disease (Andrani & Lapi, 1960[Adreani, L. L. & Lapi, E. (1960). Boll. Chim. Farm. 99, 583-586.]; Zhang et al., 1982[Zhang, Y. L., Chen, B. Z., Zheng, K. Q., Xu, M. L., Lei, X. H. & Yaoxue, X. B. (1982). Chem. Abstr. 96, 135383e.]). They also exhibit anti­viral, anti­fungal, anti-inflammatory and anti­diabetic activity (Kemnitzer et al., 2008[Kemnitzer, W., Jiang, S., Wang, Y., Kasibhatla, S., Crogan-Grundy, C., Bubenik, M., Labrecque, D., Denis, R., Lamothe, S., Attardo, G., Gourdeau, H., Tseng, B., Drewe, J. & Cai, S. X. (2008). Bioorg. Med. Chem. Lett. 18, 603-607.]; Sui Xiong et al., 2006[Sui Xiong, C., Drewe, J. & Kasibhatla, S. (2006). Curr. Med. Chem. 13, 2627-2644.]; Tang et al., 2007[Tang, Q.-G., Wu, W.-Y., He, W., Sun, H.-S. & Guo, C. (2007). Acta Cryst. E63, o1437-o1438.]), and anti­microbial activity (Sangani et al., 2012[Sangani, C. B., Shah, N. M., Patel, M. P. & Patel, R. G. (2012). J. Serb. Chem. Soc. 77, 1165-1174.]).

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The compound crystallizes as a racemate with relative configuration of R,R,R at atoms C11(position 6), C12(position 6a) and C6(position 12b), respectively (see Scheme). The bond distances and bond angles are in good agreement with the values reported for similar structures (Swaminathan et al., 2015[Swaminathan, K., Sethusankar, K., Kumar, G. S. & Bakthadoss, M. (2015). Acta Cryst. E71, 926-930.]; Ponnusamy et al., 2013[Ponnusamy, R., Sabari, V., Sivakumar, G., Bakthadoss, M. & Aravindhan, S. (2013). Acta Cryst. E69, o267-o268.]). The sp2 hybridization of atoms N1 and N2 are indicated by the sum of the bond angles of 359.8 and 360.0°, respectively. Pyran ring A has an half-chair conformation [puckering parameters: amplitude (Q) = 0.531 (2) Å, θ = 52.3 (2)°, φ = 273.2 (3)°], while pyran ring B has an envelope conformation, with atom C12 as the flap [puckering parameters: amplitude (Q) = 0.493 (2) Å, θ = 128.0 (2)°, φ = 289.5 (3)°]. The mean planes of the pyran rings (A and B) are inclined to one another by 69.2 (1)°, while the aromatic ring (D) of the chromene ring system makes dihedral angles of 63.42 (11) and 66.81 (12)° with the pyrimidine (C) and benzene (E) rings, respectively. The methyl and carbonyl groups attached to the different ring systems of the mol­ecule tend to be coplanar with the respective rings, other than atoms O1 and C25 which deviate by 0.210 (1) and 0.123 (3) Å, respectively, from the pyrim­idene ring mean plane.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling and displacement ellipsoids drawn at the 30% probability level.

In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming a supra­molecular three-dimensional network (Table 1[link] and Fig. 2[link]). There are also a number of C—H⋯π inter­actions present (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 and Cg4 are the centroids of the N1/N2/C7–C10 and C1–C5/C14 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O2i 0.96 (2) 2.42 (2) 3.280 (3) 150 (2)
C18—H18⋯O1ii 0.93 2.60 3.475 (3) 157
C23—H23A⋯O4iii 0.96 2.57 3.222 (4) 125
C24—H24A⋯O5iv 0.96 2.54 3.344 (3) 142
C21—H21CCg4v 0.96 2.86 3.668 (3) 143
C24—H24BCg3i 0.96 2.92 3.550 (3) 124
C24—H24CCg4iv 0.96 2.57 3.454 (3) 153
Symmetry codes: (i) -x, -y, -z+1; (ii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x, -y+1, -z+1; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) x+1, y, z.
[Figure 2]
Figure 2
A view along the a axis of the crystal packing of the title compound. The dashed lines indicate the hydrogen bonds (see Table 1[link]), and for clarity, only the H atoms involved in hydrogen bonding have been included.

Synthesis and crystallization

The title compound was synthesized following a published procedure (Ponnusamy et al., 2013[Ponnusamy, R., Sabari, V., Sivakumar, G., Bakthadoss, M. & Aravindhan, S. (2013). Acta Cryst. E69, o267-o268.]; Swaminathan et al., 2015[Swaminathan, K., Sethusankar, K., Kumar, G. S. & Bakthadoss, M. (2015). Acta Cryst. E71, 926-930.]). A mixture of (E)-methyl 2-((2-formyl­phen­oxy)meth­yl)-3-(2-methyl­phen­yl) acrylate (0.448 g, 1 mmol) and N,N-di­methyl­barbutric acid (0.156 g, 1 mmol) was placed in a round-bottom flask and melted at 453 K for 1 h. After completion of the reaction, as indicated by TLC, the crude product was washed with 5 ml of an ethyl­acetate and hexane mixture (1:49) which successfully provided the pure title compound as a colourless solid in 97% yield. Colourless block-like crystals were obtained by slow evaporation of a solution in ethyl acetate.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C25H24N2O6
Mr 448.46
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 9.4087 (5), 15.5422 (7), 14.6143 (7)
β (°) 91.077 (1)
V3) 2136.70 (18)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.30 × 0.20 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.976, 0.980
No. of measured, independent and observed [I > 2σ(I)] reflections 18765, 3765, 2856
Rint 0.034
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.146, 1.05
No. of reflections 3764
No. of parameters 315
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.38, −0.32
Computer programs: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Methyl (6R*,6aR*,12bR*)-2,4-dimethyl-6-(2-methylphenyl)-1,3-dioxo-2,3,4,6a,7,12b-hexahydro-1H,6H-chromeno[4',3':4,5]pyrano[2,3-d]pyrimidine-6a-carboxylate top
Crystal data top
C25H24N2O6F(000) = 944
Mr = 448.46Dx = 1.394 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.4087 (5) ÅCell parameters from 3764 reflections
b = 15.5422 (7) Åθ = 2.2–25.0°
c = 14.6143 (7) ŵ = 0.10 mm1
β = 91.077 (1)°T = 293 K
V = 2136.70 (18) Å3Block, colourless
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3765 independent reflections
Radiation source: fine-focus sealed tube2856 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω and \ f scanθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1111
Tmin = 0.976, Tmax = 0.980k = 1817
18765 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.146 w = 1/[σ2(Fo2) + (0.070P)2 + 1.3588P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3764 reflectionsΔρmax = 0.38 e Å3
315 parametersΔρmin = 0.32 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0027 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.06395 (16)0.17387 (10)0.55862 (10)0.0347 (4)
N20.09694 (19)0.06786 (12)0.57179 (12)0.0326 (4)
O10.2595 (2)0.10497 (11)0.32021 (12)0.0492 (5)
N10.2602 (2)0.03401 (12)0.45525 (13)0.0366 (5)
C60.0576 (2)0.23662 (15)0.38555 (15)0.0306 (5)
O60.1784 (2)0.41781 (11)0.42814 (12)0.0492 (5)
C100.0494 (2)0.13542 (14)0.51946 (15)0.0300 (5)
C80.2138 (2)0.10127 (14)0.39882 (16)0.0349 (5)
C120.0454 (2)0.28986 (14)0.44668 (14)0.0295 (5)
O40.1355 (2)0.40049 (12)0.47194 (12)0.0492 (5)
C90.2074 (2)0.01613 (15)0.54146 (16)0.0349 (5)
O20.25164 (19)0.04286 (11)0.58803 (12)0.0472 (5)
O50.1608 (2)0.33076 (12)0.30769 (12)0.0525 (5)
C50.1729 (2)0.29763 (15)0.34819 (15)0.0344 (5)
C70.1103 (2)0.15883 (14)0.43876 (15)0.0315 (5)
C110.1479 (2)0.22715 (15)0.49729 (15)0.0303 (5)
C140.2029 (2)0.37414 (16)0.39255 (16)0.0382 (6)
C130.0403 (3)0.34201 (16)0.51515 (16)0.0353 (5)
C150.2642 (2)0.26739 (14)0.55503 (15)0.0327 (5)
C220.1333 (2)0.34790 (15)0.38504 (15)0.0315 (5)
C40.2431 (3)0.28342 (17)0.26444 (17)0.0439 (6)
H40.22360.23360.23170.053*
C240.0344 (3)0.04952 (16)0.66270 (15)0.0380 (6)
H24A0.04050.08990.67580.057*
H24B0.00340.00780.66350.057*
H24C0.10640.05460.70810.057*
C10.2996 (3)0.43321 (18)0.35660 (19)0.0475 (6)
H10.31740.48420.38760.057*
C160.2341 (3)0.29708 (16)0.64267 (16)0.0403 (6)
H160.14390.28880.66600.048*
C200.4013 (2)0.27693 (15)0.52092 (17)0.0385 (6)
C190.5020 (3)0.31952 (17)0.5762 (2)0.0489 (7)
H190.59320.32750.55430.059*
C250.3653 (3)0.02591 (18)0.4154 (2)0.0505 (7)
H25A0.39380.00620.35550.076*
H25B0.44690.02850.45380.076*
H25C0.32390.08220.41080.076*
C20.3682 (3)0.4162 (2)0.2757 (2)0.0545 (7)
H20.43400.45520.25180.065*
C180.4707 (3)0.34989 (18)0.6618 (2)0.0539 (8)
H180.54000.37790.69680.065*
C30.3405 (3)0.34127 (19)0.2292 (2)0.0537 (7)
H30.38750.32970.17400.064*
C210.4458 (3)0.24282 (19)0.42969 (19)0.0507 (7)
H21A0.36600.21570.39960.076*
H21B0.52070.20160.43850.076*
H21C0.47900.28940.39260.076*
C170.3366 (3)0.33869 (17)0.69537 (18)0.0493 (7)
H170.31470.35900.75330.059*
C230.2712 (4)0.47395 (19)0.3776 (2)0.0659 (9)
H23A0.29790.52220.41510.099*
H23B0.22250.49400.32340.099*
H23C0.35490.44290.36070.099*
H110.184 (2)0.1876 (15)0.4531 (15)0.030 (6)*
H13A0.098 (3)0.3021 (16)0.5534 (17)0.041 (7)*
H13B0.021 (3)0.3788 (15)0.5547 (16)0.034 (6)*
H60.005 (3)0.2172 (16)0.3333 (17)0.041 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0319 (8)0.0382 (9)0.0336 (8)0.0091 (7)0.0040 (6)0.0052 (7)
N20.0320 (10)0.0322 (10)0.0336 (10)0.0047 (8)0.0013 (8)0.0015 (8)
O10.0599 (12)0.0408 (10)0.0461 (10)0.0077 (9)0.0211 (9)0.0007 (8)
N10.0338 (10)0.0321 (11)0.0436 (11)0.0057 (8)0.0028 (9)0.0016 (9)
C60.0289 (11)0.0336 (12)0.0293 (11)0.0018 (10)0.0004 (9)0.0013 (9)
O60.0657 (12)0.0359 (10)0.0465 (10)0.0187 (9)0.0172 (9)0.0055 (8)
C100.0272 (11)0.0287 (12)0.0342 (11)0.0017 (9)0.0026 (9)0.0041 (9)
C80.0307 (12)0.0308 (12)0.0430 (14)0.0032 (10)0.0039 (10)0.0035 (10)
C120.0288 (11)0.0313 (12)0.0284 (11)0.0005 (9)0.0005 (9)0.0008 (9)
O40.0545 (11)0.0504 (11)0.0426 (10)0.0210 (9)0.0052 (8)0.0083 (8)
C90.0315 (12)0.0312 (12)0.0422 (13)0.0007 (10)0.0062 (10)0.0056 (10)
O20.0513 (11)0.0391 (10)0.0513 (11)0.0139 (8)0.0044 (8)0.0037 (8)
O50.0651 (12)0.0552 (12)0.0377 (10)0.0163 (9)0.0152 (9)0.0071 (8)
C50.0301 (11)0.0366 (13)0.0366 (12)0.0056 (10)0.0008 (9)0.0078 (10)
C70.0291 (11)0.0308 (12)0.0346 (12)0.0006 (9)0.0008 (9)0.0013 (9)
C110.0296 (11)0.0303 (12)0.0311 (11)0.0037 (9)0.0017 (9)0.0002 (10)
C140.0313 (12)0.0438 (14)0.0395 (13)0.0011 (11)0.0038 (10)0.0061 (11)
C130.0343 (12)0.0391 (14)0.0326 (12)0.0026 (11)0.0014 (10)0.0011 (11)
C150.0339 (12)0.0282 (11)0.0356 (12)0.0036 (10)0.0063 (9)0.0059 (9)
C220.0302 (11)0.0316 (12)0.0328 (12)0.0017 (9)0.0008 (9)0.0005 (10)
C40.0466 (14)0.0429 (14)0.0418 (14)0.0118 (12)0.0095 (11)0.0076 (11)
C240.0397 (13)0.0397 (13)0.0346 (12)0.0006 (11)0.0006 (10)0.0046 (10)
C10.0393 (14)0.0476 (16)0.0559 (16)0.0110 (12)0.0044 (12)0.0104 (13)
C160.0441 (14)0.0404 (14)0.0362 (13)0.0050 (11)0.0056 (10)0.0050 (10)
C200.0329 (12)0.0315 (13)0.0507 (14)0.0021 (10)0.0067 (11)0.0076 (11)
C190.0350 (14)0.0432 (15)0.0681 (18)0.0084 (12)0.0124 (12)0.0065 (13)
C250.0452 (15)0.0457 (16)0.0603 (17)0.0163 (12)0.0103 (13)0.0052 (13)
C20.0393 (14)0.0589 (18)0.0649 (18)0.0016 (13)0.0078 (13)0.0234 (15)
C180.0530 (17)0.0423 (15)0.0651 (18)0.0121 (13)0.0291 (14)0.0044 (14)
C30.0499 (16)0.0563 (18)0.0541 (16)0.0133 (14)0.0196 (13)0.0192 (14)
C210.0340 (13)0.0558 (17)0.0627 (17)0.0026 (12)0.0103 (12)0.0008 (14)
C170.0660 (18)0.0420 (15)0.0392 (14)0.0059 (13)0.0160 (13)0.0013 (11)
C230.082 (2)0.0461 (17)0.071 (2)0.0270 (16)0.0298 (17)0.0027 (14)
Geometric parameters (Å, º) top
O3—C101.341 (3)C15—C161.395 (3)
O3—C111.462 (3)C15—C201.400 (3)
N2—C101.379 (3)C4—C31.377 (4)
N2—C91.380 (3)C4—H40.9300
N2—C241.471 (3)C24—H24A0.9600
O1—C81.220 (3)C24—H24B0.9600
N1—C91.374 (3)C24—H24C0.9600
N1—C81.406 (3)C1—C21.363 (4)
N1—C251.471 (3)C1—H10.9300
C6—C71.525 (3)C16—C171.383 (4)
C6—C51.534 (3)C16—H160.9300
C6—C121.545 (3)C20—C191.400 (3)
C6—H60.97 (3)C20—C211.501 (4)
O6—C221.322 (3)C19—C181.374 (4)
O6—C231.447 (3)C19—H190.9300
C10—C71.352 (3)C25—H25A0.9600
C8—C71.438 (3)C25—H25B0.9600
C12—C221.529 (3)C25—H25C0.9600
C12—C131.529 (3)C2—C31.375 (4)
C12—C111.549 (3)C2—H20.9300
O4—C141.374 (3)C18—C171.374 (4)
O4—C131.416 (3)C18—H180.9300
C9—O21.220 (3)C3—H30.9300
O5—C221.195 (3)C21—H21A0.9600
C5—C141.386 (3)C21—H21B0.9600
C5—C41.398 (3)C21—H21C0.9600
C11—C151.506 (3)C17—H170.9300
C11—H110.96 (2)C23—H23A0.9600
C14—C11.389 (3)C23—H23B0.9600
C13—H13A1.00 (3)C23—H23C0.9600
C13—H13B0.99 (2)
C10—O3—C11115.14 (16)O5—C22—O6124.1 (2)
C10—N2—C9121.06 (19)O5—C22—C12123.7 (2)
C10—N2—C24121.35 (18)O6—C22—C12112.13 (18)
C9—N2—C24117.58 (19)C3—C4—C5121.6 (3)
C9—N1—C8125.24 (19)C3—C4—H4119.2
C9—N1—C25117.7 (2)C5—C4—H4119.2
C8—N1—C25116.9 (2)N2—C24—H24A109.5
C7—C6—C5115.91 (18)N2—C24—H24B109.5
C7—C6—C12109.63 (17)H24A—C24—H24B109.5
C5—C6—C12107.82 (18)N2—C24—H24C109.5
C7—C6—H6109.4 (15)H24A—C24—H24C109.5
C5—C6—H6106.4 (15)H24B—C24—H24C109.5
C12—C6—H6107.3 (15)C2—C1—C14119.7 (3)
C22—O6—C23116.34 (19)C2—C1—H1120.1
O3—C10—C7125.0 (2)C14—C1—H1120.1
O3—C10—N2111.50 (18)C17—C16—C15121.0 (2)
C7—C10—N2123.5 (2)C17—C16—H16119.5
O1—C8—N1118.7 (2)C15—C16—H16119.5
O1—C8—C7125.2 (2)C19—C20—C15117.6 (2)
N1—C8—C7116.1 (2)C19—C20—C21118.9 (2)
C22—C12—C13111.75 (19)C15—C20—C21123.5 (2)
C22—C12—C6108.39 (17)C18—C19—C20122.3 (3)
C13—C12—C6109.27 (18)C18—C19—H19118.9
C22—C12—C11108.27 (17)C20—C19—H19118.9
C13—C12—C11110.61 (17)N1—C25—H25A109.5
C6—C12—C11108.47 (17)N1—C25—H25B109.5
C14—O4—C13117.59 (18)H25A—C25—H25B109.5
O2—C9—N1122.8 (2)N1—C25—H25C109.5
O2—C9—N2121.4 (2)H25A—C25—H25C109.5
N1—C9—N2115.7 (2)H25B—C25—H25C109.5
C14—C5—C4116.6 (2)C1—C2—C3120.1 (3)
C14—C5—C6120.9 (2)C1—C2—H2119.9
C4—C5—C6122.3 (2)C3—C2—H2119.9
C10—C7—C8117.4 (2)C19—C18—C17119.7 (2)
C10—C7—C6121.44 (19)C19—C18—H18120.1
C8—C7—C6120.69 (19)C17—C18—H18120.1
O3—C11—C15106.67 (17)C2—C3—C4120.0 (3)
O3—C11—C12108.09 (17)C2—C3—H3120.0
C15—C11—C12116.47 (18)C4—C3—H3120.0
O3—C11—H11104.7 (13)C20—C21—H21A109.5
C15—C11—H11112.3 (14)C20—C21—H21B109.5
C12—C11—H11107.9 (13)H21A—C21—H21B109.5
O4—C14—C5123.8 (2)C20—C21—H21C109.5
O4—C14—C1114.3 (2)H21A—C21—H21C109.5
C5—C14—C1121.9 (2)H21B—C21—H21C109.5
O4—C13—C12112.64 (18)C18—C17—C16119.7 (3)
O4—C13—H13A107.6 (14)C18—C17—H17120.1
C12—C13—H13A109.6 (14)C16—C17—H17120.1
O4—C13—H13B104.3 (13)O6—C23—H23A109.5
C12—C13—H13B112.2 (14)O6—C23—H23B109.5
H13A—C13—H13B110.3 (19)H23A—C23—H23B109.5
C16—C15—C20119.7 (2)O6—C23—H23C109.5
C16—C15—C11119.6 (2)H23A—C23—H23C109.5
C20—C15—C11120.6 (2)H23B—C23—H23C109.5
C11—O3—C10—C717.9 (3)C6—C12—C11—O364.6 (2)
C11—O3—C10—N2161.80 (17)C22—C12—C11—C1558.0 (2)
C9—N2—C10—O3176.06 (18)C13—C12—C11—C1564.8 (2)
C24—N2—C10—O35.4 (3)C6—C12—C11—C15175.43 (18)
C9—N2—C10—C73.7 (3)C13—O4—C14—C56.5 (3)
C24—N2—C10—C7174.8 (2)C13—O4—C14—C1177.0 (2)
C9—N1—C8—O1172.7 (2)C4—C5—C14—O4175.2 (2)
C25—N1—C8—O11.9 (3)C6—C5—C14—O40.9 (3)
C9—N1—C8—C74.9 (3)C4—C5—C14—C11.0 (3)
C25—N1—C8—C7179.6 (2)C6—C5—C14—C1175.3 (2)
C7—C6—C12—C22161.32 (18)C14—O4—C13—C1237.6 (3)
C5—C6—C12—C2271.7 (2)C22—C12—C13—O459.2 (3)
C7—C6—C12—C1376.7 (2)C6—C12—C13—O460.8 (3)
C5—C6—C12—C1350.3 (2)C11—C12—C13—O4179.87 (19)
C7—C6—C12—C1144.0 (2)O3—C11—C15—C1640.0 (3)
C5—C6—C12—C11170.98 (17)C12—C11—C15—C1680.7 (3)
C8—N1—C9—O2179.7 (2)O3—C11—C15—C20141.4 (2)
C25—N1—C9—O25.7 (3)C12—C11—C15—C2097.9 (3)
C8—N1—C9—N22.2 (3)C23—O6—C22—O52.5 (4)
C25—N1—C9—N2172.5 (2)C23—O6—C22—C12175.7 (2)
C10—N2—C9—O2178.8 (2)C13—C12—C22—O5148.4 (2)
C24—N2—C9—O20.2 (3)C6—C12—C22—O528.0 (3)
C10—N2—C9—N13.1 (3)C11—C12—C22—O589.5 (3)
C24—N2—C9—N1178.36 (19)C13—C12—C22—O633.4 (3)
C7—C6—C5—C14100.9 (2)C6—C12—C22—O6153.82 (19)
C12—C6—C5—C1422.3 (3)C11—C12—C22—O688.7 (2)
C7—C6—C5—C485.1 (3)C14—C5—C4—C32.0 (4)
C12—C6—C5—C4151.6 (2)C6—C5—C4—C3176.2 (2)
O3—C10—C7—C8168.8 (2)O4—C14—C1—C2176.9 (2)
N2—C10—C7—C810.9 (3)C5—C14—C1—C20.3 (4)
O3—C10—C7—C63.1 (3)C20—C15—C16—C172.3 (4)
N2—C10—C7—C6177.24 (19)C11—C15—C16—C17176.3 (2)
O1—C8—C7—C10166.4 (2)C16—C15—C20—C192.4 (3)
N1—C8—C7—C1011.0 (3)C11—C15—C20—C19176.2 (2)
O1—C8—C7—C65.5 (3)C16—C15—C20—C21176.6 (2)
N1—C8—C7—C6177.04 (19)C11—C15—C20—C214.8 (4)
C5—C6—C7—C10134.2 (2)C15—C20—C19—C181.3 (4)
C12—C6—C7—C1011.9 (3)C21—C20—C19—C18177.7 (2)
C5—C6—C7—C854.2 (3)C14—C1—C2—C30.9 (4)
C12—C6—C7—C8176.55 (19)C20—C19—C18—C170.0 (4)
C10—O3—C11—C15177.27 (18)C1—C2—C3—C40.1 (4)
C10—O3—C11—C1251.3 (2)C5—C4—C3—C21.5 (4)
C22—C12—C11—O3177.98 (16)C19—C18—C17—C160.1 (4)
C13—C12—C11—O355.2 (2)C15—C16—C17—C181.1 (4)
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of the N1/N2/C7–C10 and C1–C5/C14 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C11—H11···O2i0.96 (2)2.42 (2)3.280 (3)150 (2)
C18—H18···O1ii0.932.603.475 (3)157
C23—H23A···O4iii0.962.573.222 (4)125
C24—H24A···O5iv0.962.543.344 (3)142
C21—H21C···Cg4v0.962.863.668 (3)143
C24—H24B···Cg3i0.962.923.550 (3)124
C24—H24C···Cg4iv0.962.573.454 (3)153
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1, z+1; (iv) x, y+1/2, z+1/2; (v) x+1, y, z.
 

Acknowledgements

The authors thank the Central Instrumentation Facility, Queen Mary's College, Chennai-4 for computing facilities and SAIF, IIT, Madras, for the X-ray data collection facility.

References

First citationAdreani, L. L. & Lapi, E. (1960). Boll. Chim. Farm. 99, 583–586.  PubMed CAS Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKemnitzer, W., Jiang, S., Wang, Y., Kasibhatla, S., Crogan-Grundy, C., Bubenik, M., Labrecque, D., Denis, R., Lamothe, S., Attardo, G., Gourdeau, H., Tseng, B., Drewe, J. & Cai, S. X. (2008). Bioorg. Med. Chem. Lett. 18, 603–607.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPonnusamy, R., Sabari, V., Sivakumar, G., Bakthadoss, M. & Aravindhan, S. (2013). Acta Cryst. E69, o267–o268.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSangani, C. B., Shah, N. M., Patel, M. P. & Patel, R. G. (2012). J. Serb. Chem. Soc. 77, 1165–1174.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSreenivasa, S., Srinivasa, H. T., Palakshamurthy, B. S., Kumar, V. & Devarajegowda, H. C. (2013). Acta Cryst. E69, o266.  CSD CrossRef IUCr Journals Google Scholar
First citationSui Xiong, C., Drewe, J. & Kasibhatla, S. (2006). Curr. Med. Chem. 13, 2627–2644.  CrossRef PubMed Google Scholar
First citationSwaminathan, K., Sethusankar, K., Kumar, G. S. & Bakthadoss, M. (2015). Acta Cryst. E71, 926–930.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTang, Q.-G., Wu, W.-Y., He, W., Sun, H.-S. & Guo, C. (2007). Acta Cryst. E63, o1437–o1438.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y. L., Chen, B. Z., Zheng, K. Q., Xu, M. L., Lei, X. H. & Yaoxue, X. B. (1982). Chem. Abstr. 96, 135383e.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds