organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-Methyl-4-(3-methyl-1-phenyl-1H-pyrazol-4-yl)-2-phenyl-2,3-di­hydro-1H-pyrazol-3-one

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie de la Matière Condensée, Université Sidi Mohamed Ben Abdellah, Facultédes Sciences et Techniques, Route d'Immouzzer, BP 2202, Fez, Morocco, bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, cLaboratory of Applied Organic Chemistry, Faculty of Science and Technology, University Sidi Mohammed Ben Abdellah, Fez, Morocco, and dLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco
*Correspondence e-mail: abdelouahedbouayad07@gmail.com

Edited by J. Simpson, University of Otago, New Zealand (Received 29 May 2017; accepted 8 June 2017; online 13 June 2017)

In the title compound, C20H18N4O, the dihedral angle between the pyrazole and pyrazolone rings is 69.35 (3)° and an intra­molecular C—H⋯O hydrogen bond encloses an R22(6) ring. In the crystal, the packing features N—H⋯O and C—H⋯O hydrogen bonds and C—H⋯π(ring) inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Materials containing pyrazolone ring systems represent an important class of compounds, not only for their theoretical inter­est, but also because of their pharmaceutical applications. These include use as anti-inflammatory, analgesic, anti­pyretic (El-Sayed & El-Ashmawey, 1998[Badawey, E. A. M. & El-Ashmawey, I. M. (1998). Eur. J. Med. Chem. 33, 349-361.]) and hypoglycemic agents (Das et al., 2008[Das, N., Verma, A., Shrivastava, P. K. & Shrivastava, S. K. (2008). Indian J. Chem. Sect. B, 47, 1555-1558.]). They also have fungicidal (Singh & Singh, 1991[Singh, D. & Singh, D. (1991). J. Indian. Chem. Soc. 68, 165-167.]) and anti­microbial properties (Sahu et al., 2007[Sahu, S. K., Azam, A. M., Banerjee, M., Choudhary, P., Sutradhar, S., Panda, P. K. & Misra, P. K. (2007). J. Indian Chem. Soc. 84, 1011-1015.]) and some have been tested as potential cardiovascular drugs (Higashi et al., 2006[Higashi, Y., Jitsuiki, D., Chayama, K. & Yoshizumi, M. (2006). Recent Patents Cardiovascular Drug Discov. 1, 85-93.]). In the past year, research has focused on existing mol­ecules and their modifications in order to reduce side effects and to explore other pharmacological and biological effects. As part of our work in this area, the synthesis and structure of the title compound, Fig. 1[link], are described here.

[Figure 1]
Figure 1
The title mol­ecule with the labeling scheme and 50% probability ellipsoids.

An intra­molecular C6—H6⋯O1 hydrogen bond encloses an R22(6) ring and affects the conformation of the phenyl­pyraza­lone segment of the mol­ecule. The dihedral angle between the C1–C6 phenyl ring and the N1/N2/C7–C9 pyrazolone ring is 16.56 (6)° while that between the pyrazolone and pyrazole rings is 69.35 (3)°. The corresponding dihedral angle between the C15–C20 phenyl ring and the N3/N4/C11–C13 pyrazole ring is 39.72 (5)°.

In the crystal the strongest inter­molecular inter­action is the N2—H2A⋯O1i hydrogen bond (Table 1[link], Figs. 2[link] and 3[link]. This is supported by a C2—H2⋯O1i hydrogen bond and together they link mol­ecules into chains along the c-axis direction. The packing is further facilitated by four C—H⋯π(ring) inter­actions, as illustrated in Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg2, Cg3 and Cg4 are the centroids of the N3/N4/C11–C13, C1–C6 and C15–C20 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.948 (17) 1.788 (17) 2.7326 (12) 173.8 (15)
C2—H2⋯O1i 0.991 (16) 2.490 (16) 3.2058 (15) 128.8 (12)
C6—H6⋯O1 0.976 (16) 2.282 (16) 2.9210 (15) 122.2 (12)
C5—H5⋯Cg3ii 0.997 (17) 2.706 (16) 3.6201 (15) 153.0 (12)
C10—H10ACg2iii 0.94 (2) 2.79 (2) 3.5373 (13) 136.5 (18)
C10—H10BCg4iv 0.98 (2) 2.83 (2) 3.7117 (14) 150.3 (17)
C14—H14BCg2v 0.99 (2) 2.77 (2) 3.6861 (16) 154.9 (16)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Packing viewed along the b axis with inter­molecular N—H⋯O hydrogen bonds shown as dotted lines.
[Figure 3]
Figure 3
Details of the C—H⋯π(ring) inter­actions (purple dotted lines) and the N—H⋯O hydrogen bond (blue dotted line) [symmetry codes: (i) x, [{1\over 2}] − y, [{1\over 2}] + z; (ii) 1 − x, −[{1\over 2}] + y, [{3\over 2}] − z; (iii) −x, −[{1\over 2}] + y, [{3\over 2}] − z; (iv) x, [{3\over 2}] − y, [{1\over 2}] + z].

Synthesis and crystallization

To a solution of de­hydro­acetic acid (0.168 g, 1 mmol), copper(II) sulfate penta­hydrate (0.249 g, 1 mmol) was added as a catalyst together with a solution of phenyl­hydrazine (0.099 ml, 1 mmol) in absolute ethanol (30 ml). The reaction mixture was stirred for 3 h at 351 K. Colorless block-like crystals were obtained after cooling the reaction to 298 K (yield = 67%; m.p. = 523 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C20H18N4O
Mr 330.38
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 18.2838 (13), 7.7956 (6), 11.8081 (8)
β (°) 100.393 (3)
V3) 1655.4 (2)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.68
Crystal size (mm) 0.22 × 0.18 × 0.10
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.86, 0.94
No. of measured, independent and observed [I > 2σ(I)] reflections 12696, 3308, 3049
Rint 0.029
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.093, 1.05
No. of reflections 3308
No. of parameters 299
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.22, −0.18
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

5-Methyl-4-(3-methyl-1-phenyl-1H-pyrazol-4-yl)-2-phenyl-2,3-dihydro-1H-pyrazol-3-one top
Crystal data top
C20H18N4OF(000) = 696
Mr = 330.38Dx = 1.326 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 18.2838 (13) ÅCell parameters from 9980 reflections
b = 7.7956 (6) Åθ = 2.5–74.7°
c = 11.8081 (8) ŵ = 0.68 mm1
β = 100.393 (3)°T = 150 K
V = 1655.4 (2) Å3Block, colourless
Z = 40.22 × 0.18 × 0.10 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3308 independent reflections
Radiation source: INCOATEC IµS micro-focus source3049 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.029
Detector resolution: 10.4167 pixels mm-1θmax = 74.7°, θmin = 4.9°
ω scansh = 2221
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 98
Tmin = 0.86, Tmax = 0.94l = 1414
12696 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035All H-atom parameters refined
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0463P)2 + 0.5397P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3308 reflectionsΔρmax = 0.22 e Å3
299 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0106 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.21528 (5)0.21776 (12)0.67688 (6)0.0285 (2)
N10.19857 (5)0.27643 (12)0.86378 (7)0.0197 (2)
N20.24072 (5)0.35100 (12)0.96039 (7)0.0201 (2)
H2A0.2330 (9)0.319 (2)1.0348 (14)0.038 (4)*
N30.43012 (5)0.45260 (12)0.61521 (8)0.0230 (2)
N40.36552 (5)0.46088 (12)0.65819 (8)0.0200 (2)
C10.12381 (6)0.22855 (14)0.86357 (9)0.0205 (2)
C20.08809 (7)0.28638 (17)0.95115 (10)0.0284 (3)
H20.1155 (9)0.361 (2)1.0123 (14)0.037 (4)*
C30.01570 (7)0.2340 (2)0.95303 (12)0.0366 (3)
H30.0102 (10)0.275 (2)1.0193 (16)0.053 (5)*
C40.02153 (7)0.12675 (19)0.86882 (12)0.0368 (3)
H40.0718 (10)0.086 (2)0.8707 (15)0.046 (4)*
C50.01404 (7)0.07181 (18)0.78120 (12)0.0339 (3)
H50.0117 (9)0.007 (2)0.7206 (14)0.045 (4)*
C60.08652 (7)0.12168 (16)0.77770 (10)0.0279 (3)
H60.1116 (9)0.084 (2)0.7157 (13)0.034 (4)*
C70.23913 (6)0.27631 (14)0.77497 (9)0.0203 (2)
C80.30915 (6)0.35407 (13)0.82245 (9)0.0193 (2)
C90.30790 (6)0.39215 (13)0.93601 (9)0.0194 (2)
C100.36562 (7)0.46954 (16)1.02632 (10)0.0260 (3)
H10A0.3676 (12)0.418 (3)1.099 (2)0.080 (7)*
H10B0.3533 (12)0.589 (3)1.0386 (18)0.072 (6)*
H10C0.4149 (13)0.468 (3)1.0048 (19)0.073 (6)*
C110.37120 (6)0.37597 (14)0.76121 (9)0.0196 (2)
C120.44289 (6)0.31276 (15)0.78571 (10)0.0229 (2)
H120.4657 (9)0.2424 (19)0.8532 (13)0.033 (4)*
C130.47676 (6)0.36365 (15)0.69282 (10)0.0234 (2)
C140.55367 (7)0.32664 (19)0.67266 (12)0.0324 (3)
H14A0.5929 (12)0.389 (3)0.7326 (19)0.071 (6)*
H14B0.5649 (12)0.203 (3)0.6810 (18)0.072 (6)*
H14C0.5598 (10)0.364 (2)0.5934 (15)0.046 (5)*
C150.30487 (6)0.55447 (13)0.59520 (9)0.0202 (2)
C160.29122 (7)0.54406 (14)0.47580 (9)0.0237 (2)
H160.3224 (8)0.4722 (18)0.4379 (12)0.028 (4)*
C170.23177 (7)0.63393 (16)0.41357 (10)0.0291 (3)
H170.2205 (8)0.622 (2)0.3278 (14)0.035 (4)*
C180.18726 (7)0.73638 (16)0.46884 (12)0.0322 (3)
H180.1438 (10)0.800 (2)0.4241 (15)0.045 (4)*
C190.20264 (7)0.74963 (17)0.58769 (12)0.0316 (3)
H190.1711 (9)0.821 (2)0.6277 (14)0.045 (4)*
C200.26126 (7)0.65856 (15)0.65170 (10)0.0253 (3)
H200.2732 (8)0.6686 (19)0.7353 (13)0.031 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0274 (4)0.0447 (5)0.0145 (4)0.0073 (4)0.0070 (3)0.0068 (3)
N10.0204 (5)0.0261 (5)0.0134 (4)0.0009 (3)0.0052 (3)0.0016 (3)
N20.0233 (5)0.0250 (5)0.0127 (4)0.0012 (4)0.0050 (4)0.0012 (3)
N30.0205 (5)0.0274 (5)0.0239 (5)0.0001 (4)0.0111 (4)0.0004 (4)
N40.0203 (5)0.0234 (5)0.0184 (4)0.0008 (3)0.0087 (4)0.0019 (3)
C10.0193 (5)0.0243 (5)0.0189 (5)0.0019 (4)0.0058 (4)0.0043 (4)
C20.0238 (6)0.0416 (7)0.0211 (5)0.0027 (5)0.0078 (5)0.0000 (5)
C30.0257 (6)0.0572 (9)0.0302 (6)0.0025 (6)0.0136 (5)0.0023 (6)
C40.0228 (6)0.0478 (8)0.0416 (7)0.0027 (5)0.0109 (5)0.0065 (6)
C50.0261 (6)0.0376 (7)0.0380 (7)0.0055 (5)0.0058 (5)0.0031 (6)
C60.0252 (6)0.0320 (6)0.0277 (6)0.0014 (5)0.0080 (5)0.0036 (5)
C70.0226 (5)0.0247 (5)0.0150 (5)0.0010 (4)0.0069 (4)0.0009 (4)
C80.0218 (5)0.0214 (5)0.0158 (5)0.0001 (4)0.0063 (4)0.0015 (4)
C90.0225 (5)0.0192 (5)0.0171 (5)0.0008 (4)0.0051 (4)0.0019 (4)
C100.0291 (6)0.0291 (6)0.0193 (5)0.0039 (5)0.0033 (5)0.0025 (4)
C110.0226 (5)0.0211 (5)0.0160 (5)0.0011 (4)0.0060 (4)0.0000 (4)
C120.0229 (6)0.0250 (6)0.0210 (5)0.0011 (4)0.0048 (4)0.0008 (4)
C130.0215 (5)0.0247 (6)0.0252 (5)0.0000 (4)0.0073 (4)0.0018 (4)
C140.0231 (6)0.0401 (7)0.0365 (7)0.0047 (5)0.0117 (5)0.0007 (6)
C150.0207 (5)0.0202 (5)0.0204 (5)0.0025 (4)0.0056 (4)0.0022 (4)
C160.0282 (6)0.0228 (5)0.0209 (5)0.0051 (4)0.0071 (5)0.0005 (4)
C170.0336 (7)0.0282 (6)0.0236 (6)0.0082 (5)0.0000 (5)0.0055 (5)
C180.0277 (6)0.0300 (6)0.0367 (7)0.0001 (5)0.0004 (5)0.0090 (5)
C190.0287 (6)0.0302 (6)0.0368 (7)0.0056 (5)0.0086 (5)0.0034 (5)
C200.0266 (6)0.0268 (6)0.0239 (6)0.0031 (4)0.0079 (5)0.0013 (4)
Geometric parameters (Å, º) top
O1—C71.2482 (13)C8—C111.4611 (14)
N1—N21.3842 (12)C9—C101.4862 (16)
N1—C71.3894 (13)C10—H10A0.94 (2)
N1—C11.4165 (14)C10—H10B0.98 (2)
N2—C91.3498 (14)C10—H10C0.98 (2)
N2—H2A0.948 (17)C11—C121.3813 (16)
N3—C131.3289 (15)C12—C131.4102 (15)
N3—N41.3686 (12)C12—H120.995 (16)
N4—C111.3723 (13)C13—C141.4961 (16)
N4—C151.4204 (14)C14—H14A1.03 (2)
C1—C61.3920 (17)C14—H14B0.99 (2)
C1—C21.3939 (15)C14—H14C1.006 (18)
C2—C31.3890 (18)C15—C161.3892 (15)
C2—H20.991 (16)C15—C201.3897 (15)
C3—C41.381 (2)C16—C171.3871 (17)
C3—H31.036 (19)C16—H160.965 (15)
C4—C51.386 (2)C17—C181.3848 (19)
C4—H40.977 (18)C17—H171.000 (16)
C5—C61.3887 (17)C18—C191.3845 (19)
C5—H50.997 (17)C18—H181.001 (17)
C6—H60.976 (16)C19—C201.3899 (18)
C7—C81.4359 (15)C19—H190.983 (18)
C8—C91.3777 (14)C20—H200.975 (15)
N2—N1—C7109.19 (9)C9—C10—H10B110.0 (13)
N2—N1—C1120.38 (8)H10A—C10—H10B104.2 (18)
C7—N1—C1130.15 (9)C9—C10—H10C112.2 (13)
C9—N2—N1108.47 (8)H10A—C10—H10C110.2 (18)
C9—N2—H2A123.6 (10)H10B—C10—H10C107.3 (18)
N1—N2—H2A120.0 (10)N4—C11—C12105.95 (9)
C13—N3—N4104.96 (9)N4—C11—C8123.62 (10)
N3—N4—C11111.94 (9)C12—C11—C8130.31 (10)
N3—N4—C15118.33 (8)C11—C12—C13105.67 (10)
C11—N4—C15129.72 (9)C11—C12—H12127.6 (9)
C6—C1—C2120.03 (11)C13—C12—H12126.7 (9)
C6—C1—N1120.32 (10)N3—C13—C12111.47 (10)
C2—C1—N1119.64 (10)N3—C13—C14119.70 (10)
C3—C2—C1119.49 (12)C12—C13—C14128.81 (11)
C3—C2—H2121.3 (9)C13—C14—H14A110.9 (12)
C1—C2—H2119.2 (9)C13—C14—H14B110.9 (13)
C4—C3—C2120.90 (12)H14A—C14—H14B106.5 (17)
C4—C3—H3120.0 (10)C13—C14—H14C110.9 (10)
C2—C3—H3119.1 (10)H14A—C14—H14C108.7 (15)
C3—C4—C5119.22 (12)H14B—C14—H14C108.8 (15)
C3—C4—H4121.7 (10)C16—C15—C20120.51 (11)
C5—C4—H4119.1 (10)C16—C15—N4118.80 (10)
C4—C5—C6120.97 (13)C20—C15—N4120.66 (10)
C4—C5—H5120.3 (10)C17—C16—C15119.23 (11)
C6—C5—H5118.7 (10)C17—C16—H16121.3 (8)
C5—C6—C1119.38 (11)C15—C16—H16119.4 (8)
C5—C6—H6121.2 (9)C18—C17—C16120.84 (11)
C1—C6—H6119.4 (9)C18—C17—H17120.0 (9)
O1—C7—N1123.78 (10)C16—C17—H17119.2 (9)
O1—C7—C8130.87 (10)C19—C18—C17119.44 (12)
N1—C7—C8105.35 (9)C19—C18—H18119.7 (10)
C9—C8—C7107.50 (9)C17—C18—H18120.9 (10)
C9—C8—C11127.39 (10)C18—C19—C20120.58 (12)
C7—C8—C11124.98 (9)C18—C19—H19120.0 (10)
N2—C9—C8109.39 (9)C20—C19—H19119.4 (10)
N2—C9—C10119.95 (9)C15—C20—C19119.35 (11)
C8—C9—C10130.65 (10)C15—C20—H20119.3 (9)
C9—C10—H10A112.6 (14)C19—C20—H20121.3 (9)
C7—N1—N2—C92.24 (12)C7—C8—C9—C10178.44 (11)
C1—N1—N2—C9176.77 (9)C11—C8—C9—C102.4 (2)
C13—N3—N4—C110.78 (12)N3—N4—C11—C120.82 (12)
C13—N3—N4—C15177.91 (9)C15—N4—C11—C12177.69 (10)
N2—N1—C1—C6166.17 (10)N3—N4—C11—C8175.64 (10)
C7—N1—C1—C620.60 (18)C15—N4—C11—C85.86 (17)
N2—N1—C1—C212.62 (15)C9—C8—C11—N4128.38 (12)
C7—N1—C1—C2160.61 (11)C7—C8—C11—N456.22 (16)
C6—C1—C2—C31.15 (19)C9—C8—C11—C1256.09 (18)
N1—C1—C2—C3177.64 (11)C7—C8—C11—C12119.31 (14)
C1—C2—C3—C40.5 (2)N4—C11—C12—C130.51 (12)
C2—C3—C4—C50.3 (2)C8—C11—C12—C13175.62 (11)
C3—C4—C5—C60.6 (2)N4—N3—C13—C120.43 (13)
C4—C5—C6—C10.0 (2)N4—N3—C13—C14178.99 (10)
C2—C1—C6—C50.85 (18)C11—C12—C13—N30.05 (13)
N1—C1—C6—C5177.93 (11)C11—C12—C13—C14178.34 (12)
N2—N1—C7—O1179.69 (10)N3—N4—C15—C1639.09 (14)
C1—N1—C7—O15.87 (19)C11—N4—C15—C16142.49 (11)
N2—N1—C7—C80.41 (12)N3—N4—C15—C20139.05 (11)
C1—N1—C7—C8174.23 (10)C11—N4—C15—C2039.37 (16)
O1—C7—C8—C9178.38 (12)C20—C15—C16—C172.36 (16)
N1—C7—C8—C91.52 (12)N4—C15—C16—C17179.50 (10)
O1—C7—C8—C112.21 (19)C15—C16—C17—C181.51 (17)
N1—C7—C8—C11177.68 (10)C16—C17—C18—C190.29 (18)
N1—N2—C9—C83.23 (12)C17—C18—C19—C201.27 (19)
N1—N2—C9—C10177.99 (9)C16—C15—C20—C191.40 (17)
C7—C8—C9—N22.95 (12)N4—C15—C20—C19179.50 (11)
C11—C8—C9—N2179.00 (10)C18—C19—C20—C150.44 (19)
Hydrogen-bond geometry (Å, º) top
Cg2, Cg3 and Cg4 are the centroids of the N3/N4/C11–C13, C1–C6 and C15–C20 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.948 (17)1.788 (17)2.7326 (12)173.8 (15)
C2—H2···O1i0.991 (16)2.490 (16)3.2058 (15)128.8 (12)
C6—H6···O10.976 (16)2.282 (16)2.9210 (15)122.2 (12)
C5—H5···Cg3ii0.997 (17)2.706 (16)3.6201 (15)153.0 (12)
C10—H10A···Cg2iii0.94 (2)2.79 (2)3.5373 (13)136.5 (18)
C10—H10B···Cg4iv0.98 (2)2.83 (2)3.7117 (14)150.3 (17)
C14—H14B···Cg2v0.99 (2)2.77 (2)3.6861 (16)154.9 (16)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z+3/2; (iii) x, y1/2, z1/2; (iv) x, y+1/2, z1/2; (v) x+1, y1/2, z+3/2.
 

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBadawey, E. A. M. & El-Ashmawey, I. M. (1998). Eur. J. Med. Chem. 33, 349–361.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDas, N., Verma, A., Shrivastava, P. K. & Shrivastava, S. K. (2008). Indian J. Chem. Sect. B, 47, 1555–1558.  Google Scholar
First citationSahu, S. K., Azam, A. M., Banerjee, M., Choudhary, P., Sutradhar, S., Panda, P. K. & Misra, P. K. (2007). J. Indian Chem. Soc. 84, 1011–1015.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, D. & Singh, D. (1991). J. Indian. Chem. Soc. 68, 165–167.  CAS Google Scholar
First citationHigashi, Y., Jitsuiki, D., Chayama, K. & Yoshizumi, M. (2006). Recent Patents Cardiovascular Drug Discov. 1, 85–93.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds