organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-(1-Benzyl-2,5-di­methyl-4-phenyl-1H-pyrrol-3-yl)ethanone

CROSSMARK_Color_square_no_text.svg

aEquipe de Chimie de Coordination et de Catalyse, Département de Chimie, Faculté des Sciences Semlalia, BP 2390, 40001 Marrakech, Morocco, and bLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
*Correspondence e-mail: elfirdoussi@uca.ma

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 3 June 2017; accepted 15 June 2017; online 20 June 2017)

In the title compound, C21H21NO, the dihedral angles between the planes of the phenyl and pyrrole rings are 47.04 (5) and 79.27 (3)°. In the crystal, centro­symmetrically related mol­ecules are linked into dimers by pairs of C—H⋯O hydrogen bonds, forming rings of graph-set motif R22(16).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyrrole derivatives, which are widespread in nature (Iwao et al., 2003[Iwao, M., Takeuchi, T., Fujikawa, N., Fukuda, T. & Ishibashi, F. (2003). Tetrahedron Lett. 44, 4443-4446.]), are of inter­est with respect to their versatility in organic synthetic procedures (Loudet & Burgess, 2007[Loudet, A. & Burgess, K. (2007). Chem. Rev. 107, 4891-4932.]) and their biological and medicinal activities (Fan et al., 2008[Fan, H., Peng, J., Hamann, M. T. & Hu, J. F. (2008). Chem. Rev. 108, 264-287.]).

The mol­ecular structure of 1-(1-benzyl-2,5-dimethyl-4-phenyl-1H-pyrrol-3-yl)ethanone is shown in Fig. 1[link]. The dihedral angles between the planes of the pyrrole ring and the C8–C13 and C16–C21 phenyl rings are 47.04 (5) and 79.27 (3)°, respectively. The mol­ecular conformation is enforced by an intra­molecular hydrogen bond involving a methyl H atom and the carbonyl O atom (Table 1[link]). In the crystal, mol­ecules are linked through pairs of C—H⋯O hydrogen bonds to form R22(16) centrosymmetric dimers.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5B⋯O1 0.98 2.38 3.0007 (17) 121
C10—H10⋯O1i 0.95 2.50 3.4114 (17) 161
Symmetry code: (i) -x+2, -y, -z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Synthesis and crystallization

The synthesis of the title compound was carried out by mixing acetyl­acetone (1.1 mmol), benzyl­amine (1.0 mmol), benzaldehyde (1.0 mmol) and nitro­ethane (1.3 mmol) in the presence of Ca5(PO4)3OH (0.05 mmol) as a catalyst. The mixture was stirred at 333 K for 24 h. After extraction with ethyl acetate (3 × 25 ml), the organic layer was dried with Na2SO4 and the solvent was removed under reduced pressure. The product was obtained in 74% yield after silica-gel column chromatography using a mixture of n-hexane and ethyl acetate (94:6 v/v) as eluent. White crystals were obtained by slow evaporation of the solvent at room temperature (m.p. 364–365 K). 1H NMR (DMSO): δ 1.77 (s, 3H), 1.94 (s, 3H), 2.36 (s, 3H), 5.19 (s, 2H), 6.98–7.38 (m, 10H). 13C NMR (DMSO): δ 9.99, 11.47, 30.64, 46.25, 120.79, 121.42, 125.73, 126.41, 127.16, 128.12, 128.77, 130.29, 133.52, 136.72, 137.33, 195.04.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C21H21NO
Mr 303.39
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 10.7210 (2), 13.7039 (2), 11.5761 (2)
β (°) 107.0322 (6)
V3) 1626.16 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.42 × 0.33 × 0.27
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.93, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 31011, 3926, 3484
Rint 0.021
(sin θ/λ)max−1) 0.661
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.104, 1.04
No. of reflections 3926
No. of parameters 211
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.27, −0.22
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

1-(1-Benzyl-2,5-dimethyl-4-phenyl-1H-pyrrol-3-yl)ethanone top
Crystal data top
C21H21NOF(000) = 648
Mr = 303.39Dx = 1.239 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.7210 (2) ÅCell parameters from 9842 reflections
b = 13.7039 (2) Åθ = 2.5–30.5°
c = 11.5761 (2) ŵ = 0.08 mm1
β = 107.0322 (6)°T = 150 K
V = 1626.16 (5) Å3Prism, colourless
Z = 40.42 × 0.33 × 0.27 mm
Data collection top
Bruker APEXII CCD
diffractometer
3926 independent reflections
Radiation source: fine-focus sealed tube3484 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1Rint = 0.021
φ and ω scansθmax = 28.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1414
Tmin = 0.93, Tmax = 0.98k = 1818
31011 measured reflectionsl = 1515
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0521P)2 + 0.4997P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3926 reflectionsΔρmax = 0.27 e Å3
211 parametersΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.69940 (10)0.00933 (7)0.28342 (9)0.0226 (2)
C20.77764 (9)0.04143 (7)0.21445 (9)0.0207 (2)
C30.88508 (9)0.09425 (7)0.29356 (9)0.0203 (2)
C40.86945 (10)0.09142 (7)0.40726 (9)0.0221 (2)
C50.57153 (11)0.04261 (8)0.24566 (11)0.0301 (2)
H5A0.58420.11100.27110.045*
H5B0.53540.03940.15760.045*
H5C0.51100.01150.28350.045*
C60.74045 (9)0.03075 (7)0.08261 (9)0.0223 (2)
C70.77732 (11)0.10944 (8)0.00737 (9)0.0271 (2)
H7A0.85750.09060.01120.041*
H7B0.79160.17100.05250.041*
H7C0.70680.11780.06800.041*
C80.99949 (9)0.13556 (7)0.26504 (8)0.0214 (2)
C91.06614 (10)0.08215 (8)0.19876 (9)0.0265 (2)
H91.03690.01840.17150.032*
C101.17418 (11)0.12067 (9)0.17224 (11)0.0333 (3)
H101.21770.08380.12630.040*
C111.21862 (11)0.21310 (10)0.21292 (11)0.0353 (3)
H111.29240.23970.19450.042*
C121.15563 (11)0.26646 (9)0.28026 (11)0.0322 (2)
H121.18710.32930.30940.039*
C131.04641 (10)0.22844 (8)0.30547 (10)0.0260 (2)
H131.00290.26610.35080.031*
C140.95716 (11)0.12583 (8)0.52522 (9)0.0271 (2)
H14A1.04170.14450.51540.041*
H14B0.96970.07330.58490.041*
H14C0.91780.18230.55290.041*
C150.70566 (11)0.02234 (8)0.50245 (9)0.0268 (2)
H15A0.77780.00180.57120.032*
H15B0.63840.02940.48050.032*
C160.64695 (10)0.11232 (7)0.54209 (9)0.0231 (2)
C170.69601 (10)0.14761 (8)0.65922 (9)0.0252 (2)
H170.76760.11550.71430.030*
C180.64164 (11)0.22944 (8)0.69680 (10)0.0274 (2)
H180.67600.25280.77710.033*
C190.53749 (11)0.27678 (8)0.61709 (10)0.0284 (2)
H190.50050.33290.64240.034*
C200.48743 (11)0.24209 (8)0.50021 (10)0.0300 (2)
H200.41560.27420.44550.036*
C210.54191 (10)0.16052 (8)0.46281 (9)0.0277 (2)
H210.50730.13730.38240.033*
N10.75568 (8)0.04036 (6)0.39956 (8)0.02273 (19)
O10.67584 (8)0.03911 (6)0.03179 (7)0.03149 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0272 (5)0.0185 (4)0.0237 (5)0.0001 (4)0.0102 (4)0.0007 (4)
C20.0232 (5)0.0183 (4)0.0213 (5)0.0004 (3)0.0078 (4)0.0003 (3)
C30.0220 (4)0.0186 (4)0.0207 (4)0.0017 (3)0.0068 (4)0.0003 (3)
C40.0244 (5)0.0208 (4)0.0213 (5)0.0031 (4)0.0071 (4)0.0004 (4)
C50.0317 (5)0.0280 (5)0.0343 (6)0.0083 (4)0.0154 (4)0.0046 (4)
C60.0228 (4)0.0230 (5)0.0218 (5)0.0008 (4)0.0078 (4)0.0018 (4)
C70.0318 (5)0.0291 (5)0.0211 (5)0.0023 (4)0.0088 (4)0.0014 (4)
C80.0199 (4)0.0237 (5)0.0193 (4)0.0011 (3)0.0041 (3)0.0015 (4)
C90.0257 (5)0.0281 (5)0.0264 (5)0.0007 (4)0.0086 (4)0.0028 (4)
C100.0268 (5)0.0435 (6)0.0326 (6)0.0018 (5)0.0136 (4)0.0035 (5)
C110.0236 (5)0.0456 (7)0.0378 (6)0.0066 (5)0.0109 (5)0.0019 (5)
C120.0271 (5)0.0307 (6)0.0360 (6)0.0067 (4)0.0049 (4)0.0005 (4)
C130.0249 (5)0.0252 (5)0.0270 (5)0.0001 (4)0.0062 (4)0.0023 (4)
C140.0294 (5)0.0299 (5)0.0207 (5)0.0041 (4)0.0052 (4)0.0015 (4)
C150.0365 (6)0.0245 (5)0.0240 (5)0.0030 (4)0.0162 (4)0.0041 (4)
C160.0269 (5)0.0232 (5)0.0228 (5)0.0008 (4)0.0129 (4)0.0030 (4)
C170.0263 (5)0.0282 (5)0.0221 (5)0.0001 (4)0.0089 (4)0.0035 (4)
C180.0310 (5)0.0290 (5)0.0249 (5)0.0054 (4)0.0124 (4)0.0035 (4)
C190.0296 (5)0.0241 (5)0.0358 (6)0.0012 (4)0.0163 (4)0.0019 (4)
C200.0264 (5)0.0305 (5)0.0324 (5)0.0026 (4)0.0073 (4)0.0031 (4)
C210.0300 (5)0.0297 (5)0.0227 (5)0.0008 (4)0.0071 (4)0.0001 (4)
N10.0277 (4)0.0216 (4)0.0212 (4)0.0010 (3)0.0109 (3)0.0008 (3)
O10.0374 (4)0.0303 (4)0.0272 (4)0.0095 (3)0.0100 (3)0.0083 (3)
Geometric parameters (Å, º) top
C1—N11.3701 (13)C11—C121.3808 (17)
C1—C21.3881 (13)C11—H110.9500
C1—C51.4920 (14)C12—C131.3885 (15)
C2—C31.4393 (13)C12—H120.9500
C2—C61.4674 (13)C13—H130.9500
C3—C41.3752 (13)C14—H14A0.9800
C3—C81.4735 (13)C14—H14B0.9800
C4—N11.3861 (13)C14—H14C0.9800
C4—C141.4896 (14)C15—N11.4634 (12)
C5—H5A0.9800C15—C161.5154 (14)
C5—H5B0.9800C15—H15A0.9900
C5—H5C0.9800C15—H15B0.9900
C6—O11.2262 (12)C16—C171.3897 (14)
C6—C71.5098 (14)C16—C211.3934 (15)
C7—H7A0.9800C17—C181.3912 (15)
C7—H7B0.9800C17—H170.9500
C7—H7C0.9800C18—C191.3840 (16)
C8—C131.3980 (14)C18—H180.9500
C8—C91.3987 (14)C19—C201.3854 (16)
C9—C101.3866 (15)C19—H190.9500
C9—H90.9500C20—C211.3878 (16)
C10—C111.3864 (18)C20—H200.9500
C10—H100.9500C21—H210.9500
N1—C1—C2107.42 (9)C11—C12—C13120.13 (10)
N1—C1—C5122.57 (9)C11—C12—H12119.9
C2—C1—C5129.85 (9)C13—C12—H12119.9
C1—C2—C3107.41 (8)C12—C13—C8120.94 (10)
C1—C2—C6122.73 (9)C12—C13—H13119.5
C3—C2—C6129.42 (9)C8—C13—H13119.5
C4—C3—C2107.19 (9)C4—C14—H14A109.5
C4—C3—C8124.62 (9)C4—C14—H14B109.5
C2—C3—C8127.90 (9)H14A—C14—H14B109.5
C3—C4—N1107.71 (9)C4—C14—H14C109.5
C3—C4—C14130.33 (10)H14A—C14—H14C109.5
N1—C4—C14121.74 (9)H14B—C14—H14C109.5
C1—C5—H5A109.5N1—C15—C16113.13 (8)
C1—C5—H5B109.5N1—C15—H15A109.0
H5A—C5—H5B109.5C16—C15—H15A109.0
C1—C5—H5C109.5N1—C15—H15B109.0
H5A—C5—H5C109.5C16—C15—H15B109.0
H5B—C5—H5C109.5H15A—C15—H15B107.8
O1—C6—C2121.34 (9)C17—C16—C21118.66 (10)
O1—C6—C7119.17 (9)C17—C16—C15120.43 (9)
C2—C6—C7119.44 (9)C21—C16—C15120.90 (9)
C6—C7—H7A109.5C16—C17—C18120.80 (10)
C6—C7—H7B109.5C16—C17—H17119.6
H7A—C7—H7B109.5C18—C17—H17119.6
C6—C7—H7C109.5C19—C18—C17119.97 (10)
H7A—C7—H7C109.5C19—C18—H18120.0
H7B—C7—H7C109.5C17—C18—H18120.0
C13—C8—C9117.94 (9)C18—C19—C20119.76 (10)
C13—C8—C3121.08 (9)C18—C19—H19120.1
C9—C8—C3120.96 (9)C20—C19—H19120.1
C10—C9—C8121.08 (10)C19—C20—C21120.20 (10)
C10—C9—H9119.5C19—C20—H20119.9
C8—C9—H9119.5C21—C20—H20119.9
C11—C10—C9119.93 (11)C20—C21—C16120.61 (10)
C11—C10—H10120.0C20—C21—H21119.7
C9—C10—H10120.0C16—C21—H21119.7
C12—C11—C10119.95 (10)C1—N1—C4110.26 (8)
C12—C11—H11120.0C1—N1—C15125.82 (9)
C10—C11—H11120.0C4—N1—C15123.93 (9)
N1—C1—C2—C30.20 (11)C10—C11—C12—C131.16 (18)
C5—C1—C2—C3175.30 (10)C11—C12—C13—C80.93 (17)
N1—C1—C2—C6173.26 (9)C9—C8—C13—C120.15 (15)
C5—C1—C2—C62.24 (17)C3—C8—C13—C12178.85 (10)
C1—C2—C3—C40.73 (11)N1—C15—C16—C17121.33 (10)
C6—C2—C3—C4173.16 (10)N1—C15—C16—C2159.56 (13)
C1—C2—C3—C8174.70 (9)C21—C16—C17—C180.06 (15)
C6—C2—C3—C812.87 (17)C15—C16—C17—C18179.19 (9)
C2—C3—C4—N10.96 (11)C16—C17—C18—C190.07 (16)
C8—C3—C4—N1175.18 (9)C17—C18—C19—C200.30 (16)
C2—C3—C4—C14173.69 (10)C18—C19—C20—C210.39 (16)
C8—C3—C4—C140.53 (17)C19—C20—C21—C160.26 (17)
C1—C2—C6—O132.75 (15)C17—C16—C21—C200.03 (15)
C3—C2—C6—O1155.84 (10)C15—C16—C21—C20179.09 (10)
C1—C2—C6—C7144.56 (10)C2—C1—N1—C40.41 (11)
C3—C2—C6—C726.86 (15)C5—C1—N1—C4176.30 (9)
C4—C3—C8—C1349.76 (14)C2—C1—N1—C15179.82 (9)
C2—C3—C8—C13137.25 (10)C5—C1—N1—C154.28 (15)
C4—C3—C8—C9128.90 (11)C3—C4—N1—C10.87 (11)
C2—C3—C8—C944.10 (15)C14—C4—N1—C1174.33 (9)
C13—C8—C9—C101.01 (15)C3—C4—N1—C15179.70 (9)
C3—C8—C9—C10179.71 (10)C14—C4—N1—C155.09 (14)
C8—C9—C10—C110.79 (17)C16—C15—N1—C1106.93 (11)
C9—C10—C11—C120.31 (18)C16—C15—N1—C473.73 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···O10.982.383.0007 (17)121
C10—H10···O1i0.952.503.4114 (17)161
Symmetry code: (i) x+2, y, z.
 

References

First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFan, H., Peng, J., Hamann, M. T. & Hu, J. F. (2008). Chem. Rev. 108, 264–287.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIwao, M., Takeuchi, T., Fujikawa, N., Fukuda, T. & Ishibashi, F. (2003). Tetrahedron Lett. 44, 4443–4446.  CrossRef CAS Google Scholar
First citationLoudet, A. & Burgess, K. (2007). Chem. Rev. 107, 4891–4932.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds