organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-(Cyclo­hex-1-en-1-yl)-3-[(1-phenyl-1H-1,2,3-triazol-4-yl)meth­yl]-1H-benzimidazol-2(3H)-one

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Moléculaire, Département de Chimie, Faculté des Sciences Semlalia, BP 2390, Université Cadi Ayyad, 40001 Marrakech, Morocco, bCristallographie, Résonance Magnétique et Modélisation (CRM2), Université Henri Poincaré, Nancy 1, Faculté des Sciences, BP 70239, 54506 Vandoeuvre lès Nancy Cedex, France, and cLaboratoire de Chimie des Substances Naturelles, Unité Associé au CNRST (URAC16), Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, Université Cadi Ayyad, 40000 Marrakech, Morocco
*Correspondence e-mail: loughzail@gmail.com

Edited by J. Simpson, University of Otago, New Zealand (Received 13 June 2017; accepted 17 June 2017; online 23 June 2017)

In the title compound, C22H21N5O, the triazole ring is inclined at 16.88 (12)° to its phenyl substituent and is almost normal to the benzimidazole ring system, making a dihedral angle of 88.40 (8)°. The cyclo­hexenyl ring adopts a half-chair conformation and its mean plane is inclined to the benzimidazole ring system by 78.75 (12)°. In the crystal, mol­ecules are linked by C—H⋯O and C—H⋯N hydrogen bonds, forming a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Heterocyclic triazole derivatives are important components of materials with both agrochemical (Bowyer & Denning, 2014[Bowyer, P. & Denning, D. W. (2014). Pest Manag. Sci. 70, 173-178.]) and medicinal (Kumar et al., 2013[Kumar, R., Yar, M. S., Chaturvedi, S. & Srivastava, A. (2013). Int. J. Pharm. Tech. Res. 5, 1844-1869.]) applications. 1,2,3-Triazoles display a wide range of inter­esting biological activities, and are used as anti-inflammatory (De Simone et al., 2011[De Simone, R., Chini, M. G., Bruno, I., Riccio, R., Mueller, D., Werz, O. & Bifulco, G. (2011). J. Med. Chem. 54, 1565-1575.]), anti-allergic (Buckle et al., 1986[Buckle, D. R., Rockell, C. J. M., Smith, H. & Spicer, B. A. (1986). J. Med. Chem. 29, 2262-2267.]) and anti-HIV agents (Giffin et al., 2008[Giffin, M. J., Heaslet, H., Brik, A., Lin, Y. C., Cauvi, G., Wong, C. H., McRee, D. E., Elder, J. H., Stout, C. D. & Torbett, B. E. (2008). J. Med. Chem. 51, 6263-6270.]; Whiting et al., 2006[Whiting, M., Muldoon, J., Lin, Y. C., Silverman, S. M., Lindstrom, W., Olson, A. J., Kolb, H. C., Finn, M. G., Sharpless, K. B., Elder, J. H. & Fokin, V. V. (2006). Angew. Chem. Int. Ed. 45, 1435-1439.]). They are also effective in the inhibition of histidine biosynthesis (Ventura et al., 1997[Ventura, I., Pérez-González, J. A. & Ramón, D. (1997). Microbiol. Lett. 149, 207-212.]). The most widely used method for the synthesis of 1,2,3-triazoles is the Huisgen (1963[Huisgen, R. (1963). Angew. Chem. Int. Ed. 2, 565-598.]) 1,3-dipolar cyclo­addition of alkynes with organic azides. The condensation reaction of 1-cyclo­hexenyl-3-prop-2-ynyl-1,3-di­hydro-benzoimidazol-2-one with azido­benzene in the presence of copper iodide (CuI) under reflux in aceto­nitrile for one hour gives a single regioisomer of the title compound in good yield.

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The triazole ring (N3/N4/N5/C10/C9) is almost normal to the plane of the benzimidazole ring system, making a dihedral angle of 88.36 (8)°. The cyclo­hexenyl ring (C17/C18–C22), displays a half chair conformation, as indicated by the total puckering amplitude QT = 0.494 (3) Å and the spherical polar angle θ2 = 52.3 (3)° with φ2 = 144.4 (4)°. This ring makes a dihedral angle of 78.75 (12)° with the benzimidazole ring system.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

In the crystal, pairs of C16—H16⋯N4 and C10—H10⋯O1 hydrogen bonds (Table 1[link]) each form inversion dimers, enclosing R22(10) and R22(14) rings, respectively. These combine with an additional C4—H4⋯O2 hydrogen bond to link the mol­ecules into a three-dimensional network, as shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.93 2.53 3.303 (2) 141
C16—H16⋯N4ii 0.93 2.62 3.413 (3) 144
C10—H10⋯O1iii 0.93 2.26 3.174 (2) 167
Symmetry codes: (i) x-1, y, z; (ii) -x, -y, -z+2; (iii) -x+1, -y, -z+1.
[Figure 2]
Figure 2
A partial view of the crystal packing of the title compound, viewed along the b-axis direction.

Synthesis and crystallization

To a solution of 1-cyclo­hexenyl-3-prop-2-ynyl-1,3-di­hydro-benzoimidazol-2-one (3.96 mmole) dissolved in aceto­nitrile was added azido­benzene (4.69 mmol), in the presence of CuI. The mixture was refluxed for 1 h; the reaction was monitored by thin layer chromatography. The mixture was filtered and the solvent removed under vacuum. The solid was purified by column chromatography on silica gel using hexa­ne/ethyl acetate as eluent. The solid product was recrystallized from ethanol solution.

1H NMR (300 MHz, CDCl3), δ (p.p.m.): 1.78, 1.90, 2.33, 2.43 (4 m, 8H, CH2–cyclo­hexen­yl), 5.31 (s, 2H, N—CH2), 5.98 (m, 1H, C=CH; H–cyclo­hexen­yl), 7.06–7,74 (m, 9H, H—Ar), 8.09 (s, 1H, H-triazolic). 13C NMR (75 MHz, CDCl3), δ (p.p.m.): 21.66, 22.60, 24.73, 26.85 (4 C, CH2–cyclo­hexen­yl), 36.35 (N—CH2), 127.36 (CH=C, C–cyclo­hexen­yl), 121.21 (N—CH=C, C-triazolic), 108.68, 120.56, 121.58, 128.89, 129.74 (C, CH=C, C—Ar), 121.67, 129.53, 132.21, 136.92, 144.00 (6C, =C–), 152,92 (1C, C=O).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C22H21N5O
Mr 371.43
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 8.5878 (8), 9.0603 (8), 12.8566 (12)
α, β, γ (°) 85.076 (7), 82.558 (7), 70.917 (8)
V3) 936.40 (16)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.48 × 0.20 × 0.15
 
Data collection
Diffractometer Bruker X8 APEX Diffractometer
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.811, 1.0
No. of measured, independent and observed [I > 2σ(I)] reflections 5162, 3592, 2866
Rint 0.029
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.143, 1.03
No. of reflections 3592
No. of parameters 253
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.67, −0.30
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

1-(Cyclohex-1-en-1-yl)-3-[(1-phenyl-1H-1,2,3-triazol-4-yl)methyl]-1H-benzimidazol-2(3H)-one top
Crystal data top
C22H21N5OZ = 2
Mr = 371.43F(000) = 392
Triclinic, P1Dx = 1.317 Mg m3
a = 8.5878 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.0603 (8) ÅCell parameters from 3592 reflections
c = 12.8566 (12) Åθ = 3.1–26.4°
α = 85.076 (7)°µ = 0.09 mm1
β = 82.558 (7)°T = 293 K
γ = 70.917 (8)°Block, colourless
V = 936.40 (16) Å30.48 × 0.20 × 0.15 mm
Data collection top
Bruker X8 APEX Diffractometer2866 reflections with I > 2σ(I)
Radiation source: fine-focus sealed X-ray tubeRint = 0.029
φ and ω scansθmax = 26.4°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 108
Tmin = 0.811, Tmax = 1.0k = 1111
5162 measured reflectionsl = 1016
3592 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.143 w = 1/[σ2(Fo2) + (0.0628P)2 + 0.6025P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3592 reflectionsΔρmax = 0.67 e Å3
253 parametersΔρmin = 0.30 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.99 Å (methylene), 0.98 Å (methyl), 1.0Å (methine) with Uiso(H) = 1.2Ueq(CH and CH2). The coordinates of H atoms attached to N atoms were freely refined with Uiso(H) = 1.2Ueq(N) and the H attached to hydroxyl O atoms were fixed geometrically and treated as riding with O—H = 0.84Å and Uiso(H) = 1.5Ueq(O).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C120.3923 (3)0.3191 (2)0.80138 (16)0.0229 (5)
H120.46120.29840.74400.028*
C160.1680 (3)0.2279 (3)0.93894 (17)0.0280 (5)
H160.08780.14580.97330.034*
C210.3016 (3)0.1477 (3)0.10909 (17)0.0319 (5)
H21A0.39560.17750.07560.038*
H21B0.21380.18510.06350.038*
C180.2255 (3)0.0204 (2)0.30745 (17)0.0315 (5)
H18A0.13140.03430.35280.038*
H18B0.32550.08120.33850.038*
C190.2295 (3)0.0802 (3)0.19899 (19)0.0332 (5)
H19A0.26110.19340.20330.040*
H19B0.11990.03930.17540.040*
C140.3050 (3)0.5029 (3)0.92148 (19)0.0363 (6)
H140.31610.60570.94420.044*
C150.1856 (3)0.3810 (3)0.97239 (19)0.0361 (6)
H150.11660.40221.02950.043*
C200.3520 (3)0.0292 (3)0.12117 (18)0.0321 (5)
H20A0.35740.07170.05360.039*
H20B0.46130.06990.14510.039*
C130.4079 (3)0.4719 (3)0.83683 (19)0.0324 (5)
H130.48870.55420.80310.039*
C220.2430 (3)0.2252 (3)0.21187 (17)0.0300 (5)
H220.22680.33160.21370.036*
O10.43046 (16)0.19506 (16)0.44443 (11)0.0200 (3)
N10.1877 (2)0.29311 (18)0.55563 (12)0.0159 (3)
N20.1672 (2)0.22461 (19)0.39825 (13)0.0170 (4)
N50.2507 (2)0.03975 (19)0.81699 (12)0.0168 (4)
N40.1623 (2)0.0792 (2)0.87935 (13)0.0226 (4)
C10.0200 (2)0.3188 (2)0.54935 (15)0.0163 (4)
C20.1186 (2)0.3784 (2)0.61908 (16)0.0191 (4)
H20.11050.40750.68530.023*
C60.0074 (2)0.2742 (2)0.45008 (15)0.0165 (4)
N30.1596 (2)0.2099 (2)0.82603 (13)0.0231 (4)
C100.3051 (2)0.0162 (2)0.72346 (15)0.0179 (4)
H100.36860.04070.66710.021*
C70.2799 (2)0.2326 (2)0.46372 (15)0.0164 (4)
C80.2612 (2)0.3012 (2)0.64997 (15)0.0180 (4)
H8A0.20640.40250.67970.022*
H8B0.37740.29060.63170.022*
C110.2720 (2)0.1982 (2)0.85310 (15)0.0190 (4)
C90.2458 (2)0.1753 (2)0.73019 (15)0.0163 (4)
C50.1435 (3)0.2862 (2)0.41806 (16)0.0207 (4)
H50.15120.25510.35240.025*
C170.2133 (2)0.1475 (2)0.30030 (15)0.0169 (4)
C30.2715 (2)0.3932 (2)0.58592 (17)0.0224 (4)
H30.36760.43510.63060.027*
C40.2841 (3)0.3470 (2)0.48808 (17)0.0225 (5)
H40.38790.35670.46900.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C120.0240 (11)0.0246 (11)0.0192 (10)0.0076 (9)0.0007 (8)0.0013 (8)
C160.0344 (13)0.0270 (11)0.0227 (11)0.0129 (10)0.0054 (9)0.0021 (9)
C210.0428 (14)0.0381 (13)0.0183 (11)0.0185 (11)0.0018 (10)0.0001 (9)
C180.0492 (15)0.0207 (11)0.0211 (11)0.0067 (10)0.0038 (10)0.0003 (9)
C190.0457 (15)0.0244 (11)0.0303 (13)0.0120 (10)0.0033 (11)0.0033 (9)
C140.0582 (17)0.0238 (12)0.0281 (12)0.0177 (11)0.0003 (11)0.0037 (9)
C150.0497 (16)0.0322 (13)0.0276 (12)0.0204 (12)0.0085 (11)0.0020 (10)
C200.0310 (12)0.0407 (14)0.0251 (12)0.0096 (11)0.0021 (9)0.0127 (10)
C130.0435 (14)0.0206 (11)0.0286 (12)0.0060 (10)0.0007 (10)0.0018 (9)
C220.0463 (14)0.0250 (11)0.0227 (11)0.0168 (10)0.0048 (10)0.0002 (9)
O10.0151 (7)0.0224 (7)0.0216 (7)0.0051 (6)0.0006 (5)0.0039 (6)
N10.0161 (8)0.0175 (8)0.0148 (8)0.0058 (6)0.0022 (6)0.0011 (6)
N20.0167 (8)0.0190 (8)0.0159 (8)0.0059 (7)0.0015 (6)0.0031 (6)
N50.0183 (8)0.0190 (8)0.0135 (8)0.0065 (7)0.0017 (6)0.0011 (6)
N40.0283 (10)0.0211 (9)0.0167 (9)0.0065 (7)0.0022 (7)0.0033 (7)
C10.0181 (10)0.0128 (9)0.0181 (10)0.0059 (7)0.0021 (7)0.0026 (7)
C20.0217 (10)0.0166 (10)0.0176 (10)0.0057 (8)0.0002 (8)0.0016 (8)
C60.0175 (10)0.0141 (9)0.0181 (10)0.0060 (8)0.0007 (7)0.0012 (7)
N30.0284 (10)0.0205 (9)0.0184 (9)0.0057 (7)0.0001 (7)0.0018 (7)
C100.0193 (10)0.0223 (10)0.0123 (9)0.0075 (8)0.0001 (7)0.0019 (7)
C70.0189 (10)0.0139 (9)0.0157 (9)0.0048 (8)0.0011 (7)0.0000 (7)
C80.0214 (10)0.0187 (10)0.0157 (10)0.0078 (8)0.0041 (8)0.0014 (7)
C110.0230 (10)0.0198 (10)0.0166 (10)0.0093 (8)0.0062 (8)0.0015 (8)
C90.0159 (9)0.0203 (10)0.0139 (9)0.0067 (8)0.0033 (7)0.0015 (7)
C50.0236 (11)0.0179 (10)0.0226 (10)0.0080 (8)0.0076 (8)0.0009 (8)
C170.0161 (9)0.0179 (10)0.0167 (9)0.0050 (8)0.0016 (7)0.0028 (7)
C30.0174 (10)0.0199 (10)0.0265 (11)0.0042 (8)0.0025 (8)0.0025 (8)
C40.0168 (10)0.0207 (10)0.0300 (11)0.0067 (8)0.0040 (8)0.0051 (8)
Geometric parameters (Å, º) top
C12—C111.384 (3)N1—C71.382 (2)
C12—C131.388 (3)N1—C11.394 (2)
C12—H120.9300N1—C81.455 (2)
C16—C151.382 (3)N2—C71.385 (2)
C16—C111.392 (3)N2—C61.393 (2)
C16—H160.9300N2—C171.439 (2)
C21—C221.500 (3)N5—C101.351 (2)
C21—C201.517 (3)N5—N41.355 (2)
C21—H21A0.9700N5—C111.431 (2)
C21—H21B0.9700N4—N31.312 (2)
C18—C171.486 (3)C1—C21.378 (3)
C18—C191.531 (3)C1—C61.399 (3)
C18—H18A0.9700C2—C31.394 (3)
C18—H18B0.9700C2—H20.9300
C19—C201.512 (3)C6—C51.378 (3)
C19—H19A0.9700N3—C91.358 (3)
C19—H19B0.9700C10—C91.370 (3)
C14—C131.380 (3)C10—H100.9300
C14—C151.381 (4)C8—C91.498 (3)
C14—H140.9300C8—H8A0.9700
C15—H150.9300C8—H8B0.9700
C20—H20A0.9700C5—C41.393 (3)
C20—H20B0.9700C5—H50.9300
C13—H130.9300C3—C41.387 (3)
C22—C171.326 (3)C3—H30.9300
C22—H220.9300C4—H40.9300
O1—C71.222 (2)
C11—C12—C13118.7 (2)C7—N2—C17123.90 (16)
C11—C12—H12120.7C6—N2—C17125.19 (16)
C13—C12—H12120.7C10—N5—N4110.57 (16)
C15—C16—C11119.1 (2)C10—N5—C11129.19 (17)
C15—C16—H16120.5N4—N5—C11120.23 (16)
C11—C16—H16120.5N3—N4—N5107.21 (16)
C22—C21—C20112.85 (19)C2—C1—N1131.87 (18)
C22—C21—H21A109.0C2—C1—C6121.32 (18)
C20—C21—H21A109.0N1—C1—C6106.80 (17)
C22—C21—H21B109.0C1—C2—C3117.01 (18)
C20—C21—H21B109.0C1—C2—H2121.5
H21A—C21—H21B107.8C3—C2—H2121.5
C17—C18—C19111.21 (18)C5—C6—N2131.24 (18)
C17—C18—H18A109.4C5—C6—C1121.64 (19)
C19—C18—H18A109.4N2—C6—C1107.10 (16)
C17—C18—H18B109.4N4—N3—C9108.87 (16)
C19—C18—H18B109.4N5—C10—C9104.52 (17)
H18A—C18—H18B108.0N5—C10—H10127.7
C20—C19—C18110.10 (19)C9—C10—H10127.7
C20—C19—H19A109.6O1—C7—N1126.60 (18)
C18—C19—H19A109.6O1—C7—N2127.29 (18)
C20—C19—H19B109.6N1—C7—N2106.11 (16)
C18—C19—H19B109.6N1—C8—C9111.45 (15)
H19A—C19—H19B108.2N1—C8—H8A109.3
C13—C14—C15119.9 (2)C9—C8—H8A109.3
C13—C14—H14120.0N1—C8—H8B109.3
C15—C14—H14120.0C9—C8—H8B109.3
C14—C15—C16120.4 (2)H8A—C8—H8B108.0
C14—C15—H15119.8C12—C11—C16121.16 (19)
C16—C15—H15119.8C12—C11—N5119.89 (18)
C19—C20—C21110.9 (2)C16—C11—N5118.93 (19)
C19—C20—H20A109.5N3—C9—C10108.83 (17)
C21—C20—H20A109.5N3—C9—C8121.42 (17)
C19—C20—H20B109.5C10—C9—C8129.73 (18)
C21—C20—H20B109.5C6—C5—C4117.29 (19)
H20A—C20—H20B108.0C6—C5—H5121.4
C14—C13—C12120.8 (2)C4—C5—H5121.4
C14—C13—H13119.6C22—C17—N2120.40 (18)
C12—C13—H13119.6C22—C17—C18124.28 (19)
C17—C22—C21122.4 (2)N2—C17—C18115.31 (17)
C17—C22—H22118.8C4—C3—C2121.76 (19)
C21—C22—H22118.8C4—C3—H3119.1
C7—N1—C1110.11 (15)C2—C3—H3119.1
C7—N1—C8123.32 (16)C3—C4—C5120.95 (19)
C1—N1—C8125.74 (16)C3—C4—H4119.5
C7—N2—C6109.84 (16)C5—C4—H4119.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.932.533.303 (2)141
C16—H16···N4ii0.932.623.413 (3)144
C10—H10···O1iii0.932.263.174 (2)167
Symmetry codes: (i) x1, y, z; (ii) x, y, z+2; (iii) x+1, y, z+1.
 

Acknowledgements

The authors thank the Laboratoire de Cristallographie, Résonance Magnétique et Modélization (CRM2), Université Henri Poincaré, Nancy 1, Faculté des Sciences, BP 70239, 54506 Vandoeuvre lès Nancy CEDEX, France, for the data collection.

References

First citationBowyer, P. & Denning, D. W. (2014). Pest Manag. Sci. 70, 173–178.  CrossRef CAS PubMed Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuckle, D. R., Rockell, C. J. M., Smith, H. & Spicer, B. A. (1986). J. Med. Chem. 29, 2262–2267.  CrossRef CAS PubMed Google Scholar
First citationDe Simone, R., Chini, M. G., Bruno, I., Riccio, R., Mueller, D., Werz, O. & Bifulco, G. (2011). J. Med. Chem. 54, 1565–1575.  CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGiffin, M. J., Heaslet, H., Brik, A., Lin, Y. C., Cauvi, G., Wong, C. H., McRee, D. E., Elder, J. H., Stout, C. D. & Torbett, B. E. (2008). J. Med. Chem. 51, 6263–6270.  CrossRef PubMed CAS Google Scholar
First citationHuisgen, R. (1963). Angew. Chem. Int. Ed. 2, 565–598.  CrossRef Google Scholar
First citationKumar, R., Yar, M. S., Chaturvedi, S. & Srivastava, A. (2013). Int. J. Pharm. Tech. Res. 5, 1844–1869.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVentura, I., Pérez-González, J. A. & Ramón, D. (1997). Microbiol. Lett. 149, 207–212.  CrossRef CAS Google Scholar
First citationWhiting, M., Muldoon, J., Lin, Y. C., Silverman, S. M., Lindstrom, W., Olson, A. J., Kolb, H. C., Finn, M. G., Sharpless, K. B., Elder, J. H. & Fokin, V. V. (2006). Angew. Chem. Int. Ed. 45, 1435–1439.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds