organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(R)-3-(tert-But­oxycarbon­yl)-5-methyl-1,2,3-oxa­thia­zolidine 2,2-dioxide

CROSSMARK_Color_square_no_text.svg

aUniversity of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 80, 6020 Innsbruck, Austria, and bSandoz GmbH, Biochemiestrasse 10, 6250 Kundl, Austria
*Correspondence e-mail: gerhard.laus@uibk.ac.at

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 10 June 2017; accepted 11 June 2017; online 16 June 2017)

The chiral title compound, C8H15NO5S, was obtained by cyclization of (R)-1-(tert-but­oxycarbonyl­amino)-2-propanol with thionyl chloride and subsequent oxidation with sodium metaperiodate/ruthenium(IV) oxide. It crystallizes with two independent mol­ecules in the asymmetric unit. In the crystal, C—H⋯O inter­actions link the mol­ecules into a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Cyclic sulfamidates are valuable reactive inter­mediates, because ring-opening reactions proceed with total inversion at the stereogenic centre (Meléndez & Lubell, 2003[Meléndez, R. E. & Lubell, W. D. (2003). Tetrahedron, 59, 2581-2616.]). The title compound represents such a building block derived from (R)-1-amino-2-propanol useful for the preparation of substituted β-phenyl­ethyl­amines, an important class of pharmacologically active compounds (Hebeisen et al., 2011[Hebeisen, P., Weiss, U., Alker, A. & Staempfli, A. (2011). Tetrahedron Lett. 52, 5229-5233.]). The configuration of the enanti­omer has been assigned by reference to an unchanging chiral centre in the synthetic procedure and confirmed by anomalous-dispersion effects in diffraction measurements on the crystal: the Flack parameter was refined to 0.02 (2).

The title compound crystallizes with two independent mol­ecules in the asymmetric unit. The five-membered rings adopt (O)C-envelope conformations, denoting the flap atoms, C1 and C6, are adjacent to the oxygen atoms. The methyl groups occupy equatorial positions (Fig. 1[link]). The bonding geometries at the N atoms are close to planar, as the sums of the angles at N1 and N2 are 358.9 and 358.8°, respectively, and the N atoms lie only 0.092 and 0.094 Å out of the planes of the atoms to which they are bonded, as expected for an N-acyl fragment. In the crystal, C—H⋯O inter­actions (Table 1[link]) are observed. The apolar tert-butyl groups and the polar sulfamidate rings are alternately arranged in layers parallel to the bc-plane (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯O4i 0.99 2.40 3.360 (5) 164
C2—H2B⋯O9ii 0.99 2.52 3.200 (4) 126
C2—H2A⋯O8 0.99 2.52 3.205 (4) 126
C1—H1⋯O9ii 1.00 2.55 3.084 (4) 113
C8—H8A⋯O7iii 0.98 2.57 3.547 (5) 174
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+1]; (ii) [-x+1, y+{\script{1\over 2}}, -z+2]; (iii) [-x+1, y+{\script{1\over 2}}, -z+1].
[Figure 1]
Figure 1
The mol­ecular structure of the two independent mol­ecules in the asymmetric unit of the title compound, showing the atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2]
Figure 2
Alternating layers of apolar and polar moieties parallel to the bc plane.

Related structures of N-substituted 1,2,3-oxa­thia­zolidine 2,2-dioxides exhibit (O)C-envelope (Mata et al., 2012[Mata, L., Avenoza, A., Busto, J. H., Corzana, F. & Peregrina, J. M. (2012). Chem. Eur. J. 18, 15822-15830.]; Jiménez-Osés et al., 2009[Jiménez-Osés, G., Avenoza, A., Busto, J. H., Rodríguez, F. & Peregrina, J. M. (2009). Chem. Eur. J. 15, 9810-9823.]; Avenoza et al., 2004[Avenoza, A., Busto, J. H., Corzana, F., Jiménez-Osés, G. & Peregrina, J. M. (2004). Chem. Commun. pp. 980-981.]; Nicolaou et al., 2002[Nicolaou, K. C., Huang, X., Snyder, S. A., Rao, P. B., Bella, M. & Reddy, M. V. (2002). Angew. Chem. Int. Ed. 41, 834-838.]), O-envelope (Son et al., 2016[Son, S.-M., Seo, Y. J. & Lee, H.-K. (2016). Chem. Commun. 52, 4286-4289.]; Gritsonie et al., 1994[Gritsonie, P., Pilkington, M., Wallis, J. D. & Povey, D. C. (1994). Acta Cryst. C50, 763-765.]), S-envelope (Achary et al., 2016[Achary, R., Son, S.-M. A. J. I. & Lee, H. K. (2016). CSD Commun.: DAMLIP, DAMLOV.]), and (N)C-envelope (Carreras et al., 2007[Carreras, J., Avenoza, A., Busto, J. H. & Peregrina, J. M. (2007). J. Org. Chem. 72, 3112-3115.]) conformations. These structures exhibited either close to planar (N-acyl-substituted, sum of angles >357°) or unequivocally pyramidal (N-alkyl-substituted, 335–345°) geometries at the N atoms.

Synthesis and crystallization

A solution of SOCl2 (1.5 ml, 21 mmol) in CH2Cl2 (15 ml) was added to imidazole (4.7 g, 68 mmol) in CH2Cl2 (50 ml) at 0°C. After 90 min, (R)-1-(tert-but­oxycarbonyl­amino)propan-2-ol (2.0 g, 11 mmol; Zhong et al., 1998[Zhong, B., Lu, X. & Silverman, R. B. (1998). Bioorg. Med. Chem. 6, 2405-2419.]) in CH2Cl2 (25 ml) was added, and the mixture was stirred for 2 h. The suspension was mixed with H2O (90 ml) for 15 min. The organic phase was washed with citric acid (5.7 g) in H2O (50 ml), then with a mixture of saturated brine (30 ml) and H2O (30 ml). A solution of NaIO4 (6.3 g, 30 mmol) in H2O (60 ml) was added, then RuO2.H2O (100 mg), and the mixture was well stirred for 4 h at room temperature. The organic phase was washed with a solution of Na ascorbate (1.7 g) in H2O (15 ml), dried over MgSO4 and concentrated under reduced pressure to yield 2.20 g (81%) of colourless product. Suitable crystals were obtained by slow evaporation of a solution in CH2Cl2/heptane, m.p. 107–108°C. 1H NMR (300 MHz, CDCl3): δ 1.51 (s, 9H), 1.55 (d, 3H), 3.62 (t, J = 9.8 Hz, 1H), 4.05 (dd, J = 5.6 and 9.9 Hz, 1H), 4.93 (m, 1H) p.p.m. 13C NMR (75 MHz, CDCl3): δ 18.2, 28.1 (3 C), 51.8, 76.3, 85.4, 148.8 p.p.m. IR (neat): ν 2983, 1716, 1365, 1337, 1258, 1199, 1144, 1089, 1025, 921, 852, 825, 764, 730, 685, 598, 545 cm−1.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C8H15NO5S
Mr 237.27
Crystal system, space group Monoclinic, P21
Temperature (K) 193
a, b, c (Å) 9.4093 (3), 10.5822 (4), 12.2844 (5)
β (°) 107.640 (1)
V3) 1165.66 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.28
Crystal size (mm) 0.06 × 0.05 × 0.02
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON 100
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.938, 0.971
No. of measured, independent and observed [I > 2σ(I)] reflections 33847, 4342, 4094
Rint 0.030
(sin θ/λ)max−1) 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.073, 1.04
No. of reflections 4342
No. of parameters 272
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.28
Absolute structure Flack x determined using 1855 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.02 (2)
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2008).

(R)-3-(tert-Butoxycarbonyl)-5-methyl-1,2,3-oxathiazolidine 2,2-dioxide top
Crystal data top
C8H15NO5SF(000) = 504
Mr = 237.27Dx = 1.352 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 9.4093 (3) ÅCell parameters from 9948 reflections
b = 10.5822 (4) Åθ = 2.5–27.0°
c = 12.2844 (5) ŵ = 0.28 mm1
β = 107.640 (1)°T = 193 K
V = 1165.66 (7) Å3Prism, colourless
Z = 40.06 × 0.05 × 0.02 mm
Data collection top
Bruker D8 QUEST PHOTON 100
diffractometer
4342 independent reflections
Radiation source: Incoatec Microfocus4094 reflections with I > 2σ(I)
Multi layered optics monochromatorRint = 0.030
Detector resolution: 10.4 pixels mm-1θmax = 25.5°, θmin = 2.3°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
k = 1212
Tmin = 0.938, Tmax = 0.971l = 1414
33847 measured reflections
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0377P)2 + 0.3902P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.027(Δ/σ)max < 0.001
wR(F2) = 0.073Δρmax = 0.23 e Å3
S = 1.04Δρmin = 0.28 e Å3
4342 reflectionsExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
272 parametersExtinction coefficient: 0.0255 (19)
1 restraintAbsolute structure: Flack x determined using 1855 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Hydrogen site location: inferred from neighbouring sitesAbsolute structure parameter: 0.02 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.62330 (9)0.67259 (7)0.85287 (6)0.0250 (2)
S20.37651 (9)0.33171 (7)0.65306 (6)0.0261 (2)
O10.6732 (2)0.5996 (3)0.96929 (18)0.0319 (6)
O30.6538 (3)0.5935 (3)0.7696 (2)0.0386 (7)
O20.6802 (3)0.7969 (3)0.8659 (2)0.0408 (7)
O40.3738 (3)0.7477 (3)0.66348 (19)0.0358 (7)
O50.2039 (2)0.6996 (2)0.75543 (17)0.0284 (6)
O60.3235 (2)0.3893 (3)0.53039 (18)0.0329 (6)
O70.3186 (3)0.2066 (3)0.6462 (2)0.0396 (7)
O80.3483 (3)0.4151 (3)0.7343 (2)0.0393 (7)
O90.6277 (3)0.2530 (3)0.83941 (19)0.0395 (8)
O100.7964 (2)0.3050 (2)0.74775 (18)0.0292 (6)
N10.4436 (3)0.6742 (3)0.8454 (2)0.0239 (6)
N20.5553 (3)0.3329 (3)0.6599 (2)0.0244 (6)
C10.5647 (3)0.6155 (3)1.0342 (2)0.0274 (6)
H10.57910.69921.07370.033*
C20.4151 (3)0.6111 (4)0.9426 (2)0.0270 (8)
H2A0.38220.52280.92350.032*
H2B0.33820.65660.96720.032*
C30.5916 (5)0.5106 (4)1.1197 (3)0.0455 (11)
H3A0.52150.51811.16430.068*
H3B0.57680.42921.07980.068*
H3C0.69400.51581.17090.068*
C40.3387 (4)0.7112 (3)0.7447 (3)0.0240 (8)
C50.0685 (4)0.7318 (4)0.6575 (3)0.0294 (8)
C60.4405 (3)0.4745 (3)0.5123 (2)0.0288 (6)
H60.44280.55590.55400.035*
C70.5840 (4)0.4009 (4)0.5643 (3)0.0269 (8)
H7A0.60310.34120.50820.032*
H7B0.67030.45850.59170.032*
C80.4016 (4)0.4982 (4)0.3859 (3)0.0416 (10)
H8A0.47640.55410.37070.062*
H8B0.39990.41770.34600.062*
H8C0.30320.53810.35870.062*
C90.6606 (4)0.2940 (4)0.7593 (3)0.0258 (8)
C100.9306 (4)0.2727 (4)0.8444 (3)0.0326 (8)
C510.0728 (5)0.8705 (5)0.6290 (5)0.0585 (14)
H51A0.07710.92130.69660.088*
H51B0.16120.88760.60500.088*
H51C0.01720.89250.56700.088*
C520.0619 (5)0.6479 (5)0.5580 (3)0.0579 (14)
H52A0.02650.66900.49420.087*
H52B0.15170.66020.53460.087*
H52C0.05600.55940.57990.087*
C530.0562 (4)0.7038 (6)0.7066 (4)0.0559 (13)
H53A0.04870.76020.77140.084*
H53B0.15210.71730.64790.084*
H53C0.04920.61580.73250.084*
C1011.0564 (4)0.3039 (6)0.7948 (4)0.0598 (15)
H10A1.15250.28620.85190.090*
H10B1.04620.25220.72680.090*
H10C1.05140.39360.77400.090*
C1020.9364 (5)0.3583 (5)0.9441 (3)0.0579 (14)
H10D1.02460.33771.00820.087*
H10E0.94210.44650.92150.087*
H10F0.84640.34610.96710.087*
C1030.9308 (5)0.1343 (4)0.8720 (4)0.0543 (13)
H10G1.01970.11430.93570.081*
H10H0.84120.11390.89340.081*
H10I0.93160.08450.80490.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0159 (4)0.0338 (5)0.0254 (4)0.0013 (4)0.0062 (3)0.0021 (4)
S20.0167 (5)0.0339 (5)0.0265 (4)0.0012 (4)0.0050 (3)0.0003 (4)
O10.0210 (12)0.0445 (14)0.0290 (11)0.0092 (11)0.0060 (9)0.0047 (11)
O30.0284 (15)0.0559 (17)0.0358 (14)0.0003 (13)0.0162 (11)0.0112 (13)
O20.0295 (15)0.0399 (16)0.0505 (15)0.0098 (13)0.0087 (12)0.0007 (12)
O40.0256 (17)0.055 (2)0.0282 (13)0.0015 (12)0.0094 (11)0.0107 (12)
O50.0155 (11)0.0435 (16)0.0247 (11)0.0038 (11)0.0040 (9)0.0058 (10)
O60.0218 (12)0.0430 (14)0.0294 (12)0.0014 (11)0.0012 (9)0.0050 (11)
O70.0268 (15)0.0384 (16)0.0514 (15)0.0076 (12)0.0086 (11)0.0013 (11)
O80.0280 (15)0.0544 (17)0.0402 (15)0.0016 (13)0.0174 (12)0.0110 (13)
O90.0258 (17)0.062 (2)0.0289 (13)0.0045 (12)0.0063 (12)0.0175 (13)
O100.0172 (12)0.0428 (17)0.0272 (11)0.0052 (11)0.0063 (9)0.0069 (11)
N10.0174 (14)0.0322 (15)0.0227 (13)0.0013 (14)0.0069 (10)0.0015 (14)
N20.0155 (14)0.0369 (15)0.0204 (12)0.0000 (14)0.0045 (10)0.0029 (14)
C10.0276 (14)0.0324 (15)0.0223 (13)0.0031 (12)0.0076 (11)0.0003 (11)
C20.0224 (18)0.039 (2)0.0200 (15)0.0015 (16)0.0067 (13)0.0010 (14)
C30.050 (2)0.045 (3)0.037 (2)0.006 (2)0.0065 (19)0.0146 (18)
C40.0183 (19)0.0286 (19)0.0241 (16)0.0001 (14)0.0049 (14)0.0009 (13)
C50.0138 (18)0.039 (2)0.0302 (17)0.0030 (17)0.0018 (14)0.0033 (17)
C60.0261 (14)0.0303 (14)0.0281 (14)0.0016 (11)0.0056 (11)0.0009 (12)
C70.0259 (18)0.035 (2)0.0209 (15)0.0020 (16)0.0093 (14)0.0039 (13)
C80.043 (2)0.049 (3)0.0293 (19)0.005 (2)0.0053 (17)0.0119 (17)
C90.0211 (19)0.0319 (19)0.0227 (16)0.0003 (15)0.0044 (14)0.0017 (14)
C100.0201 (19)0.040 (2)0.0328 (18)0.0056 (18)0.0009 (15)0.0080 (17)
C510.034 (2)0.045 (3)0.083 (3)0.010 (2)0.002 (2)0.019 (2)
C520.038 (2)0.072 (4)0.047 (2)0.010 (2)0.0111 (18)0.019 (2)
C530.023 (2)0.086 (4)0.058 (2)0.006 (2)0.0109 (19)0.016 (3)
C1010.016 (2)0.091 (4)0.071 (3)0.011 (2)0.0110 (19)0.034 (3)
C1020.035 (2)0.079 (4)0.046 (2)0.009 (3)0.0090 (18)0.019 (2)
C1030.035 (2)0.043 (3)0.071 (3)0.003 (2)0.006 (2)0.015 (2)
Geometric parameters (Å, º) top
S1—O21.410 (3)C5—C511.512 (6)
S1—O31.417 (3)C6—C81.504 (4)
S1—O11.567 (2)C6—C71.522 (4)
S1—N11.666 (3)C6—H61.0000
S2—O81.416 (3)C7—H7A0.9900
S2—O71.425 (3)C7—H7B0.9900
S2—O61.561 (2)C8—H8A0.9800
S2—N21.659 (3)C8—H8B0.9800
O1—C11.483 (3)C8—H8C0.9800
O4—C41.206 (4)C10—C1031.504 (6)
O5—C41.320 (4)C10—C1021.510 (6)
O5—C51.502 (4)C10—C1011.522 (5)
O6—C61.491 (4)C51—H51A0.9800
O9—C91.199 (4)C51—H51B0.9800
O10—C91.333 (4)C51—H51C0.9800
O10—C101.487 (4)C52—H52A0.9800
N1—C41.385 (4)C52—H52B0.9800
N1—C21.461 (4)C52—H52C0.9800
N2—C91.382 (4)C53—H53A0.9800
N2—C71.470 (4)C53—H53B0.9800
C1—C31.496 (5)C53—H53C0.9800
C1—C21.513 (4)C101—H10A0.9800
C1—H11.0000C101—H10B0.9800
C2—H2A0.9900C101—H10C0.9800
C2—H2B0.9900C102—H10D0.9800
C3—H3A0.9800C102—H10E0.9800
C3—H3B0.9800C102—H10F0.9800
C3—H3C0.9800C103—H10G0.9800
C5—C521.497 (5)C103—H10H0.9800
C5—C531.502 (5)C103—H10I0.9800
O2—S1—O3118.69 (18)N2—C7—H7A111.1
O2—S1—O1110.94 (16)C6—C7—H7A111.1
O3—S1—O1107.29 (17)N2—C7—H7B111.1
O2—S1—N1109.95 (16)C6—C7—H7B111.1
O3—S1—N1112.98 (15)H7A—C7—H7B109.0
O1—S1—N194.22 (13)C6—C8—H8A109.5
O8—S2—O7118.11 (18)C6—C8—H8B109.5
O8—S2—O6111.31 (18)H8A—C8—H8B109.5
O7—S2—O6107.53 (16)C6—C8—H8C109.5
O8—S2—N2111.30 (16)H8A—C8—H8C109.5
O7—S2—N2111.98 (16)H8B—C8—H8C109.5
O6—S2—N293.91 (13)O9—C9—O10127.8 (3)
C1—O1—S1111.72 (18)O9—C9—N2122.6 (3)
C4—O5—C5120.4 (2)O10—C9—N2109.5 (3)
C6—O6—S2110.25 (17)O10—C10—C103110.3 (3)
C9—O10—C10120.3 (3)O10—C10—C102108.8 (3)
C4—N1—C2127.0 (3)C103—C10—C102113.8 (4)
C4—N1—S1119.3 (2)O10—C10—C101101.9 (3)
C2—N1—S1112.6 (2)C103—C10—C101110.7 (4)
C9—N2—C7126.6 (3)C102—C10—C101110.6 (4)
C9—N2—S2119.1 (2)C5—C51—H51A109.5
C7—N2—S2113.1 (2)C5—C51—H51B109.5
O1—C1—C3107.2 (3)H51A—C51—H51B109.5
O1—C1—C2103.5 (2)C5—C51—H51C109.5
C3—C1—C2114.9 (3)H51A—C51—H51C109.5
O1—C1—H1110.3H51B—C51—H51C109.5
C3—C1—H1110.3C5—C52—H52A109.5
C2—C1—H1110.3C5—C52—H52B109.5
N1—C2—C1103.6 (2)H52A—C52—H52B109.5
N1—C2—H2A111.0C5—C52—H52C109.5
C1—C2—H2A111.0H52A—C52—H52C109.5
N1—C2—H2B111.0H52B—C52—H52C109.5
C1—C2—H2B111.0C5—C53—H53A109.5
H2A—C2—H2B109.0C5—C53—H53B109.5
C1—C3—H3A109.5H53A—C53—H53B109.5
C1—C3—H3B109.5C5—C53—H53C109.5
H3A—C3—H3B109.5H53A—C53—H53C109.5
C1—C3—H3C109.5H53B—C53—H53C109.5
H3A—C3—H3C109.5C10—C101—H10A109.5
H3B—C3—H3C109.5C10—C101—H10B109.5
O4—C4—O5128.7 (3)H10A—C101—H10B109.5
O4—C4—N1122.0 (3)C10—C101—H10C109.5
O5—C4—N1109.3 (3)H10A—C101—H10C109.5
C52—C5—O5109.6 (3)H10B—C101—H10C109.5
C52—C5—C53111.5 (4)C10—C102—H10D109.5
O5—C5—C53102.1 (3)C10—C102—H10E109.5
C52—C5—C51112.6 (4)H10D—C102—H10E109.5
O5—C5—C51109.3 (3)C10—C102—H10F109.5
C53—C5—C51111.2 (4)H10D—C102—H10F109.5
O6—C6—C8107.2 (2)H10E—C102—H10F109.5
O6—C6—C7103.2 (3)C10—C103—H10G109.5
C8—C6—C7115.2 (3)C10—C103—H10H109.5
O6—C6—H6110.3H10G—C103—H10H109.5
C8—C6—H6110.3C10—C103—H10I109.5
C7—C6—H6110.3H10G—C103—H10I109.5
N2—C7—C6103.4 (2)H10H—C103—H10I109.5
O2—S1—O1—C190.0 (2)C5—O5—C4—O41.2 (6)
O3—S1—O1—C1138.9 (2)C5—O5—C4—N1179.1 (3)
N1—S1—O1—C123.2 (2)C2—N1—C4—O4170.2 (4)
O8—S2—O6—C683.9 (2)S1—N1—C4—O43.3 (5)
O7—S2—O6—C6145.3 (2)C2—N1—C4—O510.1 (5)
N2—S2—O6—C630.8 (2)S1—N1—C4—O5176.9 (2)
O2—S1—N1—C476.9 (3)C4—O5—C5—C5261.1 (4)
O3—S1—N1—C458.2 (3)C4—O5—C5—C53179.5 (3)
O1—S1—N1—C4169.0 (3)C4—O5—C5—C5162.7 (4)
O2—S1—N1—C2114.4 (3)S2—O6—C6—C8165.0 (2)
O3—S1—N1—C2110.5 (3)S2—O6—C6—C743.0 (3)
O1—S1—N1—C20.3 (3)C9—N2—C7—C6152.5 (3)
O8—S2—N2—C962.5 (3)S2—N2—C7—C614.8 (3)
O7—S2—N2—C972.2 (3)O6—C6—C7—N233.4 (3)
O6—S2—N2—C9177.2 (3)C8—C6—C7—N2149.9 (3)
O8—S2—N2—C7105.9 (3)C10—O10—C9—O94.5 (6)
O7—S2—N2—C7119.5 (3)C10—O10—C9—N2178.1 (3)
O6—S2—N2—C78.8 (3)C7—N2—C9—O9170.5 (4)
S1—O1—C1—C3160.6 (2)S2—N2—C9—O93.9 (5)
S1—O1—C1—C238.8 (3)C7—N2—C9—O1011.9 (5)
C4—N1—C2—C1170.2 (3)S2—N2—C9—O10178.6 (2)
S1—N1—C2—C122.2 (3)C9—O10—C10—C10364.5 (5)
O1—C1—C2—N135.6 (3)C9—O10—C10—C10261.0 (4)
C3—C1—C2—N1152.2 (3)C9—O10—C10—C101177.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O4i0.992.403.360 (5)164
C2—H2B···O9ii0.992.523.200 (4)126
C2—H2A···O80.992.523.205 (4)126
C1—H1···O9ii1.002.553.084 (4)113
C8—H8A···O7iii0.982.573.547 (5)174
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+1, y+1/2, z+2; (iii) x+1, y+1/2, z+1.
 

References

First citationAchary, R., Son, S.-M. A. J. I. & Lee, H. K. (2016). CSD Commun.: DAMLIP, DAMLOV.  Google Scholar
First citationAvenoza, A., Busto, J. H., Corzana, F., Jiménez-Osés, G. & Peregrina, J. M. (2004). Chem. Commun. pp. 980–981.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarreras, J., Avenoza, A., Busto, J. H. & Peregrina, J. M. (2007). J. Org. Chem. 72, 3112–3115.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGritsonie, P., Pilkington, M., Wallis, J. D. & Povey, D. C. (1994). Acta Cryst. C50, 763–765.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHebeisen, P., Weiss, U., Alker, A. & Staempfli, A. (2011). Tetrahedron Lett. 52, 5229–5233.  Web of Science CrossRef CAS Google Scholar
First citationJiménez-Osés, G., Avenoza, A., Busto, J. H., Rodríguez, F. & Peregrina, J. M. (2009). Chem. Eur. J. 15, 9810–9823.  Web of Science PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMata, L., Avenoza, A., Busto, J. H., Corzana, F. & Peregrina, J. M. (2012). Chem. Eur. J. 18, 15822–15830.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMeléndez, R. E. & Lubell, W. D. (2003). Tetrahedron, 59, 2581–2616.  Google Scholar
First citationNicolaou, K. C., Huang, X., Snyder, S. A., Rao, P. B., Bella, M. & Reddy, M. V. (2002). Angew. Chem. Int. Ed. 41, 834–838.  Web of Science CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSon, S.-M., Seo, Y. J. & Lee, H.-K. (2016). Chem. Commun. 52, 4286–4289.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhong, B., Lu, X. & Silverman, R. B. (1998). Bioorg. Med. Chem. 6, 2405–2419.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds