organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 1-methyl-2-oxo-1,2-di­hydro­quinoline-4-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Appliquée, Faculté des Sciences et Techniques, Université Sidi Mohammed Ben Abdellah, Fès, Morocco, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Mohammed V University in Rabat, BP 1014, Avenue Ibn Batouta, Rabat, Morocco
*Correspondence e-mail: yassir.filali.baba@gmail.com

Edited by J. Simpson, University of Otago, New Zealand (Received 16 June 2017; accepted 19 June 2017; online 30 June 2017)

The title compound, C13H13NO3, lies on a mirror plane with an intra­molecular C—H⋯O hydrogen bond enclosing an S(6) ring. In the crystal, weak C—H⋯O hydrogen bonds link the mol­ecules into zigzag chains along the a-axis direction and ππ inter­actions, with a centroid-to-centroid distance of 3.7003 (2) Å, involving the pyridine and benzene rings of the oxo­quinoline ring system, pack the mol­ecules into parallel layers.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Quinolone derivatives are a versatile class of nitro­gen-containing heterocyclic compounds and they are useful inter­mediates in organic synthesis. They possess a broad spectrum of biological activities including anti-cancer (Elderfield & LeVon, 1960[Elderfield, R. C. & LeVon, E. F. (1960). J. Org. Chem. 25, 1576-1583.]), anti-inflammatory (Ratheesh et al., 2013[Ratheesh, M., Sindhu, G. & Helen, H. (2013). Inflamm. Res. 62, 367-376.]) and anti­bacterial properties (Beena & Rawat, 2013[Beena & Rawat, D. S. (2013). Med. Res. Rev. 33, 693-764.]; Chai et al., 2011[Chai, Y., Liu, M.-L., Lv, K., Feng, L.-S., Li, S.-J., Sun, L.-Y., Wang, S. & Guo, H.-Y. (2011). Eur. J. Med. Chem. 46, 4267-4273.]). Some quinoline derivatives have also been reported as corrosion inhibitors for steel in an acidic medium (Ebenso et al. 2010[Ebenso, E. E., Obot, I. B. & Murulana, L. C. (2010). Int. J. Electrochem. Sci. 5, 1574-1586.]). Following on from our research in the field of substituted pyrido[2,3-b]pyrazine derivatives (Filali Baba et al., 2016[Filali Baba, Y., Mague, J. T., Kandri Rodi, Y., Ouzidan, Y., Essassi, E. M. & Zouihri, H. (2016). IUCrData, 1, x160997.]), we report here the synthesis of the title compound by the condensation reaction of iodo­methane with ethyl 1,2-di­hydro-2-oxo­quinoline-4-carboxyl­ate and its crystal structure.

The title compound lies on a mirror plane and crystallizes with one independent mol­ecule in the asymmetric unit (Fig. 1[link]). Only the hydrogen atoms of the methyl­ene and methyl groups lie out of this plane. An intra­molecular C5—H5⋯O2 hydrogen bond generates an S(6) ring motif. In the crystal, weak C8—H8⋯O1i hydrogen bonds link the mol­ecules into zigzag chains along the a-axis direction (Table 1[link], Fig. 2[link]). In addition, ππ inter­actions involving the pyridine and benzene rings of the oxo­quinoline ring system stack the mol­ecules into parallel layers [Cg1⋯Cg2 = 3.7003 (2) Å, symmetry operations 1 − x, −y, 1 − z; 1 − x, 1 − y, 1 − z; 1 − x, −[{1\over 2}] + y, 1 − z; 1 − x, [{1\over 2}] + y, 1 − z; Cg1 and Cg2 are the centroids of the N1/C1–C4/C9 and C4–C9 rings, respectively].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2 0.93 2.24 2.892 (2) 126
C8—H8⋯O1i 0.93 2.37 3.285 (2) 168
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The structure of the title compound, showing the atom-numbering scheme, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2]
Figure 2
The packing of the title compound, viewed along the b axis. Dashed lines indicate both intra- and inter­molecular hydrogen bonds. H atoms not involved in the packing have been omitted for clarity.

Synthesis and crystallization

A solution of ethyl 1,2-di­hydro-2-oxo­quinoline-4-carboxyl­ate (1 g 4.6 mmol) in 15 ml of DMF was mixed with iodo­methane (0.34 ml, 5.5 mmol), K2CO3 (0.82 g, 6 mmol) and TBAB(0.03 g, 0.1 mmol). The reaction mixture was stirred at room temperature in DMF for 6 h. After removal of salts by filtration, the DMF was evaporated under reduced pressure and the residue obtained was dissolved in di­chloro­methane. The organic phase was dried over Na2SO4 then concentrated in vacuo. The title compound was obtained after recrystallization from a di­chloro­methane/hexane (1/3) solvent mixture, yield = 81%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms on the C12 and C13 methyl groups were generated using the PART −1 and AFIX 137 functions in SHELXL.

Table 2
Experimental details

Crystal data
Chemical formula C13H13NO3
Mr 231.24
Crystal system, space group Orthorhombic, Pnma
Temperature (K) 293
a, b, c (Å) 12.2269 (4), 6.7034 (3), 14.0817 (5)
V3) 1154.16 (8)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.78
Crystal size (mm) 0.16 × 0.12 × 0.04
 
Data collection
Diffractometer Rigaku Oxford Diffraction
Absorption correction Multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Americas, The Woodlands, Texas, USA.])
Tmin, Tmax 0.751, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6979, 1219, 1036
Rint 0.038
(sin θ/λ)max−1) 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.119, 1.05
No. of reflections 1219
No. of parameters 105
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.15
Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Americas, The Woodlands, Texas, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); cell refinement: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Ethyl 1-methyl-2-oxo-1,2-dihydroquinoline-4-carboxylate top
Crystal data top
C13H13NO3Dx = 1.331 Mg m3
Mr = 231.24Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PnmaCell parameters from 2463 reflections
a = 12.2269 (4) Åθ = 4.8–71.5°
b = 6.7034 (3) ŵ = 0.78 mm1
c = 14.0817 (5) ÅT = 293 K
V = 1154.16 (8) Å3Plate, yellow
Z = 40.16 × 0.12 × 0.04 mm
F(000) = 488
Data collection top
Rigaku Oxford Diffraction
diffractometer
1219 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source1036 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 16.0416 pixels mm-1θmax = 71.5°, θmin = 4.8°
ω scansh = 1415
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku Oxford Diffraction, 2015)
k = 58
Tmin = 0.751, Tmax = 1.000l = 1517
6979 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.071P)2 + 0.1102P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1219 reflectionsΔρmax = 0.28 e Å3
105 parametersΔρmin = 0.15 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.36454 (11)0.25000.25521 (9)0.0580 (4)
O20.36344 (10)0.25000.67503 (9)0.0544 (4)
O30.22613 (9)0.25000.57140 (8)0.0446 (4)
N10.52409 (11)0.25000.33834 (9)0.0352 (4)
C10.41212 (13)0.25000.33222 (12)0.0386 (4)
C20.35321 (13)0.25000.42157 (12)0.0367 (4)
H20.27720.25000.41980.044*
C30.40269 (13)0.25000.50701 (11)0.0313 (4)
C40.52145 (12)0.25000.51177 (11)0.0303 (4)
C50.58205 (13)0.25000.59667 (12)0.0370 (4)
H50.54540.25000.65460.044*
C60.69501 (14)0.25000.59553 (13)0.0439 (4)
H60.73390.25000.65230.053*
C70.75009 (14)0.25000.50994 (13)0.0447 (4)
H70.82620.25000.50960.054*
C80.69445 (13)0.25000.42541 (12)0.0390 (4)
H80.73280.25000.36840.047*
C90.57974 (13)0.25000.42483 (11)0.0312 (4)
C100.33175 (13)0.25000.59438 (12)0.0346 (4)
C110.14893 (14)0.25000.64993 (14)0.0491 (5)
H11A0.15920.36750.68910.059*0.5
H11B0.15920.13250.68910.059*0.5
C120.03753 (17)0.25000.60706 (19)0.0834 (9)
H12A0.02320.37790.57900.125*0.5
H12B0.01580.22360.65550.125*0.5
H12C0.03340.14850.55910.125*0.5
C130.58549 (16)0.25000.24866 (12)0.0499 (5)
H13A0.63930.14580.25000.075*0.5
H13B0.62120.37640.24060.075*0.5
H13C0.53610.22780.19670.075*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0450 (7)0.0960 (12)0.0330 (7)0.0000.0106 (5)0.000
O20.0409 (7)0.0905 (11)0.0318 (7)0.0000.0003 (5)0.000
O30.0309 (6)0.0647 (8)0.0380 (7)0.0000.0030 (4)0.000
N10.0342 (7)0.0434 (8)0.0281 (7)0.0000.0005 (5)0.000
C10.0354 (9)0.0466 (9)0.0339 (8)0.0000.0076 (6)0.000
C20.0281 (7)0.0452 (9)0.0368 (9)0.0000.0027 (6)0.000
C30.0312 (8)0.0308 (8)0.0319 (8)0.0000.0011 (6)0.000
C40.0305 (8)0.0282 (8)0.0323 (8)0.0000.0019 (6)0.000
C50.0353 (9)0.0441 (9)0.0318 (8)0.0000.0025 (6)0.000
C60.0376 (9)0.0556 (11)0.0385 (9)0.0000.0116 (7)0.000
C70.0265 (7)0.0562 (11)0.0514 (10)0.0000.0044 (7)0.000
C80.0321 (8)0.0469 (10)0.0379 (9)0.0000.0034 (6)0.000
C90.0310 (8)0.0303 (8)0.0324 (8)0.0000.0031 (6)0.000
C100.0310 (8)0.0353 (8)0.0376 (8)0.0000.0003 (6)0.000
C110.0355 (9)0.0700 (13)0.0418 (10)0.0000.0086 (7)0.000
C120.0352 (11)0.149 (3)0.0661 (16)0.0000.0053 (10)0.000
C130.0450 (10)0.0733 (13)0.0313 (9)0.0000.0031 (7)0.000
Geometric parameters (Å, º) top
O1—C11.231 (2)C6—H60.9300
O2—C101.200 (2)C6—C71.381 (3)
O3—C101.3312 (19)C7—H70.9300
O3—C111.454 (2)C7—C81.371 (2)
N1—C11.372 (2)C8—H80.9300
N1—C91.3952 (19)C8—C91.403 (2)
N1—C131.469 (2)C11—H11A0.9700
C1—C21.450 (2)C11—H11B0.9700
C2—H20.9300C11—C121.490 (3)
C2—C31.347 (2)C12—H12A0.9600
C3—C41.454 (2)C12—H12B0.9600
C3—C101.505 (2)C12—H12C0.9600
C4—C51.407 (2)C13—H13A0.9600
C4—C91.417 (2)C13—H13B0.9600
C5—H50.9300C13—H13C0.9600
C5—C61.381 (2)
C10—O3—C11116.42 (13)C7—C8—C9120.08 (15)
C1—N1—C9122.79 (13)C9—C8—H8120.0
C1—N1—C13117.13 (13)N1—C9—C4120.60 (14)
C9—N1—C13120.08 (14)N1—C9—C8119.52 (13)
O1—C1—N1121.81 (15)C8—C9—C4119.88 (13)
O1—C1—C2122.00 (15)O2—C10—O3122.91 (15)
N1—C1—C2116.19 (14)O2—C10—C3125.97 (14)
C1—C2—H2118.2O3—C10—C3111.12 (13)
C3—C2—C1123.52 (15)O3—C11—H11A110.4
C3—C2—H2118.2O3—C11—H11B110.4
C2—C3—C4119.33 (14)O3—C11—C12106.58 (17)
C2—C3—C10118.12 (14)H11A—C11—H11B108.6
C4—C3—C10122.55 (13)C12—C11—H11A110.4
C5—C4—C3124.43 (14)C12—C11—H11B110.4
C5—C4—C9118.00 (14)C11—C12—H12A109.5
C9—C4—C3117.57 (13)C11—C12—H12B109.5
C4—C5—H5119.4C11—C12—H12C109.5
C6—C5—C4121.12 (15)H12A—C12—H12B109.5
C6—C5—H5119.4H12A—C12—H12C109.5
C5—C6—H6120.1H12B—C12—H12C109.5
C7—C6—C5119.86 (15)N1—C13—H13A109.5
C7—C6—H6120.1N1—C13—H13B109.5
C6—C7—H7119.5N1—C13—H13C109.5
C8—C7—C6121.05 (16)H13A—C13—H13B109.5
C8—C7—H7119.5H13A—C13—H13C109.5
C7—C8—H8120.0H13B—C13—H13C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O20.932.242.892 (2)126
C8—H8···O1i0.932.373.285 (2)168
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationBeena & Rawat, D. S. (2013). Med. Res. Rev. 33, 693–764.  Google Scholar
First citationChai, Y., Liu, M.-L., Lv, K., Feng, L.-S., Li, S.-J., Sun, L.-Y., Wang, S. & Guo, H.-Y. (2011). Eur. J. Med. Chem. 46, 4267–4273.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEbenso, E. E., Obot, I. B. & Murulana, L. C. (2010). Int. J. Electrochem. Sci. 5, 1574–1586.  CAS Google Scholar
First citationElderfield, R. C. & LeVon, E. F. (1960). J. Org. Chem. 25, 1576–1583.  CrossRef CAS Web of Science Google Scholar
First citationFilali Baba, Y., Mague, J. T., Kandri Rodi, Y., Ouzidan, Y., Essassi, E. M. & Zouihri, H. (2016). IUCrData, 1, x160997.  Google Scholar
First citationRatheesh, M., Sindhu, G. & Helen, H. (2013). Inflamm. Res. 62, 367–376.  CrossRef CAS PubMed Google Scholar
First citationRigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Americas, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds