organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Dibenz­yl({1-[(4-methyl-2-phenyl-4,5-di­hydro-1,3-oxazol-4-yl)meth­yl]-1H-1,2,3-triazol-4-yl}meth­yl)amine

CROSSMARK_Color_square_no_text.svg

aFormation Doctorale Molécules Bioactives, Santé et Biotechnologies, Centre d'Études Doctorales Sciences et Technologies, LCO, Faculté des Sciences Dhar El Marhaz, Fès, Morocco, bLaboratoire de Chimie Organique, Faculté des Sciences Dhar el Mahraz, Université, Sidi Mohammed Ben Abdellah, Fès, Morocco, and cLaboratoire de Chimie des Matériaux et Biotechnologie des Produits Naturels, E.Ma.Me.P.S., Université Moulay Ismail, Faculté des Sciences, Meknès, Morocco
*Correspondence e-mail: anouar.alami@usmba.ac.ma

Edited by J. Simpson, University of Otago, New Zealand (Received 3 June 2017; accepted 9 June 2017; online 13 June 2017)

In the title compound, C28H29N5O, the mol­ecule adopts an approximate U-shape, a conformation imposed at least in part by an intra­molecular ππ contact between the two five-membered rings, which display a centroid-to-centroid separation of 3.6522 (7) Å. The planes of these rings are inclined to one another by 66.12 (5)°. A weak intra­molecular C—H⋯·N hydrogen bond is also found. The planes of the phenyl rings of the amine unit are inclined at a dihedral angle of 81.10 (4)°, while that of the 4,5-di­hydro­oxazole ring makes an angle of 11.74 (8)° with its phenyl substituent. The crystal packing is stabilized by C—H⋯N hydrogen bonds that form chains parallel to the b axis. Several C—H⋯π(ring) contacts are also present.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

1,2,3-Triazoles are important heterocycles that display a large range of biological activities and are widely employed as pharmaceuticals and agrochemicals. Compounds containing the 1,2,3-triazole moiety are known to exhibit anti­bacterial (Głowacka, 2009[Głowacka, I. E. (2009). Tetrahedron Asymmetry, 20, 2270-2278.]; Aufort et al., 2008[Aufort, M., Herscovici, J., Bouhours, P., Moreau, N. & Girard, C. (2008). Bioorg. Med. Chem. Lett. 18, 1195-1198.]; Demaray et al., 2008[Demaray, J. A., Thuener, J. E., Dawson, M. N. & Sucheck, S. J. (2008). Bioorg. Med. Chem. Lett. 18, 4868-4871.]), anti­fungal (Chan et al., 2002[Chan, D. C. M., Laughton, C. A., Queener, S. F. & Stevens, M. F. G. (2002). Bioorg. Med. Chem. 10, 3001-3010.]; Jordan et al., 2001[Jordan, D. B., Basarab, G. S., Liao, D. I., Johnson, W. M. P., Winzenberg, K. N. & Winkler, D. A. J. (2001). J. Mol. Graphics Modell. 19, 434-447.]), anti­cancer (Kamal et al., 2008[Kamal, A., Shankaraiah, N., Devaiah, V., Laxma Reddy, K., Juvekar, A., Sen, S., Kurian, N. & Zingde, S. (2008). Bioorg. Med. Chem. Lett. 18, 1468-1473.]; Chen et al., 2008[Chen, Y., Lopez-Sanchez, M., Savoy, D. N., Billadeau, D. D., Dow, G. S. & Kozikowski, A. P. J. (2008). J. Med. Chem. 51, 3437-3448.]) and anti­viral activity (Zhou et al., 2005[Zhou, L., Amer, A., Korn, M., Burda, R., Balzarini, J., De Clercq, E., Kern, E. R. & Torrence, P. F. (2005). Antiviral Chem. Chemother. 16, 375-383.]; Lazrek et al., 2001[Lazrek, H. B., Taourirte, M., Oulih, T., Barascut, J. L., Imbach, J. L., Pannecouque, C., Witrouw, M. & De Clercq, E. (2001). Nucleosides Nucleotides Nucleic Acids, 20, 1949-1960.]). Isoxazoles are components of a variety of complex biologically active structures and play roles as catalysts, ligands and inter­mediates in the synthesis of functional compounds (Miller et al., 2009[Miller, J. J., Rajaram, S., Pfaffenroth, C. & Sigman, M. S. (2009). Tetrahedron, 65, 3110-3119.]; Prasad et al., 2007[Prasad, Y. R., Kumar, P. R. & Ramesh, B. (2007). Int. J. Chem. Sci. 5, 542-548.]). Isoxazoles also appear in numerous medicinally active compounds and natural products of biological significance.

The mol­ecule of the title compound (Fig. 1[link]) adopts an approximate U-shape, a conformation imposed at least in part by an intra­molecular ππ contact between the two five-membered rings, D and E (see Scheme), with a centroid-to-centroid separation of 3.6522 (7) Å. These rings are inclined to one another by 66.12 (5)°. Phenyl rings A and B of the amine unit are inclined at a dihedral angle of 81.10 (4)°; they also make angles of 17.46 (5) and 86.69 (4)°, respectively, with the triazole ring (D). The 4,5-di­hydro­oxazole ring (E) makes a dihedral angle of 11.74 (8)° with its phenyl substituent (C). The crystal packing is stabilized by C—H⋯N hydrogen bonds, forming chains parallel to the b axis. Adjacent chains are linked by C—H⋯π(ring) hydrogen bonds (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg3, Cg4 and Cg5 are the centroids of the C1–C6, C7–C12 and C13–C18 phenyl rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19A⋯N2 0.97 2.58 3.2757 (16) 129
C23—H23⋯N2i 0.93 2.45 3.3607 (16) 166
C27—H27B⋯N3 0.97 2.60 3.3456 (17) 134
C2—H2⋯Cg4ii 0.93 2.63 3.56 154
C12—H12⋯Cg5 0.93 2.92 3.7081 (15) 143
C17—H17⋯Cg3iii 0.93 2.84 3.7046 (16) 154
C24—H24BCg3i 0.93 2.93 3.8795 (14) 165
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y-1, z; (iii) -x, -y+1, -z.
[Figure 1]
Figure 1
The structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2]
Figure 2
A view of the crystal packing along the a axis for the title compound. Hydrogen bonds are drawn as dashed lines.

Synthesis and crystallization

A mixture of 0.65 mmol of 4-azido­methyl-4-methyl-2-phenyl-4,5-di­hydro­oxazole and 0.65 mmol of N,N-di­benzyl­prop-2-yn-1-amine in a minimum of toluene was heated under reflux with constant stirring for 72 h. After reaction, the solvent was evaporated under vacuum and the residue was extracted with ether. The organic layer was washed with water, dried with sodium sulfate (Na2SO4) and the solvent was removed. The product was purified by column chromatography on silica gel using ether–hexane (1:2 v/v) as eluant to afford the pure product. The purity of the compound was checked by determining its melting point (373–375 K). Suitable single crystals were obtained by recrystallization from chloro­form (CHCl3) (yield 84%). The structure of the product was also investigated by NMR spectroscopy (1H and 13C), MS data and elemental analysis. Analytical data: RF = 0.51 (ether). Elemental analysis calculated for C28H29N5O (found): C 74.47 (74.87), H 6.47 (6.18), N 15.51% (15.11%). MS (EI): m/z (relative intensity %) 451 (100%) [M]+. Spectroscopic data: 1H (300.13 MHz, CDCl3): δ 1.42 (3H, CH3, s), 3.37–3.47 (4H, dibenzyl, AB, J = 13.47 Hz), 3.66–3.73 [2H, CH2N(Bn)2, AB, J = 14.64 Hz], 4.06–4.52 (2H, 4,5-di­hydro­oxazole, AB, J = 8.92 Hz), 4.45–4.53 (2H, CH2-triazole, AB, J = 14.10 Hz), 7.18–7.91 (15Harom), 7.61 (1H51,2,3-triazole, s). 13C (75.47 MHz; CDCl3): δ 25.11 (1C, CH3), 47.61 [1C, CH2N(Bn)2], 57.40 (1C, 4,5-di­hydro­oxazole), 57.30 (2C, dibenz­yl), 70.67 (1C, CH2-triazole), 74.67 [1C, CH2(4,5-di­hydro­oxazole)], 131.94 and 150.32 (2C, C4 and C5 of 1,2,3-triazole), 124.61–139.50 (18Carom), 164.56 (1C, C=N of 4,5-di­hydro­oxazole).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. One reflection (i.e. 002) was found to be affected by the beam stop and was omitted from the final refinement cycles.

Table 2
Experimental details

Crystal data
Chemical formula C28H29N5O
Mr 451.56
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 9.8940 (3), 10.1125 (2), 24.8655 (7)
β (°) 95.096 (1)
V3) 2478.04 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.41 × 0.37 × 0.21
 
Data collection
Diffractometer Bruker APEXII CCD detector
No. of measured, independent and observed [I > 2σ(I)] reflections 14425, 4561, 3913
Rint 0.022
(sin θ/λ)max−1) 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.102, 1.06
No. of reflections 4561
No. of parameters 308
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.17, −0.20
Computer programs: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Dibenzyl({1-[(4-methyl-2-phenyl-4,5-dihydro-1,3-oxazol-4-yl)methyl]-1H-1,2,3-triazol-4-yl}methyl)amine top
Crystal data top
C28H29N5OF(000) = 960
Mr = 451.56Dx = 1.210 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.8940 (3) ÅCell parameters from 412 reflections
b = 10.1125 (2) Åθ = 1.9–26.4°
c = 24.8655 (7) ŵ = 0.08 mm1
β = 95.096 (1)°T = 296 K
V = 2478.04 (11) Å3Prism, colourless
Z = 40.41 × 0.37 × 0.21 mm
Data collection top
Bruker APEXII CCD detector
diffractometer
3913 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 25.5°, θmin = 2.1°
ω and φ scansh = 1111
14425 measured reflectionsk = 1211
4561 independent reflectionsl = 3030
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0524P)2 + 0.5133P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
4561 reflectionsΔρmax = 0.17 e Å3
308 parametersΔρmin = 0.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.19432 (10)0.39663 (9)0.14326 (4)0.0260 (2)
N50.32594 (11)0.57568 (10)0.22306 (4)0.0319 (3)
N40.18147 (11)0.33879 (10)0.25538 (4)0.0292 (2)
N20.03788 (11)0.20795 (10)0.21388 (4)0.0336 (3)
N30.16377 (11)0.21560 (10)0.23540 (5)0.0355 (3)
O10.38824 (10)0.47298 (10)0.14862 (4)0.0412 (2)
C190.14782 (13)0.30100 (12)0.10479 (5)0.0281 (3)
H19A0.05720.27170.11750.034*
H19B0.14230.34450.07030.034*
C70.18132 (13)0.58240 (11)0.08073 (5)0.0290 (3)
C60.23884 (13)0.18192 (11)0.09664 (4)0.0264 (3)
C280.32787 (12)0.57631 (12)0.17225 (5)0.0288 (3)
C50.37929 (13)0.19406 (12)0.09226 (5)0.0310 (3)
H50.41870.27580.09800.037*
C260.39945 (13)0.45638 (13)0.24346 (5)0.0310 (3)
C220.02513 (12)0.32656 (11)0.21996 (4)0.0259 (3)
C210.17030 (12)0.34983 (12)0.19938 (5)0.0276 (3)
H21A0.21980.26780.20260.033*
H21B0.20840.41420.22270.033*
C230.06687 (12)0.41007 (12)0.24656 (5)0.0283 (3)
H230.05310.49740.25640.034*
C200.13622 (14)0.52809 (12)0.13586 (5)0.0323 (3)
H20A0.03800.52240.14010.039*
H20B0.16460.58760.16330.039*
C130.27476 (12)0.68248 (13)0.13586 (5)0.0303 (3)
C80.31850 (14)0.58700 (12)0.06262 (5)0.0347 (3)
H80.38290.55990.08540.042*
C240.31270 (13)0.37969 (14)0.28102 (5)0.0341 (3)
H24A0.36230.30180.29420.041*
H24B0.29830.43470.31200.041*
C40.46108 (15)0.08543 (14)0.07939 (5)0.0394 (3)
H40.55500.09470.07660.047*
C180.30205 (14)0.68722 (15)0.08200 (5)0.0391 (3)
H180.35030.61910.06740.047*
C10.18359 (15)0.05817 (13)0.08830 (5)0.0352 (3)
H10.08980.04800.09160.042*
C140.19990 (14)0.78383 (15)0.15650 (5)0.0393 (3)
H140.17910.78020.19220.047*
C270.42583 (14)0.38068 (14)0.19164 (5)0.0371 (3)
H27A0.52070.35610.19190.045*
H27B0.37070.30140.18780.045*
C100.26549 (17)0.67233 (14)0.02277 (6)0.0452 (4)
H100.29320.70120.05750.054*
C110.12981 (17)0.67023 (16)0.00493 (6)0.0489 (4)
H110.06590.69920.02760.059*
C120.08751 (15)0.62532 (14)0.04651 (6)0.0391 (3)
H120.00450.62400.05810.047*
C30.40408 (17)0.03654 (14)0.07068 (6)0.0441 (4)
H30.45930.10910.06180.053*
C90.36000 (16)0.63142 (13)0.01117 (6)0.0401 (3)
H90.45190.63370.00050.048*
C20.26504 (17)0.05000 (13)0.07525 (6)0.0435 (4)
H20.22610.13190.06950.052*
C160.18507 (16)0.89492 (17)0.07129 (6)0.0497 (4)
H160.15600.96640.04970.060*
C250.52999 (14)0.49757 (16)0.27626 (6)0.0442 (4)
H25A0.58620.54600.25360.066*
H25B0.57760.42020.29000.066*
H25C0.50850.55240.30580.066*
C150.15607 (16)0.88998 (17)0.12459 (6)0.0498 (4)
H150.10720.95800.13900.060*
C170.25715 (15)0.79375 (17)0.05018 (6)0.0477 (4)
H170.27590.79690.01420.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0284 (6)0.0251 (5)0.0246 (5)0.0006 (4)0.0026 (4)0.0001 (4)
N50.0338 (6)0.0354 (6)0.0268 (5)0.0033 (5)0.0058 (4)0.0002 (4)
N40.0279 (6)0.0306 (5)0.0288 (5)0.0009 (4)0.0011 (4)0.0029 (4)
N20.0316 (6)0.0275 (5)0.0414 (6)0.0008 (5)0.0013 (5)0.0038 (5)
N30.0338 (7)0.0281 (6)0.0440 (6)0.0033 (5)0.0004 (5)0.0045 (5)
O10.0493 (6)0.0448 (6)0.0301 (5)0.0107 (5)0.0075 (4)0.0069 (4)
C190.0292 (7)0.0306 (6)0.0251 (6)0.0014 (5)0.0060 (5)0.0013 (5)
C70.0336 (7)0.0210 (6)0.0323 (6)0.0003 (5)0.0018 (5)0.0002 (5)
C60.0332 (7)0.0272 (6)0.0186 (5)0.0020 (5)0.0020 (5)0.0015 (4)
C280.0216 (6)0.0369 (7)0.0282 (6)0.0032 (5)0.0046 (5)0.0057 (5)
C50.0335 (7)0.0292 (6)0.0304 (6)0.0030 (5)0.0029 (5)0.0015 (5)
C260.0272 (7)0.0341 (7)0.0319 (6)0.0027 (5)0.0028 (5)0.0006 (5)
C220.0280 (7)0.0266 (6)0.0239 (6)0.0004 (5)0.0058 (5)0.0038 (5)
C210.0272 (7)0.0304 (6)0.0259 (6)0.0012 (5)0.0055 (5)0.0002 (5)
C230.0294 (7)0.0292 (6)0.0267 (6)0.0029 (5)0.0053 (5)0.0002 (5)
C200.0331 (7)0.0288 (6)0.0339 (6)0.0043 (5)0.0024 (5)0.0004 (5)
C130.0228 (7)0.0418 (7)0.0260 (6)0.0048 (5)0.0008 (5)0.0020 (5)
C80.0337 (8)0.0295 (6)0.0406 (7)0.0034 (5)0.0021 (6)0.0046 (5)
C240.0300 (7)0.0418 (7)0.0297 (6)0.0017 (6)0.0020 (5)0.0040 (5)
C40.0354 (8)0.0418 (8)0.0402 (7)0.0044 (6)0.0016 (6)0.0025 (6)
C180.0337 (8)0.0544 (9)0.0298 (7)0.0021 (6)0.0059 (6)0.0015 (6)
C10.0382 (8)0.0335 (7)0.0332 (7)0.0102 (6)0.0001 (6)0.0001 (5)
C140.0388 (8)0.0524 (8)0.0259 (6)0.0086 (7)0.0005 (6)0.0014 (6)
C270.0356 (8)0.0375 (7)0.0390 (7)0.0046 (6)0.0073 (6)0.0026 (6)
C100.0648 (11)0.0400 (8)0.0302 (7)0.0137 (7)0.0013 (7)0.0018 (6)
C110.0555 (10)0.0525 (9)0.0420 (8)0.0123 (8)0.0221 (7)0.0104 (7)
C120.0330 (8)0.0393 (7)0.0458 (8)0.0049 (6)0.0086 (6)0.0061 (6)
C30.0579 (10)0.0327 (7)0.0400 (7)0.0094 (7)0.0052 (7)0.0052 (6)
C90.0419 (8)0.0323 (7)0.0439 (8)0.0012 (6)0.0090 (6)0.0012 (6)
C20.0631 (11)0.0261 (7)0.0404 (7)0.0076 (7)0.0010 (7)0.0045 (6)
C160.0428 (9)0.0608 (10)0.0436 (8)0.0033 (8)0.0069 (7)0.0163 (7)
C250.0336 (8)0.0508 (8)0.0477 (8)0.0038 (7)0.0003 (6)0.0022 (7)
C150.0480 (9)0.0576 (10)0.0421 (8)0.0170 (8)0.0054 (7)0.0014 (7)
C170.0420 (9)0.0715 (11)0.0298 (7)0.0055 (8)0.0038 (6)0.0112 (7)
Geometric parameters (Å, º) top
N1—C191.4630 (15)C13—C181.3905 (17)
N1—C201.4665 (15)C8—C91.3834 (19)
N1—C211.4727 (15)C8—H80.9300
N5—C281.2651 (15)C24—H24A0.9700
N5—C261.4752 (16)C24—H24B0.9700
N4—C231.3451 (16)C4—C31.381 (2)
N4—N31.3467 (15)C4—H40.9300
N4—C241.4547 (17)C18—C171.386 (2)
N2—N31.3135 (16)C18—H180.9300
N2—C221.3664 (16)C1—C21.380 (2)
O1—C281.3625 (15)C1—H10.9300
O1—C271.4432 (16)C14—C151.382 (2)
C19—C61.5065 (17)C14—H140.9300
C19—H19A0.9700C27—H27A0.9700
C19—H19B0.9700C27—H27B0.9700
C7—C121.3837 (18)C10—C111.376 (2)
C7—C81.3923 (19)C10—C91.378 (2)
C7—C201.5069 (17)C10—H100.9300
C6—C11.3886 (17)C11—C121.386 (2)
C6—C51.3896 (18)C11—H110.9300
C28—C131.4708 (18)C12—H120.9300
C5—C41.3849 (19)C3—C21.377 (2)
C5—H50.9300C3—H30.9300
C26—C251.5231 (19)C9—H90.9300
C26—C241.5339 (17)C2—H20.9300
C26—C271.5409 (17)C16—C171.378 (2)
C22—C231.3683 (17)C16—C151.382 (2)
C22—C211.4998 (17)C16—H160.9300
C21—H21A0.9700C25—H25A0.9600
C21—H21B0.9700C25—H25B0.9600
C23—H230.9300C25—H25C0.9600
C20—H20A0.9700C15—H150.9300
C20—H20B0.9700C17—H170.9300
C13—C141.3891 (19)
C19—N1—C20111.57 (9)N4—C24—C26113.76 (10)
C19—N1—C21111.94 (9)N4—C24—H24A108.8
C20—N1—C21112.22 (9)C26—C24—H24A108.8
C28—N5—C26107.27 (10)N4—C24—H24B108.8
C23—N4—N3110.82 (10)C26—C24—H24B108.8
C23—N4—C24128.73 (11)H24A—C24—H24B107.7
N3—N4—C24120.42 (10)C3—C4—C5120.41 (14)
N3—N2—C22109.19 (10)C3—C4—H4119.8
N2—N3—N4106.99 (10)C5—C4—H4119.8
C28—O1—C27105.69 (9)C17—C18—C13119.78 (14)
N1—C19—C6113.41 (10)C17—C18—H18120.1
N1—C19—H19A108.9C13—C18—H18120.1
C6—C19—H19A108.9C2—C1—C6121.33 (13)
N1—C19—H19B108.9C2—C1—H1119.3
C6—C19—H19B108.9C6—C1—H1119.3
H19A—C19—H19B107.7C15—C14—C13120.77 (13)
C12—C7—C8118.59 (12)C15—C14—H14119.6
C12—C7—C20120.87 (12)C13—C14—H14119.6
C8—C7—C20120.52 (11)O1—C27—C26104.29 (10)
C1—C6—C5118.17 (12)O1—C27—H27A110.9
C1—C6—C19120.12 (11)C26—C27—H27A110.9
C5—C6—C19121.44 (11)O1—C27—H27B110.9
N5—C28—O1118.22 (12)C26—C27—H27B110.9
N5—C28—C13125.58 (11)H27A—C27—H27B108.9
O1—C28—C13116.16 (10)C11—C10—C9119.57 (13)
C4—C5—C6120.51 (12)C11—C10—H10120.2
C4—C5—H5119.7C9—C10—H10120.2
C6—C5—H5119.7C10—C11—C12120.56 (14)
N5—C26—C25109.22 (11)C10—C11—H11119.7
N5—C26—C24109.72 (10)C12—C11—H11119.7
C25—C26—C24107.82 (11)C7—C12—C11120.41 (14)
N5—C26—C27103.51 (10)C7—C12—H12119.8
C25—C26—C27112.65 (11)C11—C12—H12119.8
C24—C26—C27113.80 (11)C2—C3—C4119.62 (13)
N2—C22—C23107.75 (11)C2—C3—H3120.2
N2—C22—C21122.17 (11)C4—C3—H3120.2
C23—C22—C21130.08 (11)C10—C9—C8120.15 (14)
N1—C21—C22116.28 (9)C10—C9—H9119.9
N1—C21—H21A108.2C8—C9—H9119.9
C22—C21—H21A108.2C3—C2—C1119.95 (13)
N1—C21—H21B108.2C3—C2—H2120.0
C22—C21—H21B108.2C1—C2—H2120.0
H21A—C21—H21B107.4C17—C16—C15119.83 (14)
N4—C23—C22105.25 (11)C17—C16—H16120.1
N4—C23—H23127.4C15—C16—H16120.1
C22—C23—H23127.4C26—C25—H25A109.5
N1—C20—C7110.91 (10)C26—C25—H25B109.5
N1—C20—H20A109.5H25A—C25—H25B109.5
C7—C20—H20A109.5C26—C25—H25C109.5
N1—C20—H20B109.5H25A—C25—H25C109.5
C7—C20—H20B109.5H25B—C25—H25C109.5
H20A—C20—H20B108.0C16—C15—C14119.84 (15)
C14—C13—C18119.08 (13)C16—C15—H15120.1
C14—C13—C28118.97 (11)C14—C15—H15120.1
C18—C13—C28121.90 (12)C16—C17—C18120.68 (13)
C9—C8—C7120.71 (13)C16—C17—H17119.7
C9—C8—H8119.6C18—C17—H17119.7
C7—C8—H8119.6
Hydrogen-bond geometry (Å, º) top
Cg3, Cg4 and Cg5 are the centroids of the C1-C6, C7-C12 and C13-C18 phenyl rings respectively.
D—H···AD—HH···AD···AD—H···A
C19—H19A···N20.972.583.2757 (16)129
C23—H23···N2i0.932.453.3607 (16)166
C27—H27B···N30.972.603.3456 (17)134
C2—H2···Cg4ii0.932.633.56154
C12—H12···Cg50.932.923.7081 (15)143
C17—H17···Cg3iii0.932.843.7046 (16)154
C24—H24B···Cg3i0.932.933.8795 (14)165
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1, z; (iii) x, y+1, z.
 

References

First citationAufort, M., Herscovici, J., Bouhours, P., Moreau, N. & Girard, C. (2008). Bioorg. Med. Chem. Lett. 18, 1195–1198.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChan, D. C. M., Laughton, C. A., Queener, S. F. & Stevens, M. F. G. (2002). Bioorg. Med. Chem. 10, 3001–3010.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChen, Y., Lopez-Sanchez, M., Savoy, D. N., Billadeau, D. D., Dow, G. S. & Kozikowski, A. P. J. (2008). J. Med. Chem. 51, 3437–3448.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDemaray, J. A., Thuener, J. E., Dawson, M. N. & Sucheck, S. J. (2008). Bioorg. Med. Chem. Lett. 18, 4868–4871.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGłowacka, I. E. (2009). Tetrahedron Asymmetry, 20, 2270–2278.  Google Scholar
First citationJordan, D. B., Basarab, G. S., Liao, D. I., Johnson, W. M. P., Winzenberg, K. N. & Winkler, D. A. J. (2001). J. Mol. Graphics Modell. 19, 434–447.  Web of Science CrossRef CAS Google Scholar
First citationKamal, A., Shankaraiah, N., Devaiah, V., Laxma Reddy, K., Juvekar, A., Sen, S., Kurian, N. & Zingde, S. (2008). Bioorg. Med. Chem. Lett. 18, 1468–1473.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLazrek, H. B., Taourirte, M., Oulih, T., Barascut, J. L., Imbach, J. L., Pannecouque, C., Witrouw, M. & De Clercq, E. (2001). Nucleosides Nucleotides Nucleic Acids, 20, 1949–1960.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMiller, J. J., Rajaram, S., Pfaffenroth, C. & Sigman, M. S. (2009). Tetrahedron, 65, 3110–3119.  Web of Science CrossRef CAS Google Scholar
First citationPrasad, Y. R., Kumar, P. R. & Ramesh, B. (2007). Int. J. Chem. Sci. 5, 542–548.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, L., Amer, A., Korn, M., Burda, R., Balzarini, J., De Clercq, E., Kern, E. R. & Torrence, P. F. (2005). Antiviral Chem. Chemother. 16, 375–383.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds