organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(Z)-4-n-Butyl-2-(4-chloro­benzyl­­idene)-2H-1,4-benzo­thia­zin-3(4H)-one

aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratoire de Chimie Organique Appliquée, Faculté des Sciences et, Techniques, Université Sidi Mohammed Ben Abdellah, Fès, Morocco, and cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: nadouchsebbarkheira@gmail.com

Edited by J. Simpson, University of Otago, New Zealand (Received 7 June 2017; accepted 12 June 2017; online 20 June 2017)

In the title compound, C19H18ClNOS, the thia­zin-3-one ring adopts a slightly distorted screw-boat conformation. An intra­molecular C—H⋯S hydrogen bond encloses an S(6) ring and affects the overall conformation of the mol­ecule. The dihedral angle between the two phenyl rings is 52.3 (2)°. In the crystal, weak C—H⋯O inter­molecular inter­actions stabilize the crystal packing.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

1,4-Benzo­thia­zine-containing compounds are important due to their potential applications in the treatment of diabetes complications, by inhibiting aldose reductase (Aotsuka et al., 1994[Aotsuka, T., Hosono, H., Kurihara, T., Nakamura, Y., Matsui, T. & Kobayashi, F. (1994). Chem. Pharm. Bull. 42, 1264-1271.]). They are also used as analgesics (Wammack et al., 2002[Wammack, R., Remzi, M., Seitz, C., Djavan, B. & Marberger, M. (2002). Eur. Urol. 41, 596-601.]), Ca2+ antagonists (Fujimura et al., 1996[Fujimura, K., Ota, A. & Kawashima, Y. (1996). Chem. Pharm. Bull. 44, 542-546.]), and have anti­microbial properties (Zia-ur-Rehman et al., 2009[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311-1316.]). As a continuation of our previous work on the synthesis of new 1,4-benzo­thia­zine derivatives (Sebbar et al.,2016a[Sebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Zerzouf, A., Talbaoui, A., Bakri, Y., Saadi, M. & Ammari, L. E. (2016a). Res. Chem. Intermed. 42, 6845-6862.],b[Sebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2016b). IUCrData, 1, x161012.]; Ellouz et al.,2017a[Ellouz, M., Sebbar, N. K., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2017a). IUCrData, 2, x170097.],b[Ellouz, M., Sebbar, N. K., Boulhaoua, M., Essassi, E. M. & Mague, J. T. (2017b). IUCrData, 2, x170646.]), we report here the synthesis and crystal structure of the title compound (Fig. 1[link]). This was prepared by reacting (Z)-2-(4-chloro­benzyl­idene)-2H-1,4-benzo­thia­zin-3(4H)-one with 1-bromo­butane, under phase-transfer catalysis conditions using tetra-n-butyl ammonium bromide (TBAB) as a catalyst and potassium carbonate as the base.

[Figure 1]
Figure 1
Structure of the title compound, showing the atom-numbering scheme, with displacement ellipsoids drawn at the 30% probability level.

The title compound crystallizes with one independent mol­ecule in the asymmetric unit (Fig. 1[link]). The thia­zine-3-one ring of the [1,4]thia­zin-3-one moiety adopts a slightly distorted screw-boat conformation [puckering parameters: Q = 0.468 (7) Å, θ = 69.8 (7)° and φ = 25.949 (3)°]. An intra­molecular C15—H15⋯S1 hydrogen bond forms an S(6) ring motif, and at least partially determines the conformation of the mol­ecule. The dihedral angle between the phenyl rings is 52.3 (2)°.

In the crystal, weak C—H⋯O hydrogen bonds involving O1 as the acceptor, Table 1[link], link the mol­ecules into a two-dimensional network (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.93 2.53 3.410 (3) 158
C11—H11⋯O1ii 0.93 2.39 3.290 (3) 162
C15—H15⋯S1 0.93 2.55 3.219 (3) 129
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+2, -z+1.
[Figure 2]
Figure 2
The mol­ecular packing of the title compound, viewed along the a axis. Dashed lines indicate weak intra- and inter­molecular hydrogen bonds. H atoms not involved in packing have been omitted for clarity.

Synthesis and crystallization

To a solution of (Z)-2-(4-chloro­benzyl­idene)-2H-1,4-benzo­thia­zin-3(4H)-one (0.49 g,1.5mmol), potassium carbonate (0.41 g,3 mmol) and tetra-n-butyl ammonium bromide (0.048 g,0.15 mmol) in DMF (18 ml) was added 1-bromo­butane (3 mmol). Stirring was continued at room temperature for 24 h. The mixture was filtered and the solvent removed. The residue was then washed with water. The organic compound obtained was chromatographed on a column of silica gel with ethyl acetate–hexane (9/1) as the eluent. Colorless prismatic crystals were isolated when the solvent was allowed to evaporate (yield = 51%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C19H18ClNOS
Mr 343.85
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 8.8898 (8), 8.9885 (9), 12.1973 (10)
α, β, γ (°) 89.908 (8), 84.490 (7), 63.534 (9)
V3) 867.53 (15)
Z 2
Radiation type Cu Kα
μ (mm−1) 3.09
Crystal size (mm) 0.34 × 0.32 × 0.14
 
Data collection
Diffractometer Rigaku Oxford Diffraction
Absorption correction Multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Americas, The Woodlands, Texas, USA.])
Tmin, Tmax 0.382, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 5496, 3279, 2807
Rint 0.021
(sin θ/λ)max−1) 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.146, 1.03
No. of reflections 3279
No. of parameters 210
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.32
Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Americas, The Woodlands, Texas, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); cell refinement: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(Z)-4-n-Butyl-2-(4-chlorobenzylidene)-2H-1,4-benzothiazin-3(4H)-one top
Crystal data top
C19H18ClNOSZ = 2
Mr = 343.85F(000) = 360
Triclinic, P1Dx = 1.316 Mg m3
a = 8.8898 (8) ÅCu Kα radiation, λ = 1.54184 Å
b = 8.9885 (9) ÅCell parameters from 2206 reflections
c = 12.1973 (10) Åθ = 5.5–70.9°
α = 89.908 (8)°µ = 3.09 mm1
β = 84.490 (7)°T = 293 K
γ = 63.534 (9)°Prism, colourless
V = 867.53 (15) Å30.34 × 0.32 × 0.14 mm
Data collection top
Rigaku Oxford Diffraction
diffractometer
3279 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source2807 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 16.0416 pixels mm-1θmax = 71.5°, θmin = 3.6°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku Oxford Diffraction, 2015)
k = 1110
Tmin = 0.382, Tmax = 1.000l = 1414
5496 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ2(Fo2) + (0.0787P)2 + 0.2112P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.146(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.30 e Å3
3279 reflectionsΔρmin = 0.32 e Å3
210 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0051 (9)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.09239 (15)1.18172 (14)0.02253 (9)0.1305 (5)
S10.73755 (8)0.52007 (7)0.23423 (4)0.0561 (2)
O10.7170 (2)0.7404 (2)0.50943 (14)0.0629 (5)
N10.7797 (2)0.4711 (2)0.47968 (14)0.0461 (4)
C10.7158 (3)0.6329 (3)0.44911 (17)0.0467 (5)
C20.6464 (3)0.6753 (3)0.34053 (17)0.0447 (4)
C30.7545 (3)0.3470 (3)0.30826 (19)0.0502 (5)
C40.7543 (3)0.2137 (3)0.2500 (2)0.0667 (7)
H40.74390.21950.17470.080*
C50.7696 (4)0.0737 (4)0.3035 (3)0.0785 (8)
H50.77240.01630.26430.094*
C60.7806 (4)0.0673 (3)0.4149 (3)0.0784 (8)
H60.78860.02660.45130.094*
C70.7800 (3)0.1990 (3)0.4738 (2)0.0644 (6)
H70.78680.19340.54940.077*
C80.7693 (3)0.3403 (3)0.42042 (18)0.0470 (5)
C90.5312 (3)0.8316 (3)0.32848 (17)0.0487 (5)
H90.50910.90290.38950.058*
C100.4338 (3)0.9109 (3)0.23699 (18)0.0505 (5)
C110.2955 (4)1.0643 (3)0.2594 (2)0.0692 (7)
H110.27221.11310.33010.083*
C120.1918 (4)1.1465 (4)0.1810 (3)0.0783 (8)
H120.09981.24960.19850.094*
C130.2237 (4)1.0772 (4)0.0775 (3)0.0783 (8)
C140.3614 (6)0.9286 (4)0.0506 (3)0.1164 (16)
H140.38490.88260.02090.140*
C150.4653 (5)0.8471 (4)0.1298 (2)0.0944 (12)
H150.55950.74620.11060.113*
C160.8499 (3)0.4380 (3)0.58673 (17)0.0513 (5)
H16A0.91180.50240.59440.062*
H16B0.92980.32130.58680.062*
C170.7187 (3)0.4791 (3)0.68574 (19)0.0560 (6)
H17A0.64840.42420.67540.067*
H17B0.64670.59810.69180.067*
C180.8018 (4)0.4236 (4)0.7914 (2)0.0733 (8)
H18A0.85180.30320.79220.088*
H18B0.89210.45610.79230.088*
C190.6794 (5)0.4967 (5)0.8941 (2)0.1002 (12)
H19A0.59100.46300.89450.150*
H19B0.63140.61590.89470.150*
H19C0.73820.45770.95820.150*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1339 (9)0.1157 (8)0.0988 (7)0.0060 (6)0.0706 (7)0.0190 (6)
S10.0688 (4)0.0496 (3)0.0409 (3)0.0181 (3)0.0068 (2)0.0018 (2)
O10.0915 (12)0.0568 (10)0.0514 (9)0.0403 (9)0.0224 (8)0.0055 (7)
N10.0508 (9)0.0494 (10)0.0414 (9)0.0247 (8)0.0084 (7)0.0074 (7)
C10.0537 (11)0.0504 (11)0.0423 (10)0.0286 (9)0.0069 (8)0.0036 (9)
C20.0519 (11)0.0448 (11)0.0418 (10)0.0253 (9)0.0057 (8)0.0028 (8)
C30.0483 (11)0.0447 (11)0.0558 (12)0.0189 (9)0.0062 (9)0.0007 (9)
C40.0734 (16)0.0558 (14)0.0703 (16)0.0281 (12)0.0084 (13)0.0105 (12)
C50.089 (2)0.0566 (15)0.094 (2)0.0385 (14)0.0012 (16)0.0144 (15)
C60.0883 (19)0.0477 (14)0.101 (2)0.0353 (13)0.0089 (16)0.0044 (14)
C70.0722 (15)0.0531 (13)0.0659 (15)0.0282 (12)0.0025 (12)0.0074 (11)
C80.0428 (10)0.0425 (11)0.0544 (12)0.0185 (8)0.0017 (8)0.0026 (9)
C90.0598 (12)0.0453 (11)0.0436 (11)0.0254 (9)0.0068 (9)0.0006 (8)
C100.0579 (12)0.0445 (11)0.0482 (11)0.0215 (9)0.0089 (9)0.0025 (9)
C110.0773 (16)0.0573 (14)0.0561 (14)0.0139 (12)0.0132 (12)0.0074 (11)
C120.0662 (16)0.0634 (16)0.0769 (18)0.0019 (13)0.0160 (14)0.0033 (14)
C130.0865 (19)0.0689 (17)0.0680 (17)0.0186 (14)0.0388 (15)0.0127 (13)
C140.154 (3)0.073 (2)0.0598 (18)0.011 (2)0.045 (2)0.0094 (15)
C150.116 (2)0.0600 (16)0.0530 (15)0.0116 (16)0.0220 (16)0.0036 (12)
C160.0461 (11)0.0623 (13)0.0461 (11)0.0237 (10)0.0110 (9)0.0111 (9)
C170.0521 (12)0.0673 (14)0.0468 (12)0.0246 (10)0.0075 (9)0.0119 (10)
C180.0680 (15)0.096 (2)0.0485 (13)0.0281 (14)0.0131 (11)0.0150 (13)
C190.098 (2)0.141 (3)0.0465 (15)0.040 (2)0.0061 (15)0.0107 (17)
Geometric parameters (Å, º) top
Cl1—C131.740 (3)C10—C151.380 (4)
S1—C21.756 (2)C11—H110.9300
S1—C31.753 (2)C11—C121.368 (4)
O1—C11.220 (3)C12—H120.9300
N1—C11.371 (3)C12—C131.355 (4)
N1—C81.424 (3)C13—C141.363 (4)
N1—C161.474 (3)C14—H140.9300
C1—C21.492 (3)C14—C151.374 (4)
C2—C91.337 (3)C15—H150.9300
C3—C41.395 (3)C16—H16A0.9700
C3—C81.386 (3)C16—H16B0.9700
C4—H40.9300C16—C171.517 (3)
C4—C51.375 (4)C17—H17A0.9700
C5—H50.9300C17—H17B0.9700
C5—C61.371 (5)C17—C181.519 (3)
C6—H60.9300C18—H18A0.9700
C6—C71.384 (4)C18—H18B0.9700
C7—H70.9300C18—C191.512 (4)
C7—C81.395 (3)C19—H19A0.9600
C9—H90.9300C19—H19B0.9600
C9—C101.462 (3)C19—H19C0.9600
C10—C111.383 (3)
C3—S1—C299.73 (10)C11—C12—H12120.1
C1—N1—C8124.60 (18)C13—C12—C11119.8 (3)
C1—N1—C16115.97 (17)C13—C12—H12120.1
C8—N1—C16119.20 (17)C12—C13—Cl1119.9 (2)
O1—C1—N1120.5 (2)C12—C13—C14120.3 (3)
O1—C1—C2120.45 (19)C14—C13—Cl1119.9 (2)
N1—C1—C2119.09 (18)C13—C14—H14120.2
C1—C2—S1116.82 (15)C13—C14—C15119.6 (3)
C9—C2—S1124.85 (17)C15—C14—H14120.2
C9—C2—C1118.04 (19)C10—C15—H15119.1
C4—C3—S1117.58 (19)C14—C15—C10121.9 (3)
C8—C3—S1121.84 (17)C14—C15—H15119.1
C8—C3—C4120.6 (2)N1—C16—H16A108.7
C3—C4—H4119.9N1—C16—H16B108.7
C5—C4—C3120.1 (3)N1—C16—C17114.37 (17)
C5—C4—H4119.9H16A—C16—H16B107.6
C4—C5—H5120.1C17—C16—H16A108.7
C6—C5—C4119.8 (3)C17—C16—H16B108.7
C6—C5—H5120.1C16—C17—H17A109.4
C5—C6—H6119.7C16—C17—H17B109.4
C5—C6—C7120.7 (3)C16—C17—C18111.19 (19)
C7—C6—H6119.7H17A—C17—H17B108.0
C6—C7—H7119.8C18—C17—H17A109.4
C6—C7—C8120.4 (3)C18—C17—H17B109.4
C8—C7—H7119.8C17—C18—H18A109.0
C3—C8—N1121.16 (19)C17—C18—H18B109.0
C3—C8—C7118.4 (2)H18A—C18—H18B107.8
C7—C8—N1120.4 (2)C19—C18—C17112.9 (2)
C2—C9—H9114.1C19—C18—H18A109.0
C2—C9—C10131.8 (2)C19—C18—H18B109.0
C10—C9—H9114.1C18—C19—H19A109.5
C11—C10—C9117.3 (2)C18—C19—H19B109.5
C15—C10—C9126.4 (2)C18—C19—H19C109.5
C15—C10—C11116.4 (2)H19A—C19—H19B109.5
C10—C11—H11119.0H19A—C19—H19C109.5
C12—C11—C10122.1 (2)H19B—C19—H19C109.5
C12—C11—H11119.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.932.533.410 (3)158
C11—H11···O1ii0.932.393.290 (3)162
C15—H15···S10.932.553.219 (3)129
Symmetry codes: (i) x, y1, z; (ii) x+1, y+2, z+1.
 

Acknowledgements

JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAotsuka, T., Hosono, H., Kurihara, T., Nakamura, Y., Matsui, T. & Kobayashi, F. (1994). Chem. Pharm. Bull. 42, 1264–1271.  CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEllouz, M., Sebbar, N. K., Boulhaoua, M., Essassi, E. M. & Mague, J. T. (2017b). IUCrData, 2, x170646.  Google Scholar
First citationEllouz, M., Sebbar, N. K., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2017a). IUCrData, 2, x170097.  Google Scholar
First citationFujimura, K., Ota, A. & Kawashima, Y. (1996). Chem. Pharm. Bull. 44, 542–546.  CrossRef CAS PubMed Google Scholar
First citationRigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Americas, The Woodlands, Texas, USA.  Google Scholar
First citationSebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2016b). IUCrData, 1, x161012.  Google Scholar
First citationSebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Zerzouf, A., Talbaoui, A., Bakri, Y., Saadi, M. & Ammari, L. E. (2016a). Res. Chem. Intermed. 42, 6845–6862.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWammack, R., Remzi, M., Seitz, C., Djavan, B. & Marberger, M. (2002). Eur. Urol. 41, 596–601.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds