organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(Z)-2-Benzyl­­idene-3-n-but­­oxy-2H-1,4-benzo­thia­zine

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratoire de Chimie Organique Appliquée, Faculté des Sciences et Techniques, Université Sidi Mohammed Ben Abdellah, Fès, Morocco, and cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: ellouz.chimie@gmail.com

Edited by J. Simpson, University of Otago, New Zealand (Received 10 June 2017; accepted 14 June 2017; online 27 June 2017)

In the title compound, C19H19NOS, the thia­zin-3-one ring of the 1,4-thia­zin-3-one moiety adopts a screw-boat conformation. The dihedral angle between the benzene rings is 31.0 (5)°. An intra­molecular C—H⋯S hydrogen bond forms an S(6) ring motif. In the crystal, C—H⋯π(ring) contacts form inversion dimers and weak ππ stacking inter­actions, with a centroid-to-centroid distance of 3.8766 (2) Å, also occur.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

1,4-Benzo­thia­zines and their analogues have been studied extensively in different areas of chemistry particularly as pharmaceuticals (Sebbar et al., 2016a[Sebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Zerzouf, A., Talbaoui, A., Bakri, Y., Saadi, M. & Ammari, L. E. (2016a). Res. Chem. Intermed. 42, 6845-6862.]; Ellouz et al.,2017a[Ellouz, M., Sebbar, N. K., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2017a). IUCrData, 2, x170097.]; Malagu et al.,1998[Malagu, K., Boustie, J., David, M., Sauleau, J., Amoros, M., Girre, R. L. & Sauleau, A. (1998). Pharm. Pharmacol. Commun. 4, 57-60.]). With respect to their biological applications, they have been found to have potent anti-inflammatory, (Trapani et al.,1985[Trapani, G., Reho, A., Morlacchi, F., Latrofa, A., Marchini, P., Venturi, F. & Cantalamessa, F. (1985). Farmaco Ed. Sci. 40, 369-376.]); analgesic (Wammack et al., 2002[Wammack, R., Remzi, M., Seitz, C., Djavan, B. & Marberger, M. (2002). Eur. Urol. 41, 596-600.]) and anti-oxidant properties (Zia-ur-Rehman et al., 2009[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311-1316.]). Slight changes in the substitution pattern in the benzo­thia­zine nucleus can cause a distinguishable difference in their biological properties (Niewiadomy et al., 2011[Niewiadomy, A., Matysiak, J. & Karpinska, M. M. (2011). Arch. Pharm. Pharm. Med. Chem. 344, 224-230.]; Gautam et al.,2012[Gautam, N., Ajmera, N., Gupta, S. & Gautam, D. C. (2012). Eur. J. Chem. 3, 106-111.]). As a continuation of our research into the development of new 1,4-benzo­thia­zine derivatives with potential pharmacological applications, we have studied the reaction of 1-bromo­butane with (Z)-2-benzyl­idene-2H-1,4-benzo­thia­zin-3(4H)-one under phase-transfer catalysis conditions using tetra-n-butyl ammonium bromide as a catalyst and potassium carbonate as the base (Sebbar et al., 2016b[Sebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2016b). IUCrData, 1, x161012.]; Ellouz et al.,2017b[Ellouz, M., Sebbar, N. K., Boulhaoua, M., Essassi, E. M. & Mague, J. T. (2017b). IUCrData, 2, x170646.]) to give the title compound (Fig. 1[link]).

[Figure 1]
Figure 1
The structure of the title compound, showing the atom-numbering scheme, with ellipsoids drawn at the 30% probability level.

The thia­zine-3-one ring of the [1,4]thia­zin-3-one moiety adopts a screw-boat conformation (puckering parameters: Q = 0.176 (8) Å, θ = 66.8 (6)° and φ = 26.989 (1)°. The dihedral angle between the benzene rings is 31.0 (5)°. The intra­molecular C11—H11⋯S1 hydrogen bond affects the overall conformation of the mol­ecule.

In the crystal C17—H17ACg2 contacts, Table 1[link], form inversion dimers and link adjacent mol­ecules in a head-to-tail fashion. In addition, ππ stacking inter­actions, [Cg3⋯Cg3iii = 3.8766 (2) Å; Cg3 is the centroid of the C10–C15 phenyl ring; symmetry code: (iii) 1 − x, −y, −z] are observed, Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C3–C8 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯S1 0.93 2.51 3.155 (2) 127
C17—H17ACg2i 0.97 2.82 3.665 (3) 146
Symmetry code: (i) -x, -y+1, -z+1.
[Figure 2]
Figure 2
The packing of the title compound, viewed along the a axis. Dashed lines indicate weak intra­molecular hydrogen bonds. The C—H⋯π contact is not shown.

Synthesis and crystallization

To a solution of (Z)-2-benzyl­idene-3,4-di­hydro-2H-1,4-benzo­thia­zin-3(4H)-one (1.4 mmol), potassium carbonate (2.8 mmol) and tetra-n-butyl ammonium bromide (0.14 mmol) in DMF (15 ml) was added 1-bromo­butane (2.8 mmol). Stirring was continued at room temperature for 24 h. The mixture was filtered and the solvent removed. The residue obtained was washed with water. The organic compound was chromatographed on a column of silica gel with ethyl acetate–hexane (9/1) as eluent. Colorless crystals were isolated when the solvent was allowed to evaporate (yield = 21%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C19H19NOS
Mr 309.41
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 7.7711 (6), 10.9897 (11), 11.4090 (11)
α, β, γ (°) 112.013 (9), 109.259 (8), 98.120 (7)
V3) 812.78 (14)
Z 2
Radiation type Cu Kα
μ (mm−1) 1.76
Crystal size (mm) 0.38 × 0.18 × 0.08
 
Data collection
Diffractometer Rigaku Oxford Diffraction
Absorption correction Multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Americas, The Woodlands, Texas, USA.])
Tmin, Tmax 0.611, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 5063, 3070, 2492
Rint 0.021
(sin θ/λ)max−1) 0.614
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.140, 1.05
No. of reflections 3070
No. of parameters 200
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.55, −0.22
Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Americas, The Woodlands, Texas, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2015 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); cell refinement: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2015 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(Z)-2-Benzylidene-3-n-butoxy-2H-1,4-benzothiazine top
Crystal data top
C19H19NOSZ = 2
Mr = 309.41F(000) = 328
Triclinic, P1Dx = 1.264 Mg m3
a = 7.7711 (6) ÅCu Kα radiation, λ = 1.54184 Å
b = 10.9897 (11) ÅCell parameters from 1693 reflections
c = 11.4090 (11) Åθ = 7.7–71.5°
α = 112.013 (9)°µ = 1.76 mm1
β = 109.259 (8)°T = 293 K
γ = 98.120 (7)°Irregular fragment, colourless
V = 812.78 (14) Å30.38 × 0.18 × 0.08 mm
Data collection top
Rigaku Oxford Diffraction
diffractometer
3070 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source2492 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 16.0416 pixels mm-1θmax = 71.3°, θmin = 4.6°
ω scansh = 79
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku Oxford Diffraction, 2015)
k = 1312
Tmin = 0.611, Tmax = 1.000l = 1313
5063 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.0803P)2 + 0.0842P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3070 reflectionsΔρmax = 0.55 e Å3
200 parametersΔρmin = 0.22 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.32522 (9)0.77222 (5)0.86052 (5)0.0565 (2)
O10.2602 (2)0.41659 (14)0.56207 (14)0.0475 (4)
N10.2472 (2)0.61507 (17)0.54627 (17)0.0448 (4)
C10.2587 (3)0.54831 (19)0.6176 (2)0.0413 (4)
C20.2732 (3)0.59454 (19)0.7611 (2)0.0406 (4)
C30.2779 (3)0.8341 (2)0.7357 (2)0.0451 (5)
C40.2788 (3)0.9705 (2)0.7798 (2)0.0544 (5)
H40.30111.02420.87170.065*
C50.2465 (3)1.0268 (2)0.6874 (3)0.0609 (6)
H50.24771.11820.71700.073*
C60.2124 (4)0.9460 (3)0.5503 (3)0.0611 (6)
H60.19050.98320.48760.073*
C70.2110 (3)0.8105 (2)0.5071 (2)0.0530 (5)
H70.18700.75680.41480.064*
C80.2449 (3)0.7522 (2)0.5988 (2)0.0430 (4)
C90.2521 (3)0.5025 (2)0.8113 (2)0.0475 (5)
H90.22600.41150.74830.057*
C100.2635 (3)0.5220 (2)0.9482 (2)0.0474 (5)
C110.3516 (3)0.6452 (2)1.0698 (2)0.0546 (5)
H110.40890.72381.06730.065*
C120.3555 (4)0.6529 (3)1.1942 (3)0.0641 (6)
H120.41480.73661.27420.077*
C130.2726 (4)0.5379 (3)1.2008 (3)0.0652 (7)
H130.27450.54361.28470.078*
C140.1869 (4)0.4144 (3)1.0823 (3)0.0692 (7)
H140.13110.33621.08620.083*
C150.1830 (4)0.4058 (3)0.9572 (3)0.0599 (6)
H150.12590.32140.87800.072*
C160.2407 (3)0.3562 (2)0.4203 (2)0.0442 (5)
H16A0.34620.40640.41260.053*
H16B0.12200.35890.35880.053*
C170.2411 (3)0.2102 (2)0.3825 (2)0.0461 (5)
H17A0.14130.16380.39820.055*
H17B0.36270.20960.44270.055*
C180.2094 (4)0.1319 (2)0.2322 (2)0.0559 (6)
H18A0.08840.13350.17230.067*
H18B0.30980.17810.21700.067*
C190.2077 (5)0.0158 (3)0.1920 (3)0.0771 (8)
H19A0.19210.05940.09730.116*
H19B0.10370.06370.20150.116*
H19C0.32630.01820.25190.116*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0843 (4)0.0397 (3)0.0369 (3)0.0152 (3)0.0219 (3)0.0130 (2)
O10.0704 (9)0.0385 (7)0.0368 (7)0.0201 (6)0.0245 (7)0.0170 (6)
N10.0552 (10)0.0411 (9)0.0409 (9)0.0154 (7)0.0217 (8)0.0194 (7)
C10.0465 (10)0.0361 (10)0.0379 (10)0.0116 (8)0.0182 (8)0.0132 (8)
C20.0444 (10)0.0375 (10)0.0376 (10)0.0122 (8)0.0168 (8)0.0150 (8)
C30.0456 (10)0.0407 (10)0.0467 (11)0.0098 (8)0.0175 (9)0.0202 (9)
C40.0560 (12)0.0409 (11)0.0530 (13)0.0082 (9)0.0189 (10)0.0135 (10)
C50.0643 (14)0.0381 (11)0.0760 (16)0.0154 (10)0.0253 (12)0.0250 (11)
C60.0744 (16)0.0543 (13)0.0695 (16)0.0237 (12)0.0308 (13)0.0404 (12)
C70.0659 (14)0.0512 (12)0.0497 (12)0.0203 (10)0.0272 (10)0.0267 (10)
C80.0447 (10)0.0408 (10)0.0457 (11)0.0124 (8)0.0192 (8)0.0216 (9)
C90.0577 (12)0.0406 (10)0.0422 (11)0.0130 (9)0.0216 (9)0.0167 (9)
C100.0538 (11)0.0522 (12)0.0457 (11)0.0215 (9)0.0236 (9)0.0270 (10)
C110.0646 (13)0.0537 (13)0.0451 (12)0.0118 (10)0.0217 (10)0.0253 (10)
C120.0822 (17)0.0664 (15)0.0439 (12)0.0205 (13)0.0265 (12)0.0256 (11)
C130.0890 (18)0.0771 (17)0.0560 (14)0.0359 (14)0.0405 (13)0.0438 (13)
C140.0971 (19)0.0635 (16)0.0714 (17)0.0250 (14)0.0448 (15)0.0460 (14)
C150.0818 (16)0.0500 (13)0.0533 (13)0.0198 (11)0.0295 (12)0.0275 (11)
C160.0555 (12)0.0394 (10)0.0360 (10)0.0124 (8)0.0208 (9)0.0147 (8)
C170.0536 (12)0.0420 (11)0.0428 (11)0.0159 (9)0.0209 (9)0.0180 (9)
C180.0669 (14)0.0508 (12)0.0472 (12)0.0176 (10)0.0292 (11)0.0145 (10)
C190.099 (2)0.0533 (15)0.0715 (18)0.0264 (14)0.0441 (16)0.0118 (13)
Geometric parameters (Å, º) top
S1—C21.754 (2)C11—H110.9300
S1—C31.754 (2)C11—C121.379 (3)
O1—C11.349 (2)C12—H120.9300
O1—C161.443 (2)C12—C131.376 (4)
N1—C11.275 (3)C13—H130.9300
N1—C81.403 (3)C13—C141.374 (4)
C1—C21.480 (3)C14—H140.9300
C2—C91.352 (3)C14—C151.385 (3)
C3—C41.390 (3)C15—H150.9300
C3—C81.390 (3)C16—H16A0.9700
C4—H40.9300C16—H16B0.9700
C4—C51.384 (3)C16—C171.498 (3)
C5—H50.9300C17—H17A0.9700
C5—C61.387 (4)C17—H17B0.9700
C6—H60.9300C17—C181.516 (3)
C6—C71.380 (3)C18—H18A0.9700
C7—H70.9300C18—H18B0.9700
C7—C81.393 (3)C18—C191.509 (3)
C9—H90.9300C19—H19A0.9600
C9—C101.465 (3)C19—H19B0.9600
C10—C111.389 (3)C19—H19C0.9600
C10—C151.395 (3)
C3—S1—C2103.27 (10)C11—C12—H12119.7
C1—O1—C16117.28 (15)C13—C12—C11120.5 (2)
C1—N1—C8122.00 (17)C13—C12—H12119.7
O1—C1—C2111.21 (17)C12—C13—H13120.3
N1—C1—O1119.64 (17)C14—C13—C12119.4 (2)
N1—C1—C2129.15 (18)C14—C13—H13120.3
C1—C2—S1116.55 (14)C13—C14—H14119.8
C9—C2—S1123.02 (16)C13—C14—C15120.4 (2)
C9—C2—C1120.40 (18)C15—C14—H14119.8
C4—C3—S1117.21 (17)C10—C15—H15119.5
C4—C3—C8120.7 (2)C14—C15—C10120.9 (2)
C8—C3—S1122.03 (16)C14—C15—H15119.5
C3—C4—H4119.9O1—C16—H16A110.3
C5—C4—C3120.2 (2)O1—C16—H16B110.3
C5—C4—H4119.9O1—C16—C17106.89 (16)
C4—C5—H5120.2H16A—C16—H16B108.6
C4—C5—C6119.6 (2)C17—C16—H16A110.3
C6—C5—H5120.2C17—C16—H16B110.3
C5—C6—H6120.1C16—C17—H17A109.2
C7—C6—C5119.9 (2)C16—C17—H17B109.2
C7—C6—H6120.1C16—C17—C18112.25 (18)
C6—C7—H7119.3H17A—C17—H17B107.9
C6—C7—C8121.4 (2)C18—C17—H17A109.2
C8—C7—H7119.3C18—C17—H17B109.2
C3—C8—N1124.66 (18)C17—C18—H18A109.0
C3—C8—C7118.15 (19)C17—C18—H18B109.0
C7—C8—N1117.17 (19)H18A—C18—H18B107.8
C2—C9—H9114.6C19—C18—C17112.9 (2)
C2—C9—C10130.9 (2)C19—C18—H18A109.0
C10—C9—H9114.6C19—C18—H18B109.0
C11—C10—C9125.5 (2)C18—C19—H19A109.5
C11—C10—C15117.6 (2)C18—C19—H19B109.5
C15—C10—C9116.9 (2)C18—C19—H19C109.5
C10—C11—H11119.4H19A—C19—H19B109.5
C12—C11—C10121.2 (2)H19A—C19—H19C109.5
C12—C11—H11119.4H19B—C19—H19C109.5
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C3–C8 benzene ring.
D—H···AD—HH···AD···AD—H···A
C11—H11···S10.932.513.155 (2)127
C17—H17A···Cg2i0.972.823.665 (3)146
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEllouz, M., Sebbar, N. K., Boulhaoua, M., Essassi, E. M. & Mague, J. T. (2017b). IUCrData, 2, x170646.  Google Scholar
First citationEllouz, M., Sebbar, N. K., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2017a). IUCrData, 2, x170097.  Google Scholar
First citationGautam, N., Ajmera, N., Gupta, S. & Gautam, D. C. (2012). Eur. J. Chem. 3, 106–111.  CrossRef CAS Google Scholar
First citationMalagu, K., Boustie, J., David, M., Sauleau, J., Amoros, M., Girre, R. L. & Sauleau, A. (1998). Pharm. Pharmacol. Commun. 4, 57–60.  CAS Google Scholar
First citationNiewiadomy, A., Matysiak, J. & Karpinska, M. M. (2011). Arch. Pharm. Pharm. Med. Chem. 344, 224–230.  CrossRef CAS Google Scholar
First citationRigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Americas, The Woodlands, Texas, USA.  Google Scholar
First citationSebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2016b). IUCrData, 1, x161012.  Google Scholar
First citationSebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Zerzouf, A., Talbaoui, A., Bakri, Y., Saadi, M. & Ammari, L. E. (2016a). Res. Chem. Intermed. 42, 6845–6862.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTrapani, G., Reho, A., Morlacchi, F., Latrofa, A., Marchini, P., Venturi, F. & Cantalamessa, F. (1985). Farmaco Ed. Sci. 40, 369–376.  CAS Google Scholar
First citationWammack, R., Remzi, M., Seitz, C., Djavan, B. & Marberger, M. (2002). Eur. Urol. 41, 596–600.  CrossRef PubMed CAS Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds