organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(Z)-2-(2-Chloro­benzyl­­idene)-4-(prop-2-yn­yl)-2H-1,4-benzo­thia­zin-3(4H)-one

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratoire de Chimie Organique Appliquée, Faculté des Sciences et Techniques, Université Sidi Mohammed Ben Abdellah, Fès, Morocco, and cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: ellouz.chimie@gmail.com

Edited by J. Simpson, University of Otago, New Zealand (Received 7 June 2017; accepted 14 June 2017; online 27 June 2017)

In the title compound, C18H12ClNOS, the thia­zine-3-one ring of the 1,4-thia­zin-3-one moiety adopts a slightly distorted twist-boat conformation. The dihedral angle between the benzene rings is 86.2 (1)°. In the crystal, the crystal packing features a single weak C—H⋯O inter­action and weak ππ stacking inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The 1,4-benzo­thia­zine ring system represents an important class of compounds, not only for their theoretical inter­est, but also for their analgesic (Wammack et al., 2002[Wammack, R., Remzi, M., Seitz, C., Djavan, B. & Marberger, M. (2002). Eur. Urol. 41, 596-601.]); anti-viral (Malagu et al., 1998[Malagu, K., Boustie, J., David, M., Sauleau, J., Amoros, M., Girre, R. L. & Sauleau, A. (1998). Pharm. Pharmacol. Commun. 4, 57-60.]; Rathore & Kumar, 2006[Rathore, B. S. & Kumar, M. (2006). Bioorg. Med. Chem. 14, 5678-5682.]) and anti-oxidant activities (Zia-ur-Rehman et al., 2009[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311-1316.]). Recently, related research has been focused on existing mol­ecules and their modifications in order to reduce their side effects and to explore their other pharmacological and biological effects (Sebbar et al., 2016a[Sebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Zerzouf, A., Talbaoui, A., Bakri, Y., Saadi, M. & Ammari, L. E. (2016a). Res. Chem. Intermed. 42, 6845-6862.]; Armenise et al., 2012[Armenise, D., Muraglia, M., Florio, M. A., De Laurentis, N., Rosato, A., Carrieri, A., Corbo, F. & Franchini, C. (2012). Arch. Pharm. Pharm. Med. Chem. 345, 407-416.]). As a continuation of our research work on the development of N-substituted 1,4-benzo­thia­zine derivatives and the evaluation of their potential pharmacological activities, we have studied the condensation reaction of propargyl bromide with (Z)-2-(2-chloro­benzyl­idene)-2H-1,4-benzo­thia­zin-3(4H)-one under phase-transfer catalysis conditions using tetra-n-butyl­ammonium bromide (TBAB) as a catalyst and potassium carbonate as the base, giving the title compound in good yield (Sebbar et al., 2016b[Sebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2016b). IUCrData, 1, x161012.], Ellouz et al., 2017a[Ellouz, M., Sebbar, N. K., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2017a). IUCrData, 2, x170097.],b[Ellouz, M., Sebbar, N. K., Boulhaoua, M., Essassi, E. M. & Mague, J. T. (2017b). IUCrData, 2, x170646.]).

In the title compound (Fig. 1[link]), the thia­zine-3-one ring of the [1,4]thia­zin-3-one moiety adopts a slightly distorted twist-boat conformation [puckering parameters: Q = 0.433 (2) Å, θ = 110.2 (2)° and φ = 196.4 (3)°]. The dihedral angle between the benzene rings is 86.2 (1)°. In the crystal, a single weak C18—H18⋯O1i inter­action links the mol­ecules into chains along the c-axis direction (Fig. 2[link], Table 1[link]). In addition, ππ stacking inter­actions [Cg3⋯Cg3iii = 3.8766 (2) Å; Cg3 is the centroid of the C10–C15 benzene ring; symmetry code: (iii) 1 − x, −y, −z] are also observed.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯O1i 0.93 2.33 3.191 (3) 154
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The structure of the title compound, showing the atom-numbering scheme, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2]
Figure 2
The mol­ecular packing of the title compound, viewed along the c axis. Dashed lines indicate weak inter­molecular hydrogen bonds. H atoms not involved in these inter­actions have been omitted for clarity.

Synthesis and crystallization

To a mixture of (Z)-2-(2-chloro­benzyl­idene)-2H-1,4-benzo­thia­zin-3(4H)-one (0.49 g, 1.5 mmol), potassium carbonate (0.41 g, 3 mmol) and tetra-n-butyl ammonium bromide (0.048 g, 0.15 mmol) in DMF (15 ml) was added propargyl bromide (3 mmol). Stirring was continued at room temperature for 24 h. The salts were removed by filtration and the filtrate was concentrated under reduced pressure. The residue was separated by chromatography on a column of silica gel with ethyl acetate–hexane (1/9) as the eluent. The solid product was purified by recrystallization from ethanol solution to afford yellow crystals in 90% yield.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C18H12ClNOS
Mr 325.80
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 13.3937 (8), 8.9106 (4), 13.3940 (7)
β (°) 99.765 (5)
V3) 1575.36 (15)
Z 4
Radiation type Cu Kα
μ (mm−1) 3.38
Crystal size (mm) 0.24 × 0.18 × 0.12
 
Data collection
Diffractometer Rigaku Oxford Diffraction
Absorption correction Multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Americas, The Woodlands, Texas, USA.])
Tmin, Tmax 0.481, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 10186, 3031, 2559
Rint 0.037
(sin θ/λ)max−1) 0.616
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.138, 1.03
No. of reflections 3031
No. of parameters 199
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.32, −0.29
Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Americas, The Woodlands, Texas, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); cell refinement: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(Z)-2-(2-Chlorobenzylidene)-4-(prop-2-ynyl)-2H-1,4-benzothiazin-3(4H)-one top
Crystal data top
C18H12ClNOSF(000) = 672
Mr = 325.80Dx = 1.374 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 13.3937 (8) ÅCell parameters from 3922 reflections
b = 8.9106 (4) Åθ = 3.4–71.2°
c = 13.3940 (7) ŵ = 3.38 mm1
β = 99.765 (5)°T = 293 K
V = 1575.36 (15) Å3Prism, yellow
Z = 40.24 × 0.18 × 0.12 mm
Data collection top
Rigaku Oxford Diffraction
diffractometer
3031 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source2559 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 16.0416 pixels mm-1θmax = 71.7°, θmin = 3.4°
ω scansh = 1516
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku Oxford Diffraction, 2015)
k = 710
Tmin = 0.481, Tmax = 1.000l = 1616
10186 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.138 w = 1/[σ2(Fo2) + (0.0723P)2 + 0.4736P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3031 reflectionsΔρmax = 0.32 e Å3
199 parametersΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.42965 (6)0.52359 (13)0.25072 (7)0.0975 (3)
S10.77650 (5)0.76330 (7)0.34112 (4)0.0610 (2)
O10.78762 (15)0.34054 (17)0.26884 (13)0.0621 (5)
N10.86271 (13)0.53717 (19)0.20648 (13)0.0432 (4)
C10.79562 (16)0.4761 (2)0.26214 (15)0.0447 (5)
C20.73317 (17)0.5795 (2)0.31387 (15)0.0475 (5)
C30.82700 (15)0.8022 (2)0.23221 (15)0.0435 (4)
C40.83237 (19)0.9512 (3)0.2039 (2)0.0568 (6)
H40.80511.02560.23990.068*
C50.8780 (2)0.9898 (3)0.1227 (2)0.0715 (8)
H50.88231.09000.10440.086*
C60.9169 (3)0.8799 (3)0.0693 (2)0.0763 (9)
H60.94790.90580.01470.092*
C70.9106 (2)0.7318 (3)0.0955 (2)0.0603 (6)
H70.93640.65840.05750.072*
C80.86627 (15)0.6896 (2)0.17806 (15)0.0415 (4)
C90.64950 (19)0.5274 (3)0.34302 (17)0.0555 (5)
H90.63260.42760.32830.067*
C100.58172 (19)0.6140 (3)0.39636 (18)0.0563 (6)
C110.4785 (2)0.6218 (3)0.3599 (2)0.0633 (6)
C120.4138 (2)0.7054 (4)0.4076 (3)0.0773 (8)
H120.34510.70980.38120.093*
C130.4521 (3)0.7823 (4)0.4946 (3)0.0824 (9)
H130.40900.83910.52730.099*
C140.5533 (3)0.7758 (4)0.5334 (2)0.0815 (9)
H140.57890.82710.59260.098*
C150.6173 (2)0.6930 (4)0.4845 (2)0.0707 (7)
H150.68610.69000.51130.085*
C160.92210 (18)0.4284 (3)0.15800 (18)0.0537 (5)
H16A0.98740.47220.15330.064*
H16B0.93410.33990.20050.064*
C170.87254 (19)0.3833 (2)0.05696 (18)0.0535 (5)
C180.8334 (2)0.3439 (3)0.0242 (2)0.0689 (7)
H180.80250.31280.08830.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0702 (5)0.1452 (9)0.0770 (5)0.0216 (5)0.0127 (4)0.0267 (5)
S10.0887 (5)0.0493 (4)0.0499 (3)0.0049 (3)0.0256 (3)0.0109 (2)
O10.0877 (12)0.0381 (9)0.0631 (10)0.0014 (7)0.0204 (9)0.0090 (7)
N10.0483 (9)0.0386 (9)0.0429 (9)0.0043 (7)0.0087 (7)0.0007 (7)
C10.0551 (12)0.0402 (11)0.0380 (9)0.0020 (8)0.0053 (8)0.0035 (8)
C20.0568 (12)0.0504 (12)0.0358 (9)0.0017 (9)0.0096 (8)0.0036 (8)
C30.0462 (10)0.0394 (10)0.0440 (10)0.0017 (8)0.0047 (8)0.0015 (8)
C40.0645 (14)0.0392 (11)0.0653 (14)0.0018 (10)0.0071 (11)0.0022 (10)
C50.092 (2)0.0446 (13)0.0768 (17)0.0206 (13)0.0122 (15)0.0107 (12)
C60.103 (2)0.0625 (16)0.0707 (17)0.0347 (15)0.0358 (16)0.0021 (13)
C70.0701 (15)0.0547 (14)0.0624 (14)0.0176 (11)0.0296 (12)0.0089 (11)
C80.0419 (10)0.0409 (10)0.0411 (9)0.0041 (8)0.0049 (8)0.0012 (8)
C90.0640 (14)0.0562 (13)0.0488 (12)0.0022 (10)0.0162 (10)0.0012 (10)
C100.0605 (13)0.0621 (14)0.0497 (12)0.0031 (11)0.0191 (10)0.0042 (10)
C110.0627 (14)0.0744 (17)0.0567 (13)0.0089 (12)0.0214 (11)0.0065 (12)
C120.0582 (15)0.097 (2)0.0812 (19)0.0009 (14)0.0240 (14)0.0061 (16)
C130.081 (2)0.092 (2)0.082 (2)0.0075 (17)0.0384 (17)0.0062 (17)
C140.086 (2)0.098 (2)0.0651 (17)0.0004 (17)0.0264 (15)0.0181 (15)
C150.0638 (15)0.094 (2)0.0554 (14)0.0017 (14)0.0125 (12)0.0096 (13)
C160.0530 (12)0.0488 (12)0.0595 (13)0.0125 (9)0.0098 (10)0.0043 (10)
C170.0679 (14)0.0395 (11)0.0581 (13)0.0045 (9)0.0253 (11)0.0025 (9)
C180.099 (2)0.0580 (15)0.0535 (14)0.0054 (14)0.0238 (14)0.0074 (11)
Geometric parameters (Å, º) top
Cl1—C111.734 (3)C7—C81.393 (3)
S1—C21.755 (2)C9—H90.9300
S1—C31.744 (2)C9—C101.467 (3)
O1—C11.217 (3)C10—C111.388 (4)
N1—C11.374 (3)C10—C151.388 (4)
N1—C81.414 (3)C11—C121.379 (4)
N1—C161.473 (3)C12—H120.9300
C1—C21.492 (3)C12—C131.374 (5)
C2—C91.331 (3)C13—H130.9300
C3—C41.386 (3)C13—C141.369 (5)
C3—C81.392 (3)C14—H140.9300
C4—H40.9300C14—C151.377 (4)
C4—C51.378 (4)C15—H150.9300
C5—H50.9300C16—H16A0.9700
C5—C61.367 (4)C16—H16B0.9700
C6—H60.9300C16—C171.459 (3)
C6—C71.372 (4)C17—C181.177 (4)
C7—H70.9300C18—H180.9300
C3—S1—C299.97 (10)C2—C9—C10125.5 (2)
C1—N1—C8125.59 (17)C10—C9—H9117.3
C1—N1—C16115.49 (18)C11—C10—C9121.1 (2)
C8—N1—C16117.93 (17)C11—C10—C15116.9 (2)
O1—C1—N1120.5 (2)C15—C10—C9122.0 (2)
O1—C1—C2121.0 (2)C10—C11—Cl1118.8 (2)
N1—C1—C2118.49 (18)C12—C11—Cl1119.1 (2)
C1—C2—S1118.78 (16)C12—C11—C10122.0 (3)
C9—C2—S1121.98 (18)C11—C12—H12120.3
C9—C2—C1119.1 (2)C13—C12—C11119.3 (3)
C4—C3—S1117.71 (17)C13—C12—H12120.3
C4—C3—C8120.4 (2)C12—C13—H13119.9
C8—C3—S1121.80 (16)C14—C13—C12120.2 (3)
C3—C4—H4119.8C14—C13—H13119.9
C5—C4—C3120.4 (2)C13—C14—H14120.0
C5—C4—H4119.8C13—C14—C15120.0 (3)
C4—C5—H5120.2C15—C14—H14120.0
C6—C5—C4119.6 (2)C10—C15—H15119.2
C6—C5—H5120.2C14—C15—C10121.6 (3)
C5—C6—H6119.6C14—C15—H15119.2
C5—C6—C7120.7 (3)N1—C16—H16A108.9
C7—C6—H6119.6N1—C16—H16B108.9
C6—C7—H7119.5H16A—C16—H16B107.7
C6—C7—C8121.0 (2)C17—C16—N1113.30 (19)
C8—C7—H7119.5C17—C16—H16A108.9
C3—C8—N1121.27 (18)C17—C16—H16B108.9
C3—C8—C7118.0 (2)C18—C17—C16178.6 (3)
C7—C8—N1120.7 (2)C17—C18—H18180.0
C2—C9—H9117.3
Cl1—C11—C12—C13179.5 (3)C4—C5—C6—C70.2 (5)
S1—C2—C9—C102.5 (3)C5—C6—C7—C81.2 (5)
S1—C3—C4—C5175.4 (2)C6—C7—C8—N1178.1 (3)
S1—C3—C8—N12.9 (3)C6—C7—C8—C31.1 (4)
S1—C3—C8—C7176.23 (18)C8—N1—C1—O1168.0 (2)
O1—C1—C2—S1157.24 (18)C8—N1—C1—C212.0 (3)
O1—C1—C2—C919.0 (3)C8—N1—C16—C1780.1 (3)
N1—C1—C2—S122.8 (2)C8—C3—C4—C51.0 (4)
N1—C1—C2—C9161.0 (2)C9—C10—C11—Cl11.3 (3)
C1—N1—C8—C323.2 (3)C9—C10—C11—C12178.4 (3)
C1—N1—C8—C7157.7 (2)C9—C10—C15—C14179.1 (3)
C1—N1—C16—C1789.1 (2)C10—C11—C12—C130.8 (5)
C1—C2—C9—C10178.7 (2)C11—C10—C15—C140.3 (4)
C2—S1—C3—C4154.52 (19)C11—C12—C13—C140.0 (5)
C2—S1—C3—C829.14 (19)C12—C13—C14—C150.6 (5)
C2—C9—C10—C11126.8 (3)C13—C14—C15—C100.5 (5)
C2—C9—C10—C1552.6 (4)C15—C10—C11—Cl1179.3 (2)
C3—S1—C2—C138.40 (18)C15—C10—C11—C120.9 (4)
C3—S1—C2—C9145.5 (2)C16—N1—C1—O10.3 (3)
C3—C4—C5—C60.8 (4)C16—N1—C1—C2179.71 (18)
C4—C3—C8—N1179.2 (2)C16—N1—C8—C3168.79 (19)
C4—C3—C8—C70.0 (3)C16—N1—C8—C710.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O1i0.932.713.486 (4)142
C18—H18···O1ii0.932.333.191 (3)154
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.
 

Acknowledgements

JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationArmenise, D., Muraglia, M., Florio, M. A., De Laurentis, N., Rosato, A., Carrieri, A., Corbo, F. & Franchini, C. (2012). Arch. Pharm. Pharm. Med. Chem. 345, 407–416.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEllouz, M., Sebbar, N. K., Boulhaoua, M., Essassi, E. M. & Mague, J. T. (2017b). IUCrData, 2, x170646.  Google Scholar
First citationEllouz, M., Sebbar, N. K., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2017a). IUCrData, 2, x170097.  Google Scholar
First citationMalagu, K., Boustie, J., David, M., Sauleau, J., Amoros, M., Girre, R. L. & Sauleau, A. (1998). Pharm. Pharmacol. Commun. 4, 57–60.  CAS Google Scholar
First citationRathore, B. S. & Kumar, M. (2006). Bioorg. Med. Chem. 14, 5678–5682.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Americas, The Woodlands, Texas, USA.  Google Scholar
First citationSebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2016b). IUCrData, 1, x161012.  Google Scholar
First citationSebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Zerzouf, A., Talbaoui, A., Bakri, Y., Saadi, M. & Ammari, L. E. (2016a). Res. Chem. Intermed. 42, 6845–6862.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWammack, R., Remzi, M., Seitz, C., Djavan, B. & Marberger, M. (2002). Eur. Urol. 41, 596–601.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds