organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(2Z)-2-(5-Fluoro-1-methyl-2-oxoindolin-3-yl­­idene)-N-(3-fluoro­phen­yl)hydrazine-1-carbo­thio­amide

CROSSMARK_Color_square_no_text.svg

aİlke Education and Health Foundation, Cappadocia Vocational College, The Medical Imaging Techniques Program, 50420 Mustafapaşa, Ürgüp, Nevşehir, Turkey, bDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Yüzüncü Yıl University, 65080 Tuşba, Van, Turkey, cDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Ístanbul University, 34116 Beyazıt–Ístanbul, Turkey, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and eDepartment of Physics, Faculty of Arts and Sciences, Sinop University, 57010 Sinop, Turkey
*Correspondence e-mail: zeliha.atioglu@kapadokya.edu.tr

Edited by J. Simpson, University of Otago, New Zealand (Received 11 June 2017; accepted 16 June 2017; online 20 June 2017)

In the title compound, C16H12F2N4OS, the whole mol­ecule is essentially planar (r.m.s deviation = 0.003 Å), with only the H atoms of the methyl group lying out of the mol­ecular plane. A planar indole fused-ring system (r.m.s deviation = 0.004 Å) is linked through a hydrazine–carbo­thio­amide bridge to a fluoro­benzene ring, with the indole ring system and inclined to the fluoro­benzene ring by 4.26 (14)°. The planarity of the mol­ecule is strengthened by three intra­molecular N—H⋯N, N—H⋯O and C—H⋯S hydrogen bonds that generate S(5), S(6) and S(6) ring motifs, respectively. In the crystal, ππ stacking inter­actions combine with C—H⋯·F hydrogen bonds to link the mol­ecules into layers parallel to the (10-1) plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The indole heterocyclic ring system is a significant component of many pharmaceutical agents, including compounds with anti­viral, anti-inflammatory and anti­neoplastic properties (Ma et al., 2015[Ma, J., Bao, G., Wang, L., Li, W., Xu, B., Du, B., Lv, J., Zhai, X. & Gong, P. (2015). Eur. J. Med. Chem. 96, 173-186.]). Halogenated and N-alkyl­ated isatin derivatives demonstrate anti­tumour activity (Karalı et al., 2007[Karalı, N., Gürsoy, A., Kandemirli, F., Shvets, N., Kaynak, F. B., Özbey, S., Kovalishyn, V. & Dimoglo, A. (2007). Bioorg. Med. Chem. 15, 5888-5904.]; Podichetty et al., 2009[Podichetty, A. K., Faust, A., Kopka, K., Wagner, S., Schober, O., Schäfers, M. & Haufe, G. (2009). Bioorg. Med. Chem. 17, 2680-2688.]). Thio­semicarbazone compounds that incorporate isatin units also have various types of biological effects, including anti­viral, anti­bacterial and anti­tumour activity (Thanh et al., 2016[Thanh, N. D., Giang, N. T. K., Quyen, T. H. & Huong, D. T. (2016). Eur. J. Med. Chem. 123, 532-543.]). Isatin 3-thio­semicarbazones, which show anti-HIV effects, are also used in the treatment of smallpox and vaccinia viruses, and of other groups of viruses, including adenovirus and herpesvirus (Bal et al., 2005[Bal, T. R., Anand, B., Yogeeswari, P. & Sriram, D. (2005). Bioorg. Med. Chem. Lett. 15, 4451-4455.]; Hall et al., 2009[Hall, M. D., Salam, N. K., Hellawell, J. L., Fales, H. M., Kensler, C. B., Ludwig, J. A., Szakacs, G., Hibbs, D. E. & Gottesman, M. M. (2009). J. Med. Chem. 52, 3191-3204.]; Thanh et al., 2016[Thanh, N. D., Giang, N. T. K., Quyen, T. H. & Huong, D. T. (2016). Eur. J. Med. Chem. 123, 532-543.]). Finally, isatin [N4-(phenyl substituted)thio­semicarbazone] derivatives have been shown to be significantly more selective and effective against multidrug resistance when compared to the activity of N4-alkyl and N4-cyclo­alkyl­thio­semicarbazones (Hall et al., 2009[Hall, M. D., Salam, N. K., Hellawell, J. L., Fales, H. M., Kensler, C. B., Ludwig, J. A., Szakacs, G., Hibbs, D. E. & Gottesman, M. M. (2009). J. Med. Chem. 52, 3191-3204.], 2011[Hall, M. D., Brimacombe, K. R., Varonka, M. S., Pluchino, K. M., Monda, J. K., Li, J., Walsh, M. J., Boxer, M. B., Warren, T. H., Fales, H. M. & Gottesman, M. M. (2011). J. Med. Chem. 54, 5878-5889.]).

As shown in Fig. 1[link], the mol­ecule of the title compound is essentially planar (r.m.s deviation = 0.003 Å), with only the H atoms of the C9 methyl group protruding from the mol­ecular plane. The almost planar indole fused-ring (N1/C1–C8) (r.m.s deviation deviation = 0.004 Å) makes a dihedral angle of 4.26 (14)° with the C11–C16 benzene ring. The N2—N3—C10=S1 and N2—N3—C10—N4 torsion angles are 172.6 (2) and −6.1 (4)°, respectively, again in keeping with the planarity of the mol­ecule. Three intra­molecular N—H⋯N, N—H⋯O and C—H⋯S hydrogen bonds (Table 1[link]) generate S(5), S(6) and S(6) ring motifs, respectively, and also contribute significantly to the mol­ecular planarity.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯O1 0.88 (3) 2.08 (3) 2.761 (3) 134 (2)
N4—H4N⋯N2 0.87 (3) 2.07 (3) 2.579 (3) 117 (3)
C2—H2⋯F2i 0.93 2.44 3.370 (5) 176
C12—H12⋯S1 0.93 2.60 3.251 (3) 127
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

All bond lengths and angles are within normal ranges and are in agreement with those reported for the related com­pounds 2-(5-fluoro-1-methyl-2-oxoindolin-3-yl­idene)-N-[4-(methyl­sulfan­yl)phen­yl]hydrazine-1-carbo­thio­amide (Atioğlu et al., 2017[Atioğlu, Z., Sevinçli, Z. Ş., Karalı, N., Akkurt, M. & Ersanlı, C. C. (2017). IUCrData, 2, x170671-x170671.]), (3E)-3-[(4-butyl­phen­yl)imino]-1,3-di­hydro-2H-indol-2-one (Akkurt et al., 2003[Akkurt, M., Öztürk, S., Erçağ, A., Özgür, M. Ü. & Heinemann, F. W. (2003). Acta Cryst. E59, o780-o782.]), N′-[(2Z)-3-allyl-4-oxo-1,3-thia­zolidin-2-yl­idene]-5-fluoro-3-phenyl-1H-indole-2-carbo­hy­drazide (Akkurt et al., 2009[Akkurt, M., Karaca, S., Cihan, G., Çapan, G. & Büyükgüngör, O. (2009). Acta Cryst. E65, o1009-o1010.]), 2-(4-iso­butyl­phen­yl)-N′-[(3Z)-2-oxoindolin-3-yl­idene]propano­hydrazide (Mohamed et al., 2012[Mohamed, S. K., Akkurt, M., Albayati, M. R., Singh, K. & Potgieter, H. (2012). Acta Cryst. E68, o1222-o1223.]) and series of 5-fluoro-1H-indole-2,3-dione 3-thio­semicarbazone (Özbey et al., 2006[Özbey, S., Kaynak, F. B., Eriksson, L., Karali, N. & Gürsoy, A. (2006). Acta Cryst. A62, s174.]) and 5-tri­fluoro­meth­oxy-1H-indole-2,3-dione 3-thio­semicarbazone derivatives (Kaynak et al., 2013[Kaynak, F. B., Özbey, S. & Karalı, N. (2013). J. Mol. Struct. 1049, 157-164.]).

In the crystal structure of the title compound, C2—H⋯F2 hydrogen bonds link mol­ecules into zigzag C(14) chains along b. ππ stacking inter­actions between the oxo­pyrrole and benzene rings [Cg1⋯Cg3iii = 3.818 (2) Å; symmetry code: (iii) 1 − x, 1 − y, 1 − z; Cg1 and Cg3 are the centroids of the N1/C1–C8 and C11–C16 rings, respectively] (Table 1[link]) link these chains into layers parallel to the (10[\overline{1}]) plane (Fig. 2[link]).

[Figure 2]
Figure 2
The layers of mol­ecules of the title compound, viewed along the a-axis direction.

Synthesis and crystallization

Steps in the synthesis of the title compound (5) are shown in Fig. 3[link].

[Figure 3]
Figure 3
The synthesis of the title compound.

(i) N-(3-Fluoro­phen­yl)thio­semicarbazide (2)

To a solution of hydrazine hydrate (5 mmol) in ethanol (10 ml), a suspension of 3-fluoro­phenyl iso­thio­cyanate, 1 (5 mmol), in ethanol (10 ml) was added dropwise with vigorous stirring and cooling in an ice bath. The mixture was allowed to stand overnight. The crystals formed were recrystallized from ethanol solution.

(ii) 5-Fluoro-1-methyl-1H-indole-2,3-dione (4)

A suspension of 5-fluoro-1H-indole-2,3-dione, 3 (5 mmol), K2CO3 (7 mmol) and KI (1 mmol) in anhydrous DMF (5 ml) was stirred for 30 min at room temperature. After addition of iodo­methane (15 mmol), the mixture was refluxed for 4 h. The product was poured onto ice–water and filtered.

(iii) (2Z)-2-(5-Fluoro-1-methyl-2-oxoindolin-1-yl­idene)-N-(3-fluoro­phen­yl)hydrazine-1-carbo­thio­amide (5)

A solution of N-(3-fluoro­phen­yl)thio­semicarbazide, 2 (2.5 mmol), in ethanol (10 ml) was added to a solution of 5-fluoro-1-methyl-1H-indole-2,3-dione, 4 (2.5 mmol), in ethanol (20 ml). The mixture was refluxed on a water bath for 8 h. The product formed after cooling was filtered off and washed with ethanol or recrystallized from ethanol. Orange crystals were obtained (82% yield; m.p. 510–516 K).

IR (KBr): ν 3288, 3226 (NH), 1695 (C=O), 1276 (C=S); 1H NMR (DMSO-d6, 400 MHz): δ 3.20 (s, 3H, ind. N—CH3), 7.09–7.16 (m, 2H, ind. C7—H, fen. C4—H), 7.28 (dt, J = 9.00, 2.70 Hz, 1H, ind. C6—H), 7.43–7.51 (m, 2H, fen. C5,6—H), 7.59–7.65 (m, 2H, ind. C4—H, fen. C2—H), 10.86 (s, 1H, N4—H), 12.62 (s, 1H, N2—H). Analysis calculated for C16H12F2N4OS: C 55.48, H 3.49, N 16.18%; found: C 55.26, H 3.41, N 16.18%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C16H12F2N4OS
Mr 346.36
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 8.2648 (8), 25.571 (2), 7.6662 (6)
β (°) 108.248 (3)
V3) 1538.7 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.24
Crystal size (mm) 0.18 × 0.16 × 0.15
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.664, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 33521, 3145, 2536
Rint 0.061
(sin θ/λ)max−1) 0.627
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.125, 1.20
No. of reflections 3145
No. of parameters 227
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.20, −0.22
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

(2Z)-2-(5-Fluoro-1-methyl-2-oxoindolin-3-ylidene)-N-(3-fluorophenyl)hydrazine-1-carbothioamide top
Crystal data top
C16H12F2N4OSF(000) = 712
Mr = 346.36Dx = 1.495 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.2648 (8) ÅCell parameters from 9857 reflections
b = 25.571 (2) Åθ = 3.1–26.4°
c = 7.6662 (6) ŵ = 0.24 mm1
β = 108.248 (3)°T = 296 K
V = 1538.7 (2) Å3Block, orange
Z = 40.18 × 0.16 × 0.15 mm
Data collection top
Bruker APEX-II CCD
diffractometer
2536 reflections with I > 2σ(I)
φ and ω scansRint = 0.061
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
θmax = 26.5°, θmin = 2.9°
Tmin = 0.664, Tmax = 0.745h = 1010
33521 measured reflectionsk = 3132
3145 independent reflectionsl = 89
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.062 w = 1/[σ2(Fo2) + (0.016P)2 + 1.7256P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.125(Δ/σ)max = 0.001
S = 1.20Δρmax = 0.20 e Å3
3145 reflectionsΔρmin = 0.22 e Å3
227 parametersExtinction correction: Shelxl-2014/7 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0148 (18)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3755 (4)0.68818 (11)0.1055 (4)0.0491 (8)
C20.3839 (6)0.74228 (13)0.1121 (6)0.0656 (10)
H20.29900.76270.03340.079*
C30.5238 (6)0.76481 (13)0.2405 (6)0.0737 (12)
H30.53390.80100.24820.088*
C40.6471 (5)0.73406 (14)0.3560 (6)0.0671 (11)
C50.6409 (4)0.68024 (12)0.3531 (5)0.0532 (8)
H50.72550.66020.43390.064*
C60.5028 (4)0.65757 (10)0.2241 (4)0.0438 (7)
C70.4530 (4)0.60370 (11)0.1799 (4)0.0397 (6)
C80.2885 (4)0.60452 (11)0.0230 (4)0.0440 (7)
C90.0958 (5)0.67445 (15)0.1501 (5)0.0724 (11)
H9A0.03090.64500.21210.109*
H9B0.12580.69610.23760.109*
H9C0.02890.69440.09160.109*
C100.5401 (3)0.47150 (10)0.3010 (4)0.0358 (6)
C110.8089 (3)0.44869 (10)0.5535 (4)0.0363 (6)
C120.8077 (4)0.39485 (11)0.5441 (4)0.0469 (7)
H120.72250.37710.45530.056*
C130.9371 (4)0.36828 (11)0.6708 (5)0.0496 (8)
C141.0649 (4)0.39157 (13)0.8042 (4)0.0493 (8)
H141.15010.37210.88680.059*
C151.0629 (4)0.44527 (13)0.8118 (4)0.0521 (8)
H151.14800.46270.90190.063*
C160.9369 (4)0.47364 (11)0.6882 (4)0.0449 (7)
H160.93780.51000.69540.054*
N10.2499 (3)0.65613 (10)0.0125 (4)0.0514 (7)
N20.5351 (3)0.56333 (8)0.2634 (3)0.0383 (5)
N30.4656 (3)0.51577 (9)0.2078 (3)0.0398 (6)
H3N0.368 (4)0.5131 (11)0.119 (4)0.041 (8)*
N40.6882 (3)0.48115 (9)0.4309 (3)0.0410 (6)
H4N0.710 (4)0.5146 (12)0.441 (4)0.045 (8)*
O10.2066 (3)0.56682 (8)0.0540 (3)0.0530 (6)
S10.43668 (10)0.41527 (3)0.24325 (11)0.0501 (3)
F10.7820 (3)0.75761 (9)0.4809 (4)0.0957 (8)
F20.9353 (3)0.31510 (7)0.6611 (3)0.0879 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.068 (2)0.0349 (15)0.0554 (19)0.0101 (14)0.0353 (17)0.0061 (13)
C20.099 (3)0.0398 (18)0.076 (2)0.0161 (19)0.053 (2)0.0130 (17)
C30.118 (4)0.0343 (17)0.093 (3)0.007 (2)0.068 (3)0.0037 (19)
C40.092 (3)0.048 (2)0.080 (3)0.023 (2)0.053 (2)0.0183 (19)
C50.062 (2)0.0440 (17)0.063 (2)0.0084 (15)0.0328 (17)0.0069 (15)
C60.0556 (18)0.0321 (14)0.0517 (17)0.0035 (13)0.0284 (15)0.0015 (13)
C70.0459 (16)0.0342 (14)0.0434 (16)0.0050 (12)0.0205 (13)0.0022 (12)
C80.0466 (17)0.0416 (16)0.0480 (17)0.0089 (13)0.0210 (14)0.0060 (13)
C90.071 (3)0.072 (2)0.071 (2)0.031 (2)0.018 (2)0.025 (2)
C100.0374 (15)0.0358 (14)0.0336 (14)0.0046 (11)0.0102 (11)0.0001 (11)
C110.0315 (13)0.0381 (14)0.0372 (14)0.0007 (11)0.0079 (11)0.0003 (11)
C120.0385 (15)0.0377 (15)0.0534 (18)0.0001 (12)0.0016 (13)0.0046 (13)
C130.0412 (17)0.0354 (15)0.064 (2)0.0051 (12)0.0043 (15)0.0013 (14)
C140.0352 (15)0.0566 (19)0.0483 (18)0.0069 (13)0.0020 (13)0.0066 (14)
C150.0394 (16)0.0569 (19)0.0484 (18)0.0045 (14)0.0030 (14)0.0038 (15)
C160.0432 (16)0.0377 (15)0.0477 (17)0.0046 (12)0.0053 (13)0.0008 (12)
N10.0571 (16)0.0451 (14)0.0540 (16)0.0174 (12)0.0206 (13)0.0116 (12)
N20.0425 (13)0.0308 (11)0.0417 (13)0.0027 (10)0.0135 (10)0.0007 (10)
N30.0398 (14)0.0325 (12)0.0396 (13)0.0026 (10)0.0018 (11)0.0008 (10)
N40.0407 (13)0.0278 (12)0.0450 (14)0.0004 (10)0.0003 (10)0.0004 (10)
O10.0468 (12)0.0502 (13)0.0551 (13)0.0028 (10)0.0061 (10)0.0019 (10)
S10.0461 (4)0.0347 (4)0.0553 (5)0.0032 (3)0.0047 (3)0.0001 (3)
F10.114 (2)0.0690 (15)0.116 (2)0.0432 (14)0.0545 (17)0.0386 (14)
F20.0730 (14)0.0385 (11)0.1170 (19)0.0134 (10)0.0208 (13)0.0008 (11)
Geometric parameters (Å, º) top
C1—C21.385 (4)C9—H9C0.9600
C1—C61.395 (4)C10—N41.337 (3)
C1—N11.407 (4)C10—N31.377 (3)
C2—C31.387 (6)C10—S11.660 (3)
C2—H20.9300C11—C121.378 (4)
C3—C41.370 (6)C11—C161.381 (4)
C3—H30.9300C11—N41.407 (3)
C4—F11.361 (4)C12—C131.378 (4)
C4—C51.377 (4)C12—H120.9300
C5—C61.382 (4)C13—C141.357 (4)
C5—H50.9300C13—F21.362 (3)
C6—C71.447 (4)C14—C151.375 (4)
C7—N21.290 (3)C14—H140.9300
C7—C81.507 (4)C15—C161.375 (4)
C8—O11.219 (4)C15—H150.9300
C8—N11.365 (4)C16—H160.9300
C9—N11.454 (4)N2—N31.356 (3)
C9—H9A0.9600N3—H3N0.88 (3)
C9—H9B0.9600N4—H4N0.87 (3)
C2—C1—C6121.2 (3)N4—C10—S1129.3 (2)
C2—C1—N1128.6 (3)N3—C10—S1117.7 (2)
C6—C1—N1110.3 (2)C12—C11—C16119.5 (3)
C1—C2—C3117.5 (4)C12—C11—N4124.2 (2)
C1—C2—H2121.2C16—C11—N4116.3 (2)
C3—C2—H2121.2C13—C12—C11117.6 (3)
C4—C3—C2120.4 (3)C13—C12—H12121.2
C4—C3—H3119.8C11—C12—H12121.2
C2—C3—H3119.8C14—C13—F2118.2 (3)
F1—C4—C3118.7 (3)C14—C13—C12124.4 (3)
F1—C4—C5118.1 (4)F2—C13—C12117.5 (3)
C3—C4—C5123.2 (4)C13—C14—C15117.0 (3)
C4—C5—C6116.7 (3)C13—C14—H14121.5
C4—C5—H5121.7C15—C14—H14121.5
C6—C5—H5121.7C14—C15—C16121.0 (3)
C5—C6—C1121.1 (3)C14—C15—H15119.5
C5—C6—C7132.6 (3)C16—C15—H15119.5
C1—C6—C7106.3 (3)C15—C16—C11120.6 (3)
N2—C7—C6125.4 (3)C15—C16—H16119.7
N2—C7—C8127.6 (3)C11—C16—H16119.7
C6—C7—C8107.0 (2)C8—N1—C1110.8 (3)
O1—C8—N1127.5 (3)C8—N1—C9123.6 (3)
O1—C8—C7126.9 (3)C1—N1—C9125.5 (3)
N1—C8—C7105.6 (3)C7—N2—N3117.2 (2)
N1—C9—H9A109.5N2—N3—C10119.9 (2)
N1—C9—H9B109.5N2—N3—H3N120.5 (19)
H9A—C9—H9B109.5C10—N3—H3N119.4 (19)
N1—C9—H9C109.5C10—N4—C11132.9 (2)
H9A—C9—H9C109.5C10—N4—H4N111 (2)
H9B—C9—H9C109.5C11—N4—H4N116 (2)
N4—C10—N3113.0 (2)
C6—C1—C2—C30.2 (5)C11—C12—C13—F2180.0 (3)
N1—C1—C2—C3179.0 (3)F2—C13—C14—C15179.5 (3)
C1—C2—C3—C40.4 (5)C12—C13—C14—C150.3 (5)
C2—C3—C4—F1179.7 (3)C13—C14—C15—C160.4 (5)
C2—C3—C4—C50.1 (6)C14—C15—C16—C110.2 (5)
F1—C4—C5—C6179.7 (3)C12—C11—C16—C150.3 (5)
C3—C4—C5—C60.8 (5)N4—C11—C16—C15178.5 (3)
C4—C5—C6—C10.9 (5)O1—C8—N1—C1180.0 (3)
C4—C5—C6—C7179.9 (3)C7—C8—N1—C10.8 (3)
C2—C1—C6—C50.4 (5)O1—C8—N1—C91.9 (5)
N1—C1—C6—C5179.8 (3)C7—C8—N1—C9177.3 (3)
C2—C1—C6—C7179.8 (3)C2—C1—N1—C8179.3 (3)
N1—C1—C6—C70.8 (3)C6—C1—N1—C80.0 (4)
C5—C6—C7—N21.5 (5)C2—C1—N1—C92.7 (5)
C1—C6—C7—N2177.7 (3)C6—C1—N1—C9178.0 (3)
C5—C6—C7—C8179.5 (3)C6—C7—N2—N3177.4 (3)
C1—C6—C7—C81.2 (3)C8—C7—N2—N31.4 (4)
N2—C7—C8—O11.5 (5)C7—N2—N3—C10174.9 (3)
C6—C7—C8—O1179.6 (3)N4—C10—N3—N26.1 (4)
N2—C7—C8—N1177.7 (3)S1—C10—N3—N2172.6 (2)
C6—C7—C8—N11.2 (3)N3—C10—N4—C11177.7 (3)
C16—C11—C12—C130.5 (5)S1—C10—N4—C113.7 (5)
N4—C11—C12—C13178.3 (3)C12—C11—N4—C1010.3 (5)
C11—C12—C13—C140.2 (5)C16—C11—N4—C10170.9 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is a centroid of the N1/C1/C6–C8 cyclopentene ring.
D—H···AD—HH···AD···AD—H···A
N3—H3N···O10.88 (3)2.08 (3)2.761 (3)134 (2)
N4—H4N···N20.87 (3)2.07 (3)2.579 (3)117 (3)
C2—H2···F2i0.932.443.370 (5)176
C9—H9A···O10.962.542.921 (4)104
C12—H12···S10.932.603.251 (3)127
C10—S1···Cg1ii1.66 (1)3.78 (1)4.467 (3)103 (1)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+1, z.
 

Acknowledgements

The authors acknowledge the Scientific and Technological Research Application and Research Center, Sinop University, Turkey, for the use of the Bruker D8 QUEST diffractometer.

References

First citationAkkurt, M., Karaca, S., Cihan, G., Çapan, G. & Büyükgüngör, O. (2009). Acta Cryst. E65, o1009–o1010.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAkkurt, M., Öztürk, S., Erçağ, A., Özgür, M. Ü. & Heinemann, F. W. (2003). Acta Cryst. E59, o780–o782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAtioğlu, Z., Sevinçli, Z. Ş., Karalı, N., Akkurt, M. & Ersanlı, C. C. (2017). IUCrData, 2, x170671–x170671.  Google Scholar
First citationBal, T. R., Anand, B., Yogeeswari, P. & Sriram, D. (2005). Bioorg. Med. Chem. Lett. 15, 4451–4455.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHall, M. D., Brimacombe, K. R., Varonka, M. S., Pluchino, K. M., Monda, J. K., Li, J., Walsh, M. J., Boxer, M. B., Warren, T. H., Fales, H. M. & Gottesman, M. M. (2011). J. Med. Chem. 54, 5878–5889.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHall, M. D., Salam, N. K., Hellawell, J. L., Fales, H. M., Kensler, C. B., Ludwig, J. A., Szakacs, G., Hibbs, D. E. & Gottesman, M. M. (2009). J. Med. Chem. 52, 3191–3204.  CrossRef PubMed CAS Google Scholar
First citationKaralı, N., Gürsoy, A., Kandemirli, F., Shvets, N., Kaynak, F. B., Özbey, S., Kovalishyn, V. & Dimoglo, A. (2007). Bioorg. Med. Chem. 15, 5888–5904.  Web of Science PubMed Google Scholar
First citationKaynak, F. B., Özbey, S. & Karalı, N. (2013). J. Mol. Struct. 1049, 157–164.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, J., Bao, G., Wang, L., Li, W., Xu, B., Du, B., Lv, J., Zhai, X. & Gong, P. (2015). Eur. J. Med. Chem. 96, 173–186.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMohamed, S. K., Akkurt, M., Albayati, M. R., Singh, K. & Potgieter, H. (2012). Acta Cryst. E68, o1222–o1223.  CSD CrossRef IUCr Journals Google Scholar
First citationÖzbey, S., Kaynak, F. B., Eriksson, L., Karali, N. & Gürsoy, A. (2006). Acta Cryst. A62, s174.  CrossRef IUCr Journals Google Scholar
First citationPodichetty, A. K., Faust, A., Kopka, K., Wagner, S., Schober, O., Schäfers, M. & Haufe, G. (2009). Bioorg. Med. Chem. 17, 2680–2688.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThanh, N. D., Giang, N. T. K., Quyen, T. H. & Huong, D. T. (2016). Eur. J. Med. Chem. 123, 532–543.  CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds