organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2,2′-(Diselane-1,2-di­yl)bis­­(N,N-di­methyl­nicotinamide)

CROSSMARK_Color_square_no_text.svg

aScientific Instrument Center, Shanxi University, Taiyuan 030006, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, People's Republic of China
*Correspondence e-mail: gzq@sxu.edu.cn

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 11 June 2017; accepted 14 June 2017; online 20 June 2017)

The title compound, C16H18N4O2Se2, is centrosymmetric. The dihedral angle between the pyridine ring and the amide side chain is 56.20 (16)°. In the crystal, a weak C—H⋯O inter­action links the mol­ecules into [010] chains.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Many investigations have demonstrated that organoselenium compounds are less toxic than those of inorganic selenium compounds (Jalbout et al. 2008[Jalbout, A. F., Hameed, A. J. & Essa, A. H. (2008). J. Organomet. Chem. 693, 2074-2078.]). However, to gain further insight into the role of organoselenium compounds, detailed studies are still needed. As part of our research in this area, we report herein the synthesis and crystal structure of the title compound (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) −x + 1, −y + 1, −z + 2.]

The complete mol­ecule is generated by a crystallographic centre of symmetry at the mid-point of the Se—Se bond. This implies, of course, that the C—Se—Se—C torsion angle is 180°, which minimizes repulsion of the Se lone pairs, and the dihedral angle between the pyridine rings is 0°. The pyridine ring is substituted at the 2-position [C1—Se = 1.923 (3) Å] and the 3-position [C2—C6 = 1.490 (4) Å]. The X—C—Se—Se torsion angles (X = C, N) are 14.01 (2) and −164.79 (2)°, respectively, indicating that the Se—Se bond lies close to the plane of each pyridine ring. In the crystal, weak C—H⋯O bonds (Table 1[link]) link the mol­ecules into [010] chains.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Oi 0.93 2.52 3.431 (4) 165
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Synthesis and crystallization

The title compound was prepared follows a modified literature procedure (Feng et al., 2010[Feng, A., Xu, Y. & Wei, X. (2010). Acta Cryst. E66, o1216.]). To a vigorously stirred solution of selenium powder (1.00 g, 12.6 mmol) and absolute ethanol (30 ml), sodium borohydride (0.35 g, 9.3 mmol) was added at 0°C. The mixture was warmed to room temperature and stirred for 2 h. 2-Chloro-N,N-di­methyl­nicotinamide (1.55 g, 8.4 mmol) was added and stirred for 7 d. O2 was passed through the solution slowly for 2 h after the reaction mixture was acidified by glacial acetic acid. The solvents were removed in vacuo and the residue was extracted with di­chloro­methane (CH2Cl2) and filtered. The filtrate was evaporated in vacuo. The precipitate was separated by filtration and recrystallized from C6H12–CHCl3 (1:2) mixed solvent to give the product as colorless block-shaped crystals, yield: 1.0 g, 52%.

1H NMR (300 MHz, DCCl3) δ(p.p.m.): 3.07 (s, 12H, Me), 7.10 (q, 2H, ArH), 7.44 (dd, 2H, ArH), 8.41 (dd, 2H, ArH). 13C NMR (75 MHz, DCCl3) δ(p.p.m.): 40.77 (Me), 41.69 (Me), 123.71, 135.47, 136.92, 153.18, 154.68, 171.27(C=O). 77Se NMR (57 MHz, DCCl3) δ(p.p.m.): 486.10. Analysis calculated for C16H18N4O2Se2: C: 42.12, H: 3.98, N: 12.28; found: C:41.74, H: 3.957, N: 12.03.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C16H18N4O2Se2
Mr 456.26
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 7.167 (2), 8.726 (3), 13.947 (4)
β (°) 96.375 (4)
V3) 866.8 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 4.28
Crystal size (mm) 0.50 × 0.20 × 0.20
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.223, 0.481
No. of measured, independent and observed [I > 2σ(I)] reflections 3376, 1524, 1300
Rint 0.035
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.077, 1.06
No. of reflections 1524
No. of parameters 111
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.64, −0.43
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

2,2'-(Diselane-1,2-diyl)bis(N,N-dimethylnicotinamide) top
Crystal data top
C16H18N4O2Se2F(000) = 452
Mr = 456.26Dx = 1.748 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.167 (2) ÅCell parameters from 2532 reflections
b = 8.726 (3) Åθ = 2.8–27.5°
c = 13.947 (4) ŵ = 4.28 mm1
β = 96.375 (4)°T = 293 K
V = 866.8 (4) Å3Block, colorless
Z = 20.50 × 0.20 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
1300 reflections with I > 2σ(I)
phi and ω scansRint = 0.035
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 25.0°, θmin = 2.8°
Tmin = 0.223, Tmax = 0.481h = 86
3376 measured reflectionsk = 810
1524 independent reflectionsl = 1615
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0337P)2 + 0.0053P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
1524 reflectionsΔρmax = 0.64 e Å3
111 parametersΔρmin = 0.43 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms were positioned geometrically(C—H = 0.93–0.96 Å), and refined as riding with Uiso(H) = 1.2Ueq of the adjacent carbon atom (1.5Ueq for methyl H atoms).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se0.52041 (4)0.56001 (3)0.92626 (2)0.04189 (16)
N10.1797 (4)0.6437 (3)0.99097 (18)0.0386 (6)
N20.4942 (4)0.9794 (3)0.79999 (18)0.0403 (6)
O0.4595 (4)0.7382 (3)0.74625 (17)0.0541 (7)
C10.2981 (4)0.6827 (3)0.9288 (2)0.0313 (6)
C20.2725 (4)0.8092 (3)0.8665 (2)0.0341 (7)
C30.1072 (5)0.8902 (4)0.8669 (2)0.0423 (8)
H30.08230.97340.82570.051*
C40.0211 (5)0.8469 (4)0.9289 (2)0.0450 (8)
H40.13440.89870.92890.054*
C50.0220 (4)0.7258 (4)0.9903 (2)0.0433 (8)
H50.06270.69961.03350.052*
C60.4161 (4)0.8408 (3)0.7996 (2)0.0349 (7)
C70.4669 (5)1.1022 (4)0.8681 (3)0.0546 (9)
H7A0.38531.17870.83680.082*
H7B0.58601.14770.89020.082*
H7C0.41161.06100.92220.082*
C80.6280 (5)1.0111 (4)0.7320 (3)0.0535 (9)
H8A0.70670.92310.72680.080*
H8B0.70421.09730.75410.080*
H8C0.56191.03390.66990.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se0.0395 (2)0.0410 (2)0.0480 (2)0.01035 (14)0.01743 (16)0.01223 (14)
N10.0347 (14)0.0393 (15)0.0434 (14)0.0022 (12)0.0121 (12)0.0045 (11)
N20.0425 (16)0.0382 (15)0.0405 (14)0.0051 (12)0.0072 (12)0.0041 (11)
O0.0702 (17)0.0403 (13)0.0569 (14)0.0031 (12)0.0293 (13)0.0065 (11)
C10.0288 (15)0.0274 (15)0.0377 (15)0.0003 (12)0.0044 (13)0.0021 (12)
C20.0380 (17)0.0283 (16)0.0358 (15)0.0008 (13)0.0039 (13)0.0018 (12)
C30.046 (2)0.0345 (17)0.0469 (19)0.0062 (15)0.0049 (15)0.0037 (14)
C40.0374 (19)0.0432 (19)0.055 (2)0.0098 (15)0.0097 (16)0.0010 (15)
C50.0362 (18)0.0479 (19)0.0479 (18)0.0017 (15)0.0139 (15)0.0012 (15)
C60.0378 (17)0.0301 (17)0.0365 (16)0.0040 (13)0.0028 (13)0.0045 (13)
C70.064 (3)0.0413 (19)0.058 (2)0.0088 (18)0.0045 (18)0.0050 (16)
C80.052 (2)0.055 (2)0.055 (2)0.0063 (18)0.0144 (18)0.0171 (17)
Geometric parameters (Å, º) top
Se—C11.923 (3)C3—C41.383 (4)
Se—Sei2.3551 (8)C3—H30.9300
N1—C11.324 (4)C4—C51.373 (4)
N1—C51.338 (4)C4—H40.9300
N2—C61.332 (4)C5—H50.9300
N2—C81.449 (4)C7—H7A0.9600
N2—C71.460 (4)C7—H7B0.9600
O—C61.226 (3)C7—H7C0.9600
C1—C21.403 (4)C8—H8A0.9600
C2—C31.381 (4)C8—H8B0.9600
C2—C61.490 (4)C8—H8C0.9600
C1—Se—Sei92.77 (8)N1—C5—H5118.4
C1—N1—C5117.4 (3)C4—C5—H5118.4
C6—N2—C8118.6 (3)O—C6—N2122.0 (3)
C6—N2—C7125.6 (3)O—C6—C2118.9 (3)
C8—N2—C7115.6 (3)N2—C6—C2119.0 (3)
N1—C1—C2124.0 (3)N2—C7—H7A109.5
N1—C1—Se117.5 (2)N2—C7—H7B109.5
C2—C1—Se118.6 (2)H7A—C7—H7B109.5
C3—C2—C1117.0 (3)N2—C7—H7C109.5
C3—C2—C6124.1 (3)H7A—C7—H7C109.5
C1—C2—C6118.8 (3)H7B—C7—H7C109.5
C2—C3—C4119.5 (3)N2—C8—H8A109.5
C2—C3—H3120.2N2—C8—H8B109.5
C4—C3—H3120.2H8A—C8—H8B109.5
C5—C4—C3118.8 (3)N2—C8—H8C109.5
C5—C4—H4120.6H8A—C8—H8C109.5
C3—C4—H4120.6H8B—C8—H8C109.5
N1—C5—C4123.2 (3)
C5—N1—C1—C23.6 (4)C3—C4—C5—N12.4 (5)
C5—N1—C1—Se177.7 (2)C8—N2—C6—O2.9 (5)
N1—C1—C2—C34.4 (4)C7—N2—C6—O172.7 (3)
Se—C1—C2—C3176.9 (2)C8—N2—C6—C2177.5 (3)
N1—C1—C2—C6179.9 (3)C7—N2—C6—C26.9 (5)
Se—C1—C2—C61.4 (4)C3—C2—C6—O121.7 (3)
C1—C2—C3—C41.6 (4)C1—C2—C6—O53.5 (4)
C6—C2—C3—C4176.9 (3)C3—C2—C6—N258.7 (4)
C2—C3—C4—C51.5 (5)C1—C2—C6—N2126.1 (3)
C1—N1—C5—C40.1 (5)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Oii0.932.523.431 (4)165
Symmetry code: (ii) x+1/2, y+1/2, z+3/2.
 

Funding information

Financial support from the Special Fund for Agro-scientific Research in the Public Inter­est (No. 201303106) is gratefully acknowledged.

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFeng, A., Xu, Y. & Wei, X. (2010). Acta Cryst. E66, o1216.  CSD CrossRef IUCr Journals Google Scholar
First citationJalbout, A. F., Hameed, A. J. & Essa, A. H. (2008). J. Organomet. Chem. 693, 2074–2078.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds