metal-organic compounds
Di-μ-chlorido-bis[bis(tetrahydrothiophene-κS)silver(I)]
aDepartment of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
*Correspondence e-mail: liebing@inorg.chem.ethz.ch
The title compound, [Ag2Cl2(C4H8S2)4] or [Ag2(μ-Cl)2(THT)4] (THT = tetrahydrothiophene), is readily available by reaction of AgCl with THT. In this markedly labile complex, the Ag atoms are coordinated in a distorted tedrahedral fashion by two μ-bridging chloride ligands and each two terminal THT ligands. The structure is therefore more similar to that of THT-complexed CuCl than to that of THT-complexed AuCl, and resembles those of other [Ag2(μ-Cl)2L4]-type complexes. The molecule is located on a crystallographic center of inversion.
Keywords: crystal structure; silver chloride; tetrahydrothiophene; THT.
CCDC reference: 1482494
Structure description
In the title compound (Fig. 1), two equivalents of AgCl build a centrosymmetric planar Ag2Cl2 ring with μ-bridging chloride ligands. The Ag—Cl distances are significantly different at 2.558 (2) and 2.748 (2) Å. Therefore the complex is structurally closely related to a series of other [Ag2(μ-Cl)2L4]-type complexes, e.g. with L = PPh3 [Ag—Cl = 2.596 (2) and 2.741 (2) Å; Cassel, 1979] and L = AsPh3 [Ag—Cl = 2.568 (2) and 2.670 (2) Å; Bowmaker et al., 1997].
Probably as a result of the low bulkiness of the THT ligands, the Ag2Cl2 core in the title compound is stretched along the Cl—Cl vector [Cl—Ag—Cl = 100.65 (5)°] while it is slightly stretched along the Ag—Ag vector in the PPh3 complex [Cl—Ag—Cl = 88.03 (6)°]. The shape of the M2Cl2 ring in the title compound is therefore similar to those in the polymeric copper(I) complexes [Cu2(μ-Cl)2(μ-THT)(THT)2], [Cu2(μ-Cl)2(μ-THT)2] and [Cu3(μ-Cl)3(μ-THT)2] [Cl—Cu—Cl = 96.8 (1)–105.9 (1)°; Maelger et al., 1992; Solari et al., 1996]. The related gold(I) complex [AuCl(THT)] features a linearly coordinated metal atom and bears no structural resemblance to the title compound (Ahrland et al., 1993).
With each two terminal THT ligands, a distorted-tetrahedral coordination of the Ag atoms is realised [Ag—S = 2.623 (2) and 2.554 (2) Å; Cl—Ag—S = 98.94 (7)–123.95 (7)°], where the deformation is stronger than in the related PPh3 complex [Cl—Ag—P = 103.59 (7)–113.92 (7)°; Cassel, 1979]. The angle between the Ag—S bond and the S/C1/C4 plane of the THT ligand is 104.7° for S1 and 107.5° for S2. This tilting of the THT ligands corresponds to a pure sp3-hybridization of the ligating S atoms. Examples for other chloridosilver(I) complexes with sulfur ligands are [AgCl(detu)3] [detu = N,N′-diethylthiourea; Ag—S = 2.554 (1)–2.593 (1) Å; Bowmaker et al., 2010] and [AgCl(9S3)] [9S3 = 1,4,7-trithiacyclononane; Ag—S = 2.598 (1)–2.618 (1) Å; Blower et al., 1989], where similar Ag—S distances were observed.
In the title compound, the closest intermolecular contact is Cl⋯C4(−x, 1 − y, −z) at 3.627 (9) Å, but the CH2 group is not in a proper orientation for a potential C—H⋯Cl bonding interaction (C4—H4A⋯Cl = 114°, C4—H4B⋯Cl = 81°).
Synthesis and crystallization
A suspension of 0.72 g (5 mmol) of powdered silver(I) chloride in 5 ml of THT was refluxed for three h and then filtered. The resulting clear solution was layered with 10 ml of n-hexane at r.t. and then stored at −18°C. Colorless needle-like crystals were formed within a few days. When isolated from the mother liquor, these slowly decompose under THT loss even at −70°C, and readily above 0°C or when treated with organic solvents. The reaction scheme is shown in Fig. 2.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 1Structural data
CCDC reference: 1482494
https://doi.org/10.1107/S241431461700921X/bt4051sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S241431461700921X/bt4051Isup2.hkl
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-AREA and X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altamore et al., 1999); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).[Ag2Cl2(C4H8S2)4] | Z = 1 |
Mr = 639.29 | F(000) = 320 |
Triclinic, P1 | Dx = 1.890 Mg m−3 |
a = 6.1921 (8) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.9443 (13) Å | Cell parameters from 5660 reflections |
c = 10.3761 (12) Å | θ = 4.0–29.2° |
α = 114.710 (9)° | µ = 2.35 mm−1 |
β = 102.121 (10)° | T = 200 K |
γ = 92.239 (11)° | Needle, colorless |
V = 561.66 (13) Å3 | 0.50 × 0.05 × 0.05 mm |
Stoe IPDS 2T diffractometer | 1314 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.094 |
area detector scans | θmax = 25.0°, θmin = 4.0° |
Absorption correction: numerical (X-AREA and X-RED; Stoe & Cie, 2002) | h = −7→7 |
Tmin = 0.398, Tmax = 0.910 | k = −11→11 |
3765 measured reflections | l = −12→12 |
1954 independent reflections |
Refinement on F2 | Primary atom site location: heavy-atom method |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.125 | H-atom parameters constrained |
S = 0.88 | w = 1/[σ2(Fo2) + (0.0669P)2] where P = (Fo2 + 2Fc2)/3 |
1954 reflections | (Δ/σ)max < 0.001 |
109 parameters | Δρmax = 1.39 e Å−3 |
0 restraints | Δρmin = −1.53 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The H atoms of the THT ligands were fixed geometrically and refined using a riding model with U(H) = 1.20 Ueq(C). C—H distances were constrained to 0.99 Å. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3137 (14) | 0.1602 (9) | −0.3354 (9) | 0.0357 (19) | |
H1B | 0.4641 | 0.1706 | −0.2730 | 0.043* | |
H1A | 0.2860 | 0.0636 | −0.4241 | 0.043* | |
C2 | 0.2946 (13) | 0.2885 (10) | −0.3764 (10) | 0.037 (2) | |
H2B | 0.3729 | 0.2756 | −0.4538 | 0.045* | |
H2A | 0.3599 | 0.3845 | −0.2902 | 0.045* | |
C3 | 0.0462 (15) | 0.2851 (11) | −0.4317 (10) | 0.045 (2) | |
H3B | −0.0119 | 0.1988 | −0.5287 | 0.054* | |
H3A | 0.0178 | 0.3779 | −0.4419 | 0.054* | |
C4 | −0.0682 (13) | 0.2715 (10) | −0.3204 (9) | 0.037 (2) | |
H4B | −0.2210 | 0.2162 | −0.3695 | 0.045* | |
H4A | −0.0781 | 0.3719 | −0.2455 | 0.045* | |
C5 | 0.1488 (14) | 0.1726 (10) | 0.1715 (10) | 0.039 (2) | |
H5B | 0.0765 | 0.1561 | 0.2412 | 0.047* | |
H5A | 0.0342 | 0.1489 | 0.0798 | 0.047* | |
C6 | 0.3284 (17) | 0.0802 (12) | 0.1422 (17) | 0.077 (4) | |
H6B | 0.2843 | −0.0172 | 0.1408 | 0.093* | |
H6A | 0.3501 | 0.0608 | 0.0444 | 0.093* | |
C7 | 0.5338 (16) | 0.1515 (11) | 0.2503 (13) | 0.057 (3) | |
H7B | 0.6596 | 0.1120 | 0.2077 | 0.069* | |
H7A | 0.5380 | 0.1268 | 0.3338 | 0.069* | |
C8 | 0.5628 (12) | 0.3170 (9) | 0.3049 (8) | 0.0320 (18) | |
H8B | 0.6702 | 0.3488 | 0.2610 | 0.038* | |
H8A | 0.6197 | 0.3668 | 0.4128 | 0.038* | |
S1 | 0.1020 (3) | 0.1702 (2) | −0.2355 (2) | 0.0345 (5) | |
S2 | 0.2882 (3) | 0.3662 (2) | 0.2509 (2) | 0.0306 (5) | |
Cl | 0.2644 (3) | 0.6363 (2) | −0.0082 (2) | 0.0339 (5) | |
Ag | 0.29919 (12) | 0.39288 (8) | 0.01788 (7) | 0.0394 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.036 (4) | 0.030 (5) | 0.035 (4) | 0.012 (4) | 0.007 (4) | 0.009 (4) |
C2 | 0.032 (4) | 0.050 (6) | 0.039 (5) | 0.005 (4) | 0.014 (4) | 0.026 (4) |
C3 | 0.050 (5) | 0.057 (6) | 0.035 (5) | 0.020 (5) | 0.009 (4) | 0.026 (5) |
C4 | 0.027 (4) | 0.047 (5) | 0.034 (5) | 0.013 (4) | 0.002 (4) | 0.016 (4) |
C5 | 0.034 (4) | 0.042 (5) | 0.047 (5) | 0.001 (4) | 0.005 (4) | 0.029 (4) |
C6 | 0.051 (7) | 0.032 (6) | 0.122 (11) | 0.009 (5) | 0.007 (7) | 0.014 (7) |
C7 | 0.047 (6) | 0.042 (6) | 0.082 (8) | 0.027 (5) | 0.006 (5) | 0.028 (6) |
C8 | 0.028 (4) | 0.038 (5) | 0.027 (4) | 0.002 (4) | −0.004 (3) | 0.016 (4) |
S1 | 0.0374 (11) | 0.0337 (12) | 0.0384 (12) | 0.0066 (9) | 0.0128 (9) | 0.0197 (10) |
S2 | 0.0335 (11) | 0.0329 (11) | 0.0301 (10) | 0.0121 (9) | 0.0089 (8) | 0.0170 (9) |
Cl | 0.0343 (10) | 0.0353 (11) | 0.0410 (11) | 0.0134 (9) | 0.0130 (9) | 0.0227 (10) |
Ag | 0.0508 (4) | 0.0415 (4) | 0.0340 (4) | 0.0131 (3) | 0.0097 (3) | 0.0240 (3) |
C1—C2 | 1.506 (11) | C7—C8 | 1.489 (12) |
C1—S1 | 1.816 (9) | C8—S2 | 1.827 (7) |
C2—C3 | 1.518 (12) | S1—Ag | 2.623 (2) |
C3—C4 | 1.524 (12) | S2—Ag | 2.5541 (19) |
C4—S1 | 1.826 (7) | Cl—Ag | 2.5581 (19) |
C5—C6 | 1.470 (14) | Cl—Agi | 2.748 (2) |
C5—S2 | 1.837 (9) | Ag—Cli | 2.748 (2) |
C6—C7 | 1.430 (15) | ||
C2—C1—S1 | 105.2 (5) | C8—S2—C5 | 93.4 (4) |
C1—C2—C3 | 105.4 (7) | C8—S2—Ag | 103.5 (3) |
C2—C3—C4 | 107.4 (6) | C5—S2—Ag | 100.4 (3) |
C3—C4—S1 | 106.6 (5) | Ag—Cl—Agi | 79.35 (5) |
C6—C5—S2 | 104.7 (7) | S2—Ag—Cl | 123.95 (7) |
C7—C6—C5 | 111.7 (10) | S2—Ag—S1 | 118.30 (7) |
C6—C7—C8 | 112.4 (7) | Cl—Ag—S1 | 107.93 (7) |
C7—C8—S2 | 106.7 (6) | S2—Ag—Cli | 101.61 (6) |
C1—S1—C4 | 93.7 (4) | Cl—Ag—Cli | 100.65 (5) |
C1—S1—Ag | 100.2 (3) | S1—Ag—Cli | 98.94 (7) |
C4—S1—Ag | 99.8 (3) | ||
S1—C1—C2—C3 | −44.4 (8) | C2—C1—S1—Ag | −76.7 (6) |
C1—C2—C3—C4 | 48.3 (9) | C3—C4—S1—C1 | 3.1 (7) |
C2—C3—C4—S1 | −29.5 (9) | C3—C4—S1—Ag | 104.1 (6) |
S2—C5—C6—C7 | 34.5 (12) | C7—C8—S2—C5 | 3.3 (7) |
C5—C6—C7—C8 | −34.4 (15) | C7—C8—S2—Ag | −98.2 (6) |
C6—C7—C8—S2 | 16.3 (12) | C6—C5—S2—C8 | −20.9 (8) |
C2—C1—S1—C4 | 23.9 (6) | C6—C5—S2—Ag | 83.5 (8) |
Symmetry code: (i) −x+1, −y+1, −z. |
References
Ahrland, S., Dreisch, K., Norén, B. & Oskarsson, Å. (1993). Mater. Chem. Phys. 35, 281–289. CSD CrossRef CAS Web of Science Google Scholar
Blower, P. J., Clarkson, J. A., Rawle, S. C., Hartman, J. R., Wolf, R. E., Yagbasan, R., Bott, S. G. & Cooper, S. R. (1989). Inorg. Chem. 28, 4040–4046. CSD CrossRef CAS Google Scholar
Bowmaker, G. A., Effendy, Kildea, J. D., de Silva, E. N. & White, A. H. (1997). Aust. J. Chem. 50, 627–640. CSD CrossRef CAS Google Scholar
Bowmaker, G. A., Pakawatchai, C., Saithong, S., Skelton, B. W. & White, A. H. (2010). Dalton Trans. 39, 4391–4404. Web of Science CSD CrossRef CAS PubMed Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Cassel, A. (1979). Acta Cryst. B35, 174–177. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Maelger, H., Olbrich, F., Kopf, J., Abeln, D. & Weiss, E. (1992). Z. Naturforsch. Teil B, 47, 1276–1280. CAS Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Solari, E., De Angelis, S., Latronico, M., Floriani, C., Chiesi-Villa, A. & Rizzoli, C. (1996). J. Clust Sci. 7, 553–566. CSD CrossRef CAS Google Scholar
Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.