organic compounds
(2Z)-2-(5-Fluoro-1-methyl-2-oxoindolin-3-ylidene)-N-(3-fluorophenyl)hydrazine-1-carbothioamide
aİlke Education and Health Foundation, Cappadocia Vocational College, The Medical Imaging Techniques Program, 50420 Mustafapaşa, Ürgüp, Nevşehir, Turkey, bDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Yüzüncü Yıl University, 65080 Tuşba, Van, Turkey, cDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Ístanbul University, 34116 Beyazıt–Ístanbul, Turkey, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and eDepartment of Physics, Faculty of Arts and Sciences, Sinop University, 57010 Sinop, Turkey
*Correspondence e-mail: zeliha.atioglu@kapadokya.edu.tr
In the title compound, C16H12F2N4OS, the whole molecule is essentially planar (r.m.s deviation = 0.003 Å), with only the H atoms of the methyl group lying out of the molecular plane. A planar indole fused-ring system (r.m.s deviation = 0.004 Å) is linked through a hydrazine–carbothioamide bridge to a fluorobenzene ring, with the indole ring system and inclined to the fluorobenzene ring by 4.26 (14)°. The planarity of the molecule is strengthened by three intramolecular N—H⋯N, N—H⋯O and C—H⋯S hydrogen bonds that generate S(5), S(6) and S(6) ring motifs, respectively. In the crystal, π–π stacking interactions combine with C—H⋯·F hydrogen bonds to link the molecules into layers parallel to the (10-1) plane.
Keywords: crystal structure; 2,3-dihydro-1H-indene; fluorobenzene; intramolecular hydrogen bonds; π–π stacking interactions; synthesis.
CCDC reference: 1556401
Structure description
The indole heterocyclic ring system is a significant component of many pharmaceutical agents, including compounds with antiviral, anti-inflammatory and antineoplastic properties (Ma et al., 2015). Halogenated and N-alkylated isatin derivatives demonstrate antitumour activity (Karalı et al., 2007; Podichetty et al., 2009). Thiosemicarbazone compounds that incorporate isatin units also have various types of biological effects, including antiviral, antibacterial and antitumour activity (Thanh et al., 2016). Isatin 3-thiosemicarbazones, which show anti-HIV effects, are also used in the treatment of smallpox and vaccinia viruses, and of other groups of viruses, including adenovirus and herpesvirus (Bal et al., 2005; Hall et al., 2009; Thanh et al., 2016). Finally, isatin [N4-(phenyl substituted)thiosemicarbazone] derivatives have been shown to be significantly more selective and effective against multidrug resistance when compared to the activity of N4-alkyl and N4-cycloalkylthiosemicarbazones (Hall et al., 2009, 2011).
As shown in Fig. 1, the molecule of the title compound is essentially planar (r.m.s deviation = 0.003 Å), with only the H atoms of the C9 methyl group protruding from the molecular plane. The almost planar indole fused-ring (N1/C1–C8) (r.m.s deviation deviation = 0.004 Å) makes a dihedral angle of 4.26 (14)° with the C11–C16 benzene ring. The N2—N3—C10=S1 and N2—N3—C10—N4 torsion angles are 172.6 (2) and −6.1 (4)°, respectively, again in keeping with the planarity of the molecule. Three intramolecular N—H⋯N, N—H⋯O and C—H⋯S hydrogen bonds (Table 1) generate S(5), S(6) and S(6) ring motifs, respectively, and also contribute significantly to the molecular planarity.
All bond lengths and angles are within normal ranges and are in agreement with those reported for the related compounds 2-(5-fluoro-1-methyl-2-oxoindolin-3-ylidene)-N-[4-(methylsulfanyl)phenyl]hydrazine-1-carbothioamide (Atioğlu et al., 2017), (3E)-3-[(4-butylphenyl)imino]-1,3-dihydro-2H-indol-2-one (Akkurt et al., 2003), N′-[(2Z)-3-allyl-4-oxo-1,3-thiazolidin-2-ylidene]-5-fluoro-3-phenyl-1H-indole-2-carbohydrazide (Akkurt et al., 2009), 2-(4-isobutylphenyl)-N′-[(3Z)-2-oxoindolin-3-ylidene]propanohydrazide (Mohamed et al., 2012) and series of 5-fluoro-1H-indole-2,3-dione 3-thiosemicarbazone (Özbey et al., 2006) and 5-trifluoromethoxy-1H-indole-2,3-dione 3-thiosemicarbazone derivatives (Kaynak et al., 2013).
In the C(14) chains along b. π–π stacking interactions between the oxopyrrole and benzene rings [Cg1⋯Cg3iii = 3.818 (2) Å; symmetry code: (iii) 1 − x, 1 − y, 1 − z; Cg1 and Cg3 are the centroids of the N1/C1–C8 and C11–C16 rings, respectively] (Table 1) link these chains into layers parallel to the (10) plane (Fig. 2).
of the title compound, C2—H⋯F2 hydrogen bonds link molecules into zigzagSynthesis and crystallization
Steps in the synthesis of the title compound (5) are shown in Fig. 3.
(i) N-(3-Fluorophenyl)thiosemicarbazide (2)
To a solution of hydrazine hydrate (5 mmol) in ethanol (10 ml), a suspension of 3-fluorophenyl isothiocyanate, 1 (5 mmol), in ethanol (10 ml) was added dropwise with vigorous stirring and cooling in an ice bath. The mixture was allowed to stand overnight. The crystals formed were recrystallized from ethanol solution.
(ii) 5-Fluoro-1-methyl-1H-indole-2,3-dione (4)
A suspension of 5-fluoro-1H-indole-2,3-dione, 3 (5 mmol), K2CO3 (7 mmol) and KI (1 mmol) in anhydrous DMF (5 ml) was stirred for 30 min at room temperature. After addition of iodomethane (15 mmol), the mixture was refluxed for 4 h. The product was poured onto ice–water and filtered.
(iii) (2Z)-2-(5-Fluoro-1-methyl-2-oxoindolin-1-ylidene)-N-(3-fluorophenyl)hydrazine-1-carbothioamide (5)
A solution of N-(3-fluorophenyl)thiosemicarbazide, 2 (2.5 mmol), in ethanol (10 ml) was added to a solution of 5-fluoro-1-methyl-1H-indole-2,3-dione, 4 (2.5 mmol), in ethanol (20 ml). The mixture was refluxed on a water bath for 8 h. The product formed after cooling was filtered off and washed with ethanol or recrystallized from ethanol. Orange crystals were obtained (82% yield; m.p. 510–516 K).
IR (KBr): ν 3288, 3226 (NH), 1695 (C=O), 1276 (C=S); 1H NMR (DMSO-d6, 400 MHz): δ 3.20 (s, 3H, ind. N—CH3), 7.09–7.16 (m, 2H, ind. C7—H, fen. C4—H), 7.28 (dt, J = 9.00, 2.70 Hz, 1H, ind. C6—H), 7.43–7.51 (m, 2H, fen. C5,6—H), 7.59–7.65 (m, 2H, ind. C4—H, fen. C2—H), 10.86 (s, 1H, N4—H), 12.62 (s, 1H, N2—H). Analysis calculated for C16H12F2N4OS: C 55.48, H 3.49, N 16.18%; found: C 55.26, H 3.41, N 16.18%.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 1556401
https://doi.org/10.1107/S2414314617009002/sj4121sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617009002/sj4121Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314617009002/sj4121Isup3.cml
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).C16H12F2N4OS | F(000) = 712 |
Mr = 346.36 | Dx = 1.495 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.2648 (8) Å | Cell parameters from 9857 reflections |
b = 25.571 (2) Å | θ = 3.1–26.4° |
c = 7.6662 (6) Å | µ = 0.24 mm−1 |
β = 108.248 (3)° | T = 296 K |
V = 1538.7 (2) Å3 | Block, orange |
Z = 4 | 0.18 × 0.16 × 0.15 mm |
Bruker APEX-II CCD diffractometer | 2536 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.061 |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | θmax = 26.5°, θmin = 2.9° |
Tmin = 0.664, Tmax = 0.745 | h = −10→10 |
33521 measured reflections | k = −31→32 |
3145 independent reflections | l = −8→9 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.062 | w = 1/[σ2(Fo2) + (0.016P)2 + 1.7256P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.125 | (Δ/σ)max = 0.001 |
S = 1.20 | Δρmax = 0.20 e Å−3 |
3145 reflections | Δρmin = −0.22 e Å−3 |
227 parameters | Extinction correction: Shelxl-2014/7 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0148 (18) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3755 (4) | 0.68818 (11) | 0.1055 (4) | 0.0491 (8) | |
C2 | 0.3839 (6) | 0.74228 (13) | 0.1121 (6) | 0.0656 (10) | |
H2 | 0.2990 | 0.7627 | 0.0334 | 0.079* | |
C3 | 0.5238 (6) | 0.76481 (13) | 0.2405 (6) | 0.0737 (12) | |
H3 | 0.5339 | 0.8010 | 0.2482 | 0.088* | |
C4 | 0.6471 (5) | 0.73406 (14) | 0.3560 (6) | 0.0671 (11) | |
C5 | 0.6409 (4) | 0.68024 (12) | 0.3531 (5) | 0.0532 (8) | |
H5 | 0.7255 | 0.6602 | 0.4339 | 0.064* | |
C6 | 0.5028 (4) | 0.65757 (10) | 0.2241 (4) | 0.0438 (7) | |
C7 | 0.4530 (4) | 0.60370 (11) | 0.1799 (4) | 0.0397 (6) | |
C8 | 0.2885 (4) | 0.60452 (11) | 0.0230 (4) | 0.0440 (7) | |
C9 | 0.0958 (5) | 0.67445 (15) | −0.1501 (5) | 0.0724 (11) | |
H9A | 0.0309 | 0.6450 | −0.2121 | 0.109* | |
H9B | 0.1258 | 0.6961 | −0.2376 | 0.109* | |
H9C | 0.0289 | 0.6944 | −0.0916 | 0.109* | |
C10 | 0.5401 (3) | 0.47150 (10) | 0.3010 (4) | 0.0358 (6) | |
C11 | 0.8089 (3) | 0.44869 (10) | 0.5535 (4) | 0.0363 (6) | |
C12 | 0.8077 (4) | 0.39485 (11) | 0.5441 (4) | 0.0469 (7) | |
H12 | 0.7225 | 0.3771 | 0.4553 | 0.056* | |
C13 | 0.9371 (4) | 0.36828 (11) | 0.6708 (5) | 0.0496 (8) | |
C14 | 1.0649 (4) | 0.39157 (13) | 0.8042 (4) | 0.0493 (8) | |
H14 | 1.1501 | 0.3721 | 0.8868 | 0.059* | |
C15 | 1.0629 (4) | 0.44527 (13) | 0.8118 (4) | 0.0521 (8) | |
H15 | 1.1480 | 0.4627 | 0.9019 | 0.063* | |
C16 | 0.9369 (4) | 0.47364 (11) | 0.6882 (4) | 0.0449 (7) | |
H16 | 0.9378 | 0.5100 | 0.6954 | 0.054* | |
N1 | 0.2499 (3) | 0.65613 (10) | −0.0125 (4) | 0.0514 (7) | |
N2 | 0.5351 (3) | 0.56333 (8) | 0.2634 (3) | 0.0383 (5) | |
N3 | 0.4656 (3) | 0.51577 (9) | 0.2078 (3) | 0.0398 (6) | |
H3N | 0.368 (4) | 0.5131 (11) | 0.119 (4) | 0.041 (8)* | |
N4 | 0.6882 (3) | 0.48115 (9) | 0.4309 (3) | 0.0410 (6) | |
H4N | 0.710 (4) | 0.5146 (12) | 0.441 (4) | 0.045 (8)* | |
O1 | 0.2066 (3) | 0.56682 (8) | −0.0540 (3) | 0.0530 (6) | |
S1 | 0.43668 (10) | 0.41527 (3) | 0.24325 (11) | 0.0501 (3) | |
F1 | 0.7820 (3) | 0.75761 (9) | 0.4809 (4) | 0.0957 (8) | |
F2 | 0.9353 (3) | 0.31510 (7) | 0.6611 (3) | 0.0879 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.068 (2) | 0.0349 (15) | 0.0554 (19) | 0.0101 (14) | 0.0353 (17) | 0.0061 (13) |
C2 | 0.099 (3) | 0.0398 (18) | 0.076 (2) | 0.0161 (19) | 0.053 (2) | 0.0130 (17) |
C3 | 0.118 (4) | 0.0343 (17) | 0.093 (3) | −0.007 (2) | 0.068 (3) | −0.0037 (19) |
C4 | 0.092 (3) | 0.048 (2) | 0.080 (3) | −0.023 (2) | 0.053 (2) | −0.0183 (19) |
C5 | 0.062 (2) | 0.0440 (17) | 0.063 (2) | −0.0084 (15) | 0.0328 (17) | −0.0069 (15) |
C6 | 0.0556 (18) | 0.0321 (14) | 0.0517 (17) | 0.0035 (13) | 0.0284 (15) | 0.0015 (13) |
C7 | 0.0459 (16) | 0.0342 (14) | 0.0434 (16) | 0.0050 (12) | 0.0205 (13) | 0.0022 (12) |
C8 | 0.0466 (17) | 0.0416 (16) | 0.0480 (17) | 0.0089 (13) | 0.0210 (14) | 0.0060 (13) |
C9 | 0.071 (3) | 0.072 (2) | 0.071 (2) | 0.031 (2) | 0.018 (2) | 0.025 (2) |
C10 | 0.0374 (15) | 0.0358 (14) | 0.0336 (14) | 0.0046 (11) | 0.0102 (11) | −0.0001 (11) |
C11 | 0.0315 (13) | 0.0381 (14) | 0.0372 (14) | −0.0007 (11) | 0.0079 (11) | −0.0003 (11) |
C12 | 0.0385 (15) | 0.0377 (15) | 0.0534 (18) | 0.0001 (12) | −0.0016 (13) | −0.0046 (13) |
C13 | 0.0412 (17) | 0.0354 (15) | 0.064 (2) | 0.0051 (12) | 0.0043 (15) | 0.0013 (14) |
C14 | 0.0352 (15) | 0.0566 (19) | 0.0483 (18) | 0.0069 (13) | 0.0020 (13) | 0.0066 (14) |
C15 | 0.0394 (16) | 0.0569 (19) | 0.0484 (18) | −0.0045 (14) | −0.0030 (14) | −0.0038 (15) |
C16 | 0.0432 (16) | 0.0377 (15) | 0.0477 (17) | −0.0046 (12) | 0.0053 (13) | −0.0008 (12) |
N1 | 0.0571 (16) | 0.0451 (14) | 0.0540 (16) | 0.0174 (12) | 0.0206 (13) | 0.0116 (12) |
N2 | 0.0425 (13) | 0.0308 (11) | 0.0417 (13) | 0.0027 (10) | 0.0135 (10) | −0.0007 (10) |
N3 | 0.0398 (14) | 0.0325 (12) | 0.0396 (13) | 0.0026 (10) | 0.0018 (11) | −0.0008 (10) |
N4 | 0.0407 (13) | 0.0278 (12) | 0.0450 (14) | −0.0004 (10) | −0.0003 (10) | 0.0004 (10) |
O1 | 0.0468 (12) | 0.0502 (13) | 0.0551 (13) | 0.0028 (10) | 0.0061 (10) | 0.0019 (10) |
S1 | 0.0461 (4) | 0.0347 (4) | 0.0553 (5) | −0.0032 (3) | −0.0047 (3) | 0.0001 (3) |
F1 | 0.114 (2) | 0.0690 (15) | 0.116 (2) | −0.0432 (14) | 0.0545 (17) | −0.0386 (14) |
F2 | 0.0730 (14) | 0.0385 (11) | 0.1170 (19) | 0.0134 (10) | −0.0208 (13) | −0.0008 (11) |
C1—C2 | 1.385 (4) | C9—H9C | 0.9600 |
C1—C6 | 1.395 (4) | C10—N4 | 1.337 (3) |
C1—N1 | 1.407 (4) | C10—N3 | 1.377 (3) |
C2—C3 | 1.387 (6) | C10—S1 | 1.660 (3) |
C2—H2 | 0.9300 | C11—C12 | 1.378 (4) |
C3—C4 | 1.370 (6) | C11—C16 | 1.381 (4) |
C3—H3 | 0.9300 | C11—N4 | 1.407 (3) |
C4—F1 | 1.361 (4) | C12—C13 | 1.378 (4) |
C4—C5 | 1.377 (4) | C12—H12 | 0.9300 |
C5—C6 | 1.382 (4) | C13—C14 | 1.357 (4) |
C5—H5 | 0.9300 | C13—F2 | 1.362 (3) |
C6—C7 | 1.447 (4) | C14—C15 | 1.375 (4) |
C7—N2 | 1.290 (3) | C14—H14 | 0.9300 |
C7—C8 | 1.507 (4) | C15—C16 | 1.375 (4) |
C8—O1 | 1.219 (4) | C15—H15 | 0.9300 |
C8—N1 | 1.365 (4) | C16—H16 | 0.9300 |
C9—N1 | 1.454 (4) | N2—N3 | 1.356 (3) |
C9—H9A | 0.9600 | N3—H3N | 0.88 (3) |
C9—H9B | 0.9600 | N4—H4N | 0.87 (3) |
C2—C1—C6 | 121.2 (3) | N4—C10—S1 | 129.3 (2) |
C2—C1—N1 | 128.6 (3) | N3—C10—S1 | 117.7 (2) |
C6—C1—N1 | 110.3 (2) | C12—C11—C16 | 119.5 (3) |
C1—C2—C3 | 117.5 (4) | C12—C11—N4 | 124.2 (2) |
C1—C2—H2 | 121.2 | C16—C11—N4 | 116.3 (2) |
C3—C2—H2 | 121.2 | C13—C12—C11 | 117.6 (3) |
C4—C3—C2 | 120.4 (3) | C13—C12—H12 | 121.2 |
C4—C3—H3 | 119.8 | C11—C12—H12 | 121.2 |
C2—C3—H3 | 119.8 | C14—C13—F2 | 118.2 (3) |
F1—C4—C3 | 118.7 (3) | C14—C13—C12 | 124.4 (3) |
F1—C4—C5 | 118.1 (4) | F2—C13—C12 | 117.5 (3) |
C3—C4—C5 | 123.2 (4) | C13—C14—C15 | 117.0 (3) |
C4—C5—C6 | 116.7 (3) | C13—C14—H14 | 121.5 |
C4—C5—H5 | 121.7 | C15—C14—H14 | 121.5 |
C6—C5—H5 | 121.7 | C14—C15—C16 | 121.0 (3) |
C5—C6—C1 | 121.1 (3) | C14—C15—H15 | 119.5 |
C5—C6—C7 | 132.6 (3) | C16—C15—H15 | 119.5 |
C1—C6—C7 | 106.3 (3) | C15—C16—C11 | 120.6 (3) |
N2—C7—C6 | 125.4 (3) | C15—C16—H16 | 119.7 |
N2—C7—C8 | 127.6 (3) | C11—C16—H16 | 119.7 |
C6—C7—C8 | 107.0 (2) | C8—N1—C1 | 110.8 (3) |
O1—C8—N1 | 127.5 (3) | C8—N1—C9 | 123.6 (3) |
O1—C8—C7 | 126.9 (3) | C1—N1—C9 | 125.5 (3) |
N1—C8—C7 | 105.6 (3) | C7—N2—N3 | 117.2 (2) |
N1—C9—H9A | 109.5 | N2—N3—C10 | 119.9 (2) |
N1—C9—H9B | 109.5 | N2—N3—H3N | 120.5 (19) |
H9A—C9—H9B | 109.5 | C10—N3—H3N | 119.4 (19) |
N1—C9—H9C | 109.5 | C10—N4—C11 | 132.9 (2) |
H9A—C9—H9C | 109.5 | C10—N4—H4N | 111 (2) |
H9B—C9—H9C | 109.5 | C11—N4—H4N | 116 (2) |
N4—C10—N3 | 113.0 (2) | ||
C6—C1—C2—C3 | 0.2 (5) | C11—C12—C13—F2 | 180.0 (3) |
N1—C1—C2—C3 | −179.0 (3) | F2—C13—C14—C15 | −179.5 (3) |
C1—C2—C3—C4 | −0.4 (5) | C12—C13—C14—C15 | 0.3 (5) |
C2—C3—C4—F1 | −179.7 (3) | C13—C14—C15—C16 | −0.4 (5) |
C2—C3—C4—C5 | −0.1 (6) | C14—C15—C16—C11 | 0.2 (5) |
F1—C4—C5—C6 | −179.7 (3) | C12—C11—C16—C15 | 0.3 (5) |
C3—C4—C5—C6 | 0.8 (5) | N4—C11—C16—C15 | −178.5 (3) |
C4—C5—C6—C1 | −0.9 (5) | O1—C8—N1—C1 | 180.0 (3) |
C4—C5—C6—C7 | 179.9 (3) | C7—C8—N1—C1 | 0.8 (3) |
C2—C1—C6—C5 | 0.4 (5) | O1—C8—N1—C9 | 1.9 (5) |
N1—C1—C6—C5 | 179.8 (3) | C7—C8—N1—C9 | −177.3 (3) |
C2—C1—C6—C7 | 179.8 (3) | C2—C1—N1—C8 | 179.3 (3) |
N1—C1—C6—C7 | −0.8 (3) | C6—C1—N1—C8 | 0.0 (4) |
C5—C6—C7—N2 | 1.5 (5) | C2—C1—N1—C9 | −2.7 (5) |
C1—C6—C7—N2 | −177.7 (3) | C6—C1—N1—C9 | 178.0 (3) |
C5—C6—C7—C8 | −179.5 (3) | C6—C7—N2—N3 | 177.4 (3) |
C1—C6—C7—C8 | 1.2 (3) | C8—C7—N2—N3 | −1.4 (4) |
N2—C7—C8—O1 | −1.5 (5) | C7—N2—N3—C10 | −174.9 (3) |
C6—C7—C8—O1 | 179.6 (3) | N4—C10—N3—N2 | −6.1 (4) |
N2—C7—C8—N1 | 177.7 (3) | S1—C10—N3—N2 | 172.6 (2) |
C6—C7—C8—N1 | −1.2 (3) | N3—C10—N4—C11 | −177.7 (3) |
C16—C11—C12—C13 | −0.5 (5) | S1—C10—N4—C11 | 3.7 (5) |
N4—C11—C12—C13 | 178.3 (3) | C12—C11—N4—C10 | 10.3 (5) |
C11—C12—C13—C14 | 0.2 (5) | C16—C11—N4—C10 | −170.9 (3) |
Cg1 is a centroid of the N1/C1/C6–C8 cyclopentene ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3N···O1 | 0.88 (3) | 2.08 (3) | 2.761 (3) | 134 (2) |
N4—H4N···N2 | 0.87 (3) | 2.07 (3) | 2.579 (3) | 117 (3) |
C2—H2···F2i | 0.93 | 2.44 | 3.370 (5) | 176 |
C9—H9A···O1 | 0.96 | 2.54 | 2.921 (4) | 104 |
C12—H12···S1 | 0.93 | 2.60 | 3.251 (3) | 127 |
C10—S1···Cg1ii | 1.66 (1) | 3.78 (1) | 4.467 (3) | 103 (1) |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, −y+1, −z. |
Acknowledgements
The authors acknowledge the Scientific and Technological Research Application and Research Center, Sinop University, Turkey, for the use of the Bruker D8 QUEST diffractometer.
References
Akkurt, M., Karaca, S., Cihan, G., Çapan, G. & Büyükgüngör, O. (2009). Acta Cryst. E65, o1009–o1010. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Akkurt, M., Öztürk, S., Erçağ, A., Özgür, M. Ü. & Heinemann, F. W. (2003). Acta Cryst. E59, o780–o782. Web of Science CSD CrossRef IUCr Journals Google Scholar
Atioğlu, Z., Sevinçli, Z. Ş., Karalı, N., Akkurt, M. & Ersanlı, C. C. (2017). IUCrData, 2, x170671–x170671. Google Scholar
Bal, T. R., Anand, B., Yogeeswari, P. & Sriram, D. (2005). Bioorg. Med. Chem. Lett. 15, 4451–4455. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hall, M. D., Brimacombe, K. R., Varonka, M. S., Pluchino, K. M., Monda, J. K., Li, J., Walsh, M. J., Boxer, M. B., Warren, T. H., Fales, H. M. & Gottesman, M. M. (2011). J. Med. Chem. 54, 5878–5889. Web of Science CSD CrossRef CAS PubMed Google Scholar
Hall, M. D., Salam, N. K., Hellawell, J. L., Fales, H. M., Kensler, C. B., Ludwig, J. A., Szakacs, G., Hibbs, D. E. & Gottesman, M. M. (2009). J. Med. Chem. 52, 3191–3204. CrossRef PubMed CAS Google Scholar
Karalı, N., Gürsoy, A., Kandemirli, F., Shvets, N., Kaynak, F. B., Özbey, S., Kovalishyn, V. & Dimoglo, A. (2007). Bioorg. Med. Chem. 15, 5888–5904. Web of Science PubMed Google Scholar
Kaynak, F. B., Özbey, S. & Karalı, N. (2013). J. Mol. Struct. 1049, 157–164. Web of Science CSD CrossRef CAS Google Scholar
Ma, J., Bao, G., Wang, L., Li, W., Xu, B., Du, B., Lv, J., Zhai, X. & Gong, P. (2015). Eur. J. Med. Chem. 96, 173–186. Web of Science CrossRef CAS PubMed Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mohamed, S. K., Akkurt, M., Albayati, M. R., Singh, K. & Potgieter, H. (2012). Acta Cryst. E68, o1222–o1223. CSD CrossRef IUCr Journals Google Scholar
Özbey, S., Kaynak, F. B., Eriksson, L., Karali, N. & Gürsoy, A. (2006). Acta Cryst. A62, s174. CrossRef IUCr Journals Google Scholar
Podichetty, A. K., Faust, A., Kopka, K., Wagner, S., Schober, O., Schäfers, M. & Haufe, G. (2009). Bioorg. Med. Chem. 17, 2680–2688. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Thanh, N. D., Giang, N. T. K., Quyen, T. H. & Huong, D. T. (2016). Eur. J. Med. Chem. 123, 532–543. CrossRef PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.