organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(2,4-Di­chloro­phen­yl)(3-hy­dr­oxy­piperidin-1-yl)methanone: crystal structure and Hirshfeld analysis

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Bharathi Women's College, Chennai-108, Tamilnadu, India, bDepartment of Chemistry, Madras Christian College, Chennai-59, Tamilnadu, India, cPG and Research Department of Physics, Queen Mary's College, Chennai-4, Tamilnadu, India, and dPG Department of Physics, Bhaktavatsalam Memorial College for Women, Chennai-80, Tamilnadu, India
*Correspondence e-mail: guqmc@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 24 April 2017; accepted 1 June 2017; online 8 June 2017)

In the title compound, C12H13Cl2NO2, the piperidine ring adopts a chair conformation. The dihedral angle between the mean plane of the piperidine ring and the benzene ring is 58.5 (3)°. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, forming chains propagating along the b-axis direction. The chains are linked by C—H⋯O hydrogen bonds, forming undulating sheets parallel to the ab plane. The C atoms of the hy­droxy­piperidine ring are disordered over two sets of sites with refined occupancies of 0.545 (7) and 0.455 (7). The inter­molecular inter­actions in the crystal structure were qu­anti­fied using Hirshfeld surface analysis.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Piperidine derivatives exhibit a wide range of biological activities, such as anti­microbial, anti-inflammatory, anti­viral, anti­malarial and general anesthetics (Aridoss et al., 2009[Aridoss, G., Parthiban, P., Ramachandran, R., Prakash, M., Kabilan, S. & Jeong, Y. T. (2009). Eur. J. Med. Chem. 44, 577-592.]). The piperidine scaffold has played an important role in numerous pharmaceutical drugs (Das & Brahmachari, 2013[Das, S. & Brahmachari, G. (2013). J. Org. Biomol. Chem. 1, 33-46.]). The substitution of hydroxyl, meth­oxy, nitro and alkyl group on the piperidine ring has been found to produce good anti­oxidant activities (Ravindernath & Reddy, 2017[Ravindernath, A. & Reddy, M. S. (2017). Arabian J. Chem. 10, s1172-s1179.]). Piperidines have also been found to have blood cholesterol-lowering activities (Parthiban et al., 2009[Parthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009). Bioorg. Med. Chem. Lett. 19, 6981-6985.]). Compounds containing a piperidine moiety are used clinically to prevent post-operative vomiting, to speed up gastric emptying before anaesthesia, to facilitate radiological investigations and to correct a variety of disturbances of gastrointestinal functions (Sampath et al., 2004[Sampath, N., Aravindhan, S., Ponnuswamy, M. N. & Nethaji, M. (2004). Acta Cryst. E60, o2105-o2106.]). Biologically active alkaloids of substituted piperidines have been targeted for their total or partial synthesis (Ramalingan et al., 2004[Ramalingan, C., Balasubramanian, S., Kabilan, S. & Vasudevan, M. (2004). Eur. J. Med. Chem. 39, 527-533.]).

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The minor component of the piperidine ring has atoms labels N1/C1–C5. The bond lengths and bond angles are in normal ranges and in good agreement with the values reported for (4-chloro­phen­yl) 4-hy­droxy­piperidin-1-yl) methanone (4-chloro­phen­yl)-(piperidin-1-yl)methanone (0.75/0.25) (Revathi et al., 2015[Revathi, B. K., Reuben Jonathan, D., Kalai Sevi, K., Dhanalakshmi, K. & Usha, G. (2015). Acta Cryst. E71, o896-o897.]). The dihedral angle between the benzene ring (C7–C12) and the piperidine ring (N1′/C1′–C5′) mean plane is 58.5 (3)°. The torsion angle O1—C6—N1′—C5′ [12.1 (7)°], indicates that the keto group is in a +syn-periplanar (+sp) orientation with the hy­droxy­piperidine ring. The piperidine ring (N1′/C1′–C5′) adopts a chair conformation [puckering parameters: Q = 0.530 (9) Å, θ = 177.5 (10)° and φ = 351 (24) °].

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling and displacement ellipsoids drawn at the 30% probability level. The minor component of the piperidine ring has atoms labels N1/C1–C5 and dashed bonds.

In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, forming chains propagating along the b-axis direction (Table 1[link] and Fig. 2[link]). The chains are linked via C—H⋯O hydrogen bonds, forming undulating sheets parallel to the ab plane (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1i 0.82 2.04 2.735 (3) 142
C11—H11⋯O2ii 0.93 2.48 3.404 (4) 173
C4′—H4′1⋯O1iii 0.97 2.57 3.456 (12) 152
Symmetry codes: (i) x, y-1, z; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
The crystal packing of the title compound, viewed along the a axis. The dashed lines indicate the hydrogen bonds (see Table 1[link]). For clarity, only the H atoms involved in these inter­actions have been included.

The Hirshfeld analysis (Crystal Explorer; Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.]) of the short contacts in the crystal can be summarized with finger print plots mapped over dnorm, electrostatic potential, shape index and curvedness. The electrostatic potentials were calculated using TONTO (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) integrated within Crystal Explorer. The electrostatic potentials were mapped on Hirshfeld surfaces using the STO-3 G basis.

The strong O—H⋯O and C—H⋯O inter­actions are visualized as bright-red spots between the respective donor and acceptor atoms on the Hirshfeld surfaces mapped over dnorm (Fig. 3[link]a) with neighbouring mol­ecules connected by O2—H2A⋯O1 and C11—H11⋯O2 hydrogen bonds. This observation is revealed in the Hirshfeld surfaces mapped over the electrostatic potential (Fig. 3[link]b) showing the negative potential around the oxygen atoms (light-red clouds) and the positive potential around hydrogen atoms (light-blue clouds). Fingerprint plots (Fig. 4[link]af) for the Hirshfeld surfaces of the compound are shown with characteristic pseudo-symmetry wings in the upper left and lower right sides of de and di diagonal axes that represent the overall two-dimensional fingerprint plot and those delineated into H⋯H, H⋯Cl/Cl⋯H, H⋯O/O⋯H, H⋯C/C⋯H and C⋯C contacts.

[Figure 3]
Figure 3
(a) dnorm mapped on Hirshfeld surface for visualizing the inter­molecular contacts of the title compound. (b) Hirshfeld surfaces mapped over the electrostatic potential. Dotted lines represent hydrogen bonds.
[Figure 4]
Figure 4
Two-dimensional fingerprint plots of the title compound showing the percentage contributions of individual types of inter­actions: (a) all inter­molecular inter­actions, (b) H⋯H contacts, (c) H⋯Cl/Cl⋯H contacts and (d) O⋯H/H⋯O contacts and (e) H⋯C/C⋯H contacts. The outline of the full fingerprint is shown in gray. di (x axis) and de (y axis) are the closest inter­nal and external distance from a given point on the Hirshfeld surface. Surfaces to the right highlight the relevant surface patches associated with the specific contacts with dnorm mapped.

The fingerprint plot of H⋯H contacts, which represent the largest contribution to the Hirshfeld surfaces (38.4%), are shown as one distinct pattern with a minimum value of de = di ≃1.4 Å (Fig. 4[link]b). The H⋯Cl/Cl⋯H inter­actions appear as the next largest region of the fingerprint plot, highly concentrated at the edges, having almost the same de + di≃ 2.8 Å (Fig. 4[link]c), with overall Hirshfeld surfaces of 29.9%. The reciprocal H⋯O/O⋯H contacts consists of 17.2% of the total Hirshfeld surfaces with de + di ≃ 2.0 Å (Fig. 4[link]d), exhibited by two symmetrical narrow pointed wings indicating the inter­molecular hydrogen-bond inter­actions O2—H2A⋯O1 and C11—H11⋯O2 in the crystal packing. The H⋯C/C⋯H inter­action on the fingerprint plot, which contributes 7.4% of the overall Hirshfeld surfaces, are indicated by de + di ≃ 3.0 Å (Fig. 4[link]e). The C⋯C contacts, which are the measure of ππ stacking inter­actions, occupy 1.6% of the Hirshfeld surfaces and appear as a unique triangle at about de + di ≃ 3.8 Å (Fig. 4[link]f). The existence of ππ inter­actions is also visualized as red and blue triangles on the shape-indexed surfaces (Fig. 5[link]), and as flat regions on the Hirshfeld surfaces mapped over curvedness in Fig. 6[link].

[Figure 5]
Figure 5
Hirshfeld surfaces mapped over the shape index of the title compound.
[Figure 6]
Figure 6
Hirshfeld surfaces mapped over the curvedness of the title compound.

Synthesis and crystallization

The title compound was synthesized following a published procedure (Revathi et al., (2015[Revathi, B. K., Reuben Jonathan, D., Kalai Sevi, K., Dhanalakshmi, K. & Usha, G. (2015). Acta Cryst. E71, o896-o897.]). In a 250 ml round-bottomed flask, 100 ml of ethyl methyl ketone was added to 3-hy­droxy piperidine (0.02 mol) and stirred at room temperature. After 5 min, tri­ethyl­amine (0.04 mol) was added and the mixture was stirred for 15 min. Then 2,4-di­chloro benzoyl chloride (0.04 mol) was added and the reaction mixture was stirred at room temperature for 2 h. A white precipitate of triethyl ammonium chloride was formed, which was removed by filtration and the filtrate was evaporated to give the crude product. It was recrystallized twice from ethyl methyl ketone to give yellow block-like crystals of the title compound (yield: 80%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C atoms of the hy­droxy­piperidine ring were refined as disordered, over two set of sites with refined occupancies of 0.545 (7) (N1′/C1′–C5′) and 0.455 (7) [N1/C1–C5]. Distance restraints SADI, RIGU and DFIX were used to restrain bond lengths to target values.

Table 2
Experimental details

Crystal data
Chemical formula C12H13Cl2NO2
Mr 274.13
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 298
a, b, c (Å) 13.9866 (6), 7.9972 (4), 23.122 (1)
V3) 2586.3 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.49
Crystal size (mm) 0.35 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.892, 0.945
No. of measured, independent and observed [I > 2σ(I)] reflections 34472, 2763, 1602
Rint 0.046
(sin θ/λ)max−1) 0.635
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.164, 1.05
No. of reflections 2763
No. of parameters 210
No. of restraints 99
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.37
Computer programs: APEX2, SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

(2,4-Dichlorophenyl)(3-hydroxypiperidin-1-yl)methanone top
Crystal data top
C12H13Cl2NO2Dx = 1.408 Mg m3
Mr = 274.13Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 7296 reflections
a = 13.9866 (6) Åθ = 2.3–22.7°
b = 7.9972 (4) ŵ = 0.49 mm1
c = 23.122 (1) ÅT = 298 K
V = 2586.3 (2) Å3Block, yellow
Z = 80.35 × 0.25 × 0.20 mm
F(000) = 1136
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1602 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.046
ω and φ scanθmax = 26.9°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1517
Tmin = 0.892, Tmax = 0.945k = 1010
34472 measured reflectionsl = 2529
2763 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.164 w = 1/[σ2(Fo2) + (0.0683P)2 + 1.3359P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2763 reflectionsΔρmax = 0.26 e Å3
210 parametersΔρmin = 0.37 e Å3
99 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0031 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.5092 (5)0.0739 (7)0.6677 (3)0.0590 (18)0.455 (7)
C10.4668 (5)0.0842 (8)0.6489 (3)0.060 (2)0.455 (7)
H1A0.41790.06240.62010.071*0.455 (7)
H1B0.43670.13870.68170.071*0.455 (7)
C20.5422 (6)0.1979 (9)0.6237 (4)0.0564 (19)0.455 (7)
H20.56830.14710.58850.068*0.455 (7)
C30.6208 (9)0.2243 (19)0.6662 (6)0.067 (3)0.455 (7)
H3A0.67060.29140.64850.081*0.455 (7)
H3B0.59630.28560.69920.081*0.455 (7)
C40.6630 (7)0.0618 (12)0.6866 (5)0.073 (2)0.455 (7)
H4A0.69560.00770.65460.087*0.455 (7)
H4B0.70980.08380.71660.087*0.455 (7)
C50.5869 (6)0.0530 (11)0.7098 (4)0.066 (2)0.455 (7)
H5A0.56140.00710.74540.079*0.455 (7)
H5B0.61490.16110.71850.079*0.455 (7)
N1'0.5416 (4)0.0869 (6)0.6416 (3)0.0533 (13)0.545 (7)
C1'0.5157 (4)0.0624 (6)0.6095 (2)0.0505 (15)0.545 (7)
H1'10.56350.08360.58000.061*0.545 (7)
H1'20.45480.04450.59030.061*0.545 (7)
C2'0.5083 (5)0.2121 (7)0.6488 (3)0.0543 (16)0.545 (7)
H2'0.45300.19920.67440.065*0.545 (7)
C3'0.5973 (8)0.2377 (16)0.6844 (5)0.072 (3)0.545 (7)
H3'10.65000.26880.65930.086*0.545 (7)
H3'20.58710.32770.71180.086*0.545 (7)
C4'0.6221 (8)0.0775 (10)0.7167 (4)0.087 (2)0.545 (7)
H4'10.57360.05650.74590.104*0.545 (7)
H4'20.68270.09220.73650.104*0.545 (7)
C5'0.6287 (5)0.0717 (8)0.6773 (4)0.0698 (19)0.545 (7)
H5'10.63700.17230.70020.084*0.545 (7)
H5'20.68400.06000.65230.084*0.545 (7)
Cl20.28658 (9)0.11880 (14)0.68040 (4)0.0990 (4)
Cl10.17370 (7)0.32088 (17)0.47207 (5)0.1185 (5)
O20.49103 (16)0.3471 (2)0.60880 (9)0.0738 (7)
H2A0.52400.42910.61640.111*
O10.52333 (18)0.3567 (3)0.66457 (10)0.0819 (7)
C110.2423 (2)0.2233 (4)0.57471 (12)0.0592 (7)
H110.17980.19350.58390.071*
C120.3156 (2)0.2009 (3)0.61377 (12)0.0557 (7)
C80.4269 (2)0.3131 (4)0.54690 (12)0.0578 (7)
H80.48890.34460.53750.069*
C70.40901 (18)0.2434 (3)0.60078 (12)0.0516 (7)
C100.2645 (2)0.2910 (4)0.52185 (12)0.0618 (8)
C60.4908 (2)0.2295 (4)0.64243 (13)0.0647 (8)
C90.3554 (2)0.3364 (4)0.50740 (13)0.0617 (8)
H90.36860.38240.47130.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.062 (4)0.042 (2)0.073 (4)0.002 (2)0.022 (3)0.002 (2)
C10.059 (3)0.044 (3)0.075 (4)0.003 (2)0.014 (3)0.002 (3)
C20.062 (4)0.041 (4)0.066 (4)0.002 (3)0.010 (3)0.004 (3)
C30.062 (5)0.060 (5)0.080 (6)0.009 (4)0.015 (4)0.001 (4)
C40.069 (4)0.066 (4)0.084 (5)0.004 (3)0.028 (4)0.000 (4)
C50.068 (4)0.058 (4)0.072 (4)0.002 (3)0.024 (3)0.000 (3)
N1'0.058 (3)0.041 (2)0.061 (3)0.0049 (17)0.016 (2)0.0019 (19)
C1'0.055 (3)0.040 (2)0.057 (3)0.004 (2)0.012 (2)0.0009 (19)
C2'0.065 (4)0.042 (3)0.056 (3)0.007 (3)0.010 (2)0.002 (2)
C3'0.083 (5)0.054 (3)0.080 (6)0.010 (3)0.032 (4)0.015 (4)
C4'0.112 (6)0.064 (4)0.083 (4)0.017 (4)0.046 (4)0.011 (3)
C5'0.067 (3)0.059 (4)0.083 (4)0.008 (3)0.030 (3)0.005 (3)
Cl20.1290 (9)0.0990 (8)0.0690 (6)0.0346 (6)0.0016 (5)0.0209 (5)
Cl10.0863 (7)0.1429 (11)0.1263 (9)0.0206 (6)0.0527 (6)0.0448 (7)
O20.0858 (15)0.0407 (11)0.0950 (16)0.0020 (10)0.0279 (12)0.0061 (10)
O10.1036 (18)0.0439 (13)0.0982 (16)0.0080 (11)0.0416 (14)0.0033 (11)
C110.0446 (14)0.0559 (17)0.0771 (18)0.0014 (13)0.0041 (14)0.0004 (15)
C120.0639 (18)0.0435 (15)0.0598 (16)0.0027 (13)0.0022 (13)0.0017 (12)
C80.0466 (15)0.0568 (17)0.0700 (18)0.0026 (13)0.0047 (13)0.0064 (14)
C70.0511 (16)0.0369 (14)0.0668 (17)0.0017 (12)0.0082 (12)0.0051 (12)
C100.0520 (17)0.0607 (19)0.0728 (18)0.0015 (14)0.0097 (14)0.0044 (15)
C60.0714 (19)0.0430 (15)0.0797 (19)0.0009 (13)0.0217 (15)0.0021 (14)
C90.0645 (18)0.0639 (19)0.0568 (16)0.0043 (15)0.0013 (14)0.0022 (14)
Geometric parameters (Å, º) top
N1—C61.398 (7)C2'—C3'1.507 (11)
N1—C11.462 (8)C2'—H2'0.9800
N1—C51.469 (8)C3'—C4'1.524 (13)
C1—C21.510 (10)C3'—H3'10.9700
C1—H1A0.9700C3'—H3'20.9700
C1—H1B0.9700C4'—C5'1.505 (12)
C2—O21.434 (8)C4'—H4'10.9700
C2—C31.491 (13)C4'—H4'20.9700
C2—H20.9800C5'—H5'10.9700
C3—C41.503 (15)C5'—H5'20.9700
C3—H3A0.9700Cl2—C121.723 (3)
C3—H3B0.9700Cl1—C101.731 (3)
C4—C51.504 (14)O2—H2A0.8200
C4—H4A0.9700O1—C61.226 (3)
C4—H4B0.9700C11—C101.372 (4)
C5—H5A0.9700C11—C121.378 (4)
C5—H5B0.9700C11—H110.9300
N1'—C61.344 (6)C12—C71.383 (4)
N1'—C1'1.452 (6)C8—C91.367 (4)
N1'—C5'1.476 (6)C8—C71.387 (4)
C1'—C2'1.506 (7)C8—H80.9300
C1'—H1'10.9700C7—C61.500 (4)
C1'—H1'20.9700C10—C91.364 (4)
C2'—O21.442 (7)C9—H90.9300
C6—N1—C1124.8 (5)O2—C2'—H2'109.6
C6—N1—C5121.0 (5)C1'—C2'—H2'109.6
C1—N1—C5113.4 (6)C3'—C2'—H2'109.6
N1—C1—C2110.6 (6)C2'—C3'—C4'110.0 (9)
N1—C1—H1A109.5C2'—C3'—H3'1109.7
C2—C1—H1A109.5C4'—C3'—H3'1109.7
N1—C1—H1B109.5C2'—C3'—H3'2109.7
C2—C1—H1B109.5C4'—C3'—H3'2109.7
H1A—C1—H1B108.1H3'1—C3'—H3'2108.2
O2—C2—C3114.1 (8)C5'—C4'—C3'112.5 (7)
O2—C2—C1104.2 (6)C5'—C4'—H4'1109.1
C3—C2—C1110.2 (8)C3'—C4'—H4'1109.1
O2—C2—H2109.4C5'—C4'—H4'2109.1
C3—C2—H2109.4C3'—C4'—H4'2109.1
C1—C2—H2109.4H4'1—C4'—H4'2107.8
C2—C3—C4111.9 (10)N1'—C5'—C4'110.7 (6)
C2—C3—H3A109.2N1'—C5'—H5'1109.5
C4—C3—H3A109.2C4'—C5'—H5'1109.5
C2—C3—H3B109.2N1'—C5'—H5'2109.5
C4—C3—H3B109.2C4'—C5'—H5'2109.5
H3A—C3—H3B107.9H5'1—C5'—H5'2108.1
C3—C4—C5111.2 (9)C2—O2—H2A109.5
C3—C4—H4A109.4C10—C11—C12117.8 (3)
C5—C4—H4A109.4C10—C11—H11121.1
C3—C4—H4B109.4C12—C11—H11121.1
C5—C4—H4B109.4C11—C12—C7121.9 (3)
H4A—C4—H4B108.0C11—C12—Cl2117.4 (2)
N1—C5—C4110.8 (7)C7—C12—Cl2120.7 (2)
N1—C5—H5A109.5C9—C8—C7121.6 (3)
C4—C5—H5A109.5C9—C8—H8119.2
N1—C5—H5B109.5C7—C8—H8119.2
C4—C5—H5B109.5C12—C7—C8117.6 (2)
H5A—C5—H5B108.1C12—C7—C6124.3 (3)
C6—N1'—C1'125.0 (4)C8—C7—C6118.0 (3)
C6—N1'—C5'119.9 (5)C9—C10—C11122.3 (3)
C1'—N1'—C5'115.1 (5)C9—C10—Cl1119.0 (2)
N1'—C1'—C2'111.3 (4)C11—C10—Cl1118.7 (2)
N1'—C1'—H1'1109.4O1—C6—N1'120.9 (3)
C2'—C1'—H1'1109.4O1—C6—N1119.7 (3)
N1'—C1'—H1'2109.4O1—C6—C7119.3 (3)
C2'—C1'—H1'2109.4N1'—C6—C7117.2 (3)
H1'1—C1'—H1'2108.0N1—C6—C7118.3 (3)
O2—C2'—C1'102.8 (4)C10—C9—C8118.8 (3)
O2—C2'—C3'112.8 (7)C10—C9—H9120.6
C1'—C2'—C3'112.4 (6)C8—C9—H9120.6
C6—N1—C1—C2113.1 (9)C11—C12—C7—C6177.0 (3)
C5—N1—C1—C256.9 (9)Cl2—C12—C7—C62.5 (4)
N1—C1—C2—O2178.6 (5)C9—C8—C7—C121.2 (4)
N1—C1—C2—C355.8 (10)C9—C8—C7—C6177.3 (3)
O2—C2—C3—C4172.0 (8)C12—C11—C10—C90.3 (5)
C1—C2—C3—C455.2 (11)C12—C11—C10—Cl1179.8 (2)
C2—C3—C4—C554.0 (13)C1'—N1'—C6—O1170.7 (4)
C6—N1—C5—C4115.2 (10)C5'—N1'—C6—O112.1 (7)
C1—N1—C5—C455.3 (10)C1'—N1'—C6—C78.9 (7)
C3—C4—C5—N152.7 (12)C5'—N1'—C6—C7173.9 (5)
C6—N1'—C1'—C2'123.6 (7)C1—N1—C6—O1173.5 (6)
C5'—N1'—C1'—C2'53.8 (7)C5—N1—C6—O117.2 (9)
N1'—C1'—C2'—O2175.0 (4)C1—N1—C6—C712.0 (9)
N1'—C1'—C2'—C3'53.6 (9)C5—N1—C6—C7178.6 (5)
O2—C2'—C3'—C4'168.9 (6)C12—C7—C6—O1105.1 (4)
C1'—C2'—C3'—C4'53.4 (10)C8—C7—C6—O170.7 (4)
C2'—C3'—C4'—C5'53.3 (12)C12—C7—C6—N1'92.8 (5)
C6—N1'—C5'—C4'124.2 (9)C8—C7—C6—N1'91.4 (4)
C1'—N1'—C5'—C4'53.3 (9)C12—C7—C6—N156.4 (6)
C3'—C4'—C5'—N1'52.4 (12)C8—C7—C6—N1127.8 (5)
C10—C11—C12—C70.5 (4)C11—C10—C9—C80.2 (5)
C10—C11—C12—Cl2179.0 (2)Cl1—C10—C9—C8179.8 (2)
C11—C12—C7—C81.2 (4)C7—C8—C9—C100.5 (4)
Cl2—C12—C7—C8178.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.822.042.735 (3)142
C11—H11···O2ii0.932.483.404 (4)173
C4—H41···O1iii0.972.573.456 (12)152
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y+1/2, z; (iii) x+1, y1/2, z+3/2.
 

Acknowledgements

The authors thank the Central Instrumentation Facility (DST–FIST), Queen Mary's College, Chennai-4, for computing facilities and SAIF, IIT, Madras, for the X-ray data collection facility.

References

First citationAridoss, G., Parthiban, P., Ramachandran, R., Prakash, M., Kabilan, S. & Jeong, Y. T. (2009). Eur. J. Med. Chem. 44, 577–592.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDas, S. & Brahmachari, G. (2013). J. Org. Biomol. Chem. 1, 33–46.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009). Bioorg. Med. Chem. Lett. 19, 6981–6985.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRamalingan, C., Balasubramanian, S., Kabilan, S. & Vasudevan, M. (2004). Eur. J. Med. Chem. 39, 527–533.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRavindernath, A. & Reddy, M. S. (2017). Arabian J. Chem. 10, s1172–s1179.  Web of Science CrossRef CAS Google Scholar
First citationRevathi, B. K., Reuben Jonathan, D., Kalai Sevi, K., Dhanalakshmi, K. & Usha, G. (2015). Acta Cryst. E71, o896–o897.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSampath, N., Aravindhan, S., Ponnuswamy, M. N. & Nethaji, M. (2004). Acta Cryst. E60, o2105–o2106.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds