organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

The amino alcohol MeN(CH2CMe2OH)2

CROSSMARK_Color_square_no_text.svg

aLehrstuhl für Anorganische Chemie II, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany
*Correspondence e-mail: klaus.jurkschat@tu-dortmund.de

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 25 May 2017; accepted 30 May 2017; online 2 June 2017)

The crystal structure, including a graph-set analysis, of 1-[(2-hy­droxy-2-methyl­prop­yl)methyl­amino]-2-methyl­propan-2-ol, C9H21NO2, is reported. The structure is characterized by unsymmetrical intra- and inter­molecular O—H⋯O hydrogen bridges, giving rise to the formation of an infinite polymer consisting of eight-membered rings arranged in zigzag chains running along the a axis.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Amino alcohols are an important industrial commodity with widespread applications. Some representatives of these compounds have also characterized by single-crystal X-ray diffraction analysis (Churakov et al., 2009[Churakov, A. V., Lermontova, E. K., Zaitsev, K. V., Huang, M., Karlov, S. S., Zaitseva, G. S. & Howard, J. A. K. (2009). Acta Cryst. C65, o587-o592.]). In the context with our long-standing inter­est in tin and silicon derivatives of amino alcohols (Berends et al., 2009[Berends, T., Iovkova, L., Bradtmöller, G., Oppel, I., Schürmann, M. & Jurkschat, K. (2009). Z. Anorg. Allg. Chem. 635, 369-374.]; Glowacki et al., 2016[Glowacki, B., Lutter, M., Schollmeyer, D., Hiller, W. & Jurkschat, K. (2016). Inorg. Chem. 55, 10218-10228.], 2017[Glowacki, B., Lutter, M., Alnasr, H., Seymen, R., Hiller, W. & Jurkschat, K. (2017). Inorg. Chem. 56, 4937-4949.]; Gock et al., 2013[Gock, M., Wiedemann, B., Dietz, C., Bai, C., Lutter, M., Abeyawarathan, V. & Jurkschat, K. (2013). Organometallics, 32, 4262-4269.]; Iovkova-Berends, Zöller, Bradtmöller et al., 2012[Iovkova-Berends, L., Berends, T., Zöller, T., Bradtmöller, G., Herres-Pawlis, S. & Jurkschat, K. (2012). Eur. J. Inorg. Chem. pp. 3191-3199.]; Iovkova-Berends, Berends, Zöller, Schollmeyer et al., 2012[Iovkova-Berends, L., Berends, T., Zöller, T., Schollmeyer, D., Bradtmöller, G. & Jurkschat, K. (2012). Eur. J. Inorg. Chem. pp. 3463-3473.]; Lutter et al., 2012[Lutter, M., Iovkova-Berends, L., Dietz, C., Jouikov, V. & Jurkschat, K. (2012). Main Group Met. Chem. 35, 41-45.]; Zöller et al., 2011[Zöller, T., Iovkova-Berends, L., Dietz, C., Berends, T. & Jurkschat, K. (2011). Chem. Eur. J. 17, 2361-2364.], 2012[Zöller, T., Dietz, C., Iovkova-Berends, L., Karsten, O., Bradtmöller, G., Wiegand, A. K., Wang, Y., Jouikov, V. & Jurkschat, K. (2012). Inorg. Chem. 51, 1041-1056.]; Zöller & Jurkschat, 2013[Zöller, T. & Jurkschat, K. (2013). Inorg. Chem. 52, 1872-1882.]), we report here the crystal structure of the title compound (Fig. 1[link]). The latter crystallizes in the ortho­rhom­bic space group Pna21 with eight mol­ecules in the unit cell and two mol­ecules in the asymmetric unit. Each of the crystallographic independent mol­ecules shows an intra­molecular O—H⋯O hydrogen bridge with O11⋯O17 and O31⋯O37 distances of 2.621 (4) and 2.715 (4) Å, respectively (Table 1[link]). The two eight-membered rings thus formed are linked by an inter­molecular O—H⋯O hydrogen bridge with an O11⋯O37 distance of 2.656 (3) Å giving a dimer. The dimers are linked via inter­molecular O—H⋯O hydrogen bridges with an O17⋯O31 distance of 2.712 (3) Å, giving an infinite polymer.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H11⋯O37 0.76 (2) 1.91 (2) 2.656 (3) 168 (5)
O17—H17⋯O11 0.80 (2) 1.84 (2) 2.621 (4) 165 (4)
O31—H31⋯O17i 0.74 (2) 1.99 (2) 2.712 (3) 165 (4)
O37—H37⋯O31 0.83 (2) 1.89 (2) 2.715 (4) 174 (4)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z].
[Figure 1]
Figure 1
The mol­ecular structure of MeN(CH2CMe2OH)2, showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms bonded to C atoms have been omitted for clarity. Hydrogen bonds are drawn as dashed lines.

The structure resembles those of Ph(Me)(H)CN(CH2CMe2OH)2 (Churakov et al., 2009[Churakov, A. V., Lermontova, E. K., Zaitsev, K. V., Huang, M., Karlov, S. S., Zaitseva, G. S. & Howard, J. A. K. (2009). Acta Cryst. C65, o587-o592.]) and p-FC6H4N(CH2CMe2OH)2 (Lutter et al., 2012[Lutter, M., Iovkova-Berends, L., Dietz, C., Jouikov, V. & Jurkschat, K. (2012). Main Group Met. Chem. 35, 41-45.]). A graph-set analysis according to Etter and Bernstein (Bernstein et al., 1990[Bernstein, J., Etter, M. C. & MacDonald, J. C. (1990). J. Chem. Soc. Perkin Trans. 2, pp. 695-698.], 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]; Bernstein, 1991[Bernstein, J. (1991). Acta Cryst. B47, 1004-1010.]; Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.], 1991[Etter, M. C. (1991). J. Phys. Chem. 95, 4601-4610.]; Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]) gives the unitary graph set N1 = S(8)DS(8)D.

Synthesis and crystallization

The synthesis and the chemical and physical properties of the title compound were published by Hong et al. (2008[Hong, Y., Mun, S. -D., Lee, J. Do & Kim, Y. (2008). J. Organomet. Chem. 693, 1945-1951.]). The latter crystallizes from the melt as colourless column-shaped crystals.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The crystal structure exhibits pseudo symmetry with a percentage fit of 83% for the higher symmetry space group Pbcn. However, refinement in the space group Pbcn is non-satisfactory.

Table 2
Experimental details

Crystal data
Chemical formula C9H21NO2
Mr 175.27
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 173
a, b, c (Å) 14.152 (2), 9.8983 (16), 15.9939 (19)
V3) 2240.5 (5)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.40 × 0.19 × 0.06
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.])
Tmin, Tmax 0.872, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 8013, 4390, 1763
Rint 0.039
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.045, 0.80
No. of reflections 4390
No. of parameters 239
No. of restraints 5
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.13, −0.15
Computer programs: CrysAlis PRO (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and enCIFer(Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2006); cell refinement: CrysAlis PRO (Oxford Diffraction, 2006); data reduction: CrysAlis PRO (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: enCIFer (Allen et al., 2004).

1-[(2-Hydroxy-2-methylpropyl)methylamino]-2-methylpropan-2-ol top
Crystal data top
C9H21NO2Dx = 1.039 Mg m3
Mr = 175.27Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 1703 reflections
a = 14.152 (2) Åθ = 2.4–29.2°
b = 9.8983 (16) ŵ = 0.07 mm1
c = 15.9939 (19) ÅT = 173 K
V = 2240.5 (5) Å3Column, colourless
Z = 80.40 × 0.19 × 0.06 mm
F(000) = 784
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
4390 independent reflections
Graphite monochromator1763 reflections with I > 2σ(I)
Detector resolution: 16.0560 pixels mm-1Rint = 0.039
ω und ψ scanθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
h = 1418
Tmin = 0.872, Tmax = 1.000k = 126
8013 measured reflectionsl = 2018
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.005P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.045(Δ/σ)max = 0.036
S = 0.80Δρmax = 0.13 e Å3
4390 reflectionsΔρmin = 0.15 e Å3
239 parametersAbsolute structure: Flack x determined using 585 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
5 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The OH protons were located in the difference Fourier map. Their coordinates were refined using a restraint of O—H = 0.84 (2) Å. The H atoms bonded to C were refined as riding on their parent atom. The U values of all H atoms were set to Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(Cmethyl,O).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O110.4659 (2)0.3733 (3)0.5278 (2)0.0561 (9)
H110.476 (3)0.298 (2)0.522 (3)0.084*
C120.5439 (3)0.4601 (4)0.5463 (3)0.0399 (11)
C130.4990 (3)0.5893 (4)0.5796 (2)0.0407 (11)
H13A0.54900.65830.58660.049*
H13B0.45370.62370.53750.049*
N140.4499 (2)0.5737 (3)0.65840 (18)0.0404 (9)
C140.5045 (3)0.6325 (4)0.7268 (3)0.0708 (16)
H14A0.56710.59040.72870.106*
H14B0.47160.61660.77980.106*
H14C0.51130.72990.71760.106*
C150.3512 (3)0.6184 (4)0.6587 (2)0.0466 (13)
H15A0.34390.69030.61620.056*
H15B0.33730.65890.71390.056*
C160.2785 (3)0.5092 (4)0.6414 (2)0.0338 (11)
O170.29330 (19)0.4557 (3)0.55810 (14)0.0441 (8)
H170.3433 (19)0.418 (4)0.554 (2)0.066*
C180.5966 (3)0.4929 (5)0.4649 (2)0.0595 (14)
H18A0.62250.40960.44110.089*
H18B0.64820.55610.47670.089*
H18C0.55260.53400.42490.089*
C190.6092 (3)0.3933 (4)0.6075 (2)0.0436 (12)
H19A0.57500.37470.65950.065*
H19B0.66270.45320.61910.065*
H19C0.63240.30830.58380.065*
C200.2889 (3)0.3954 (3)0.70317 (19)0.0489 (12)
H20A0.24390.32340.68940.073*
H20B0.27610.42890.75970.073*
H20C0.35340.35960.70060.073*
C210.1808 (3)0.5690 (4)0.6412 (2)0.0526 (14)
H21A0.13460.49870.62730.079*
H21B0.17740.64150.59960.079*
H21C0.16650.60580.69670.079*
O310.6890 (2)0.0885 (3)0.41852 (14)0.0383 (7)
H310.725 (2)0.081 (4)0.4514 (19)0.057*
C320.7068 (3)0.0168 (4)0.35925 (19)0.0330 (11)
C330.6370 (3)0.1301 (4)0.3741 (2)0.0393 (12)
H33A0.65140.20500.33510.047*
H33B0.64540.16450.43170.047*
N340.5380 (2)0.0898 (3)0.36282 (15)0.0321 (9)
C340.4953 (4)0.1566 (4)0.2901 (3)0.0593 (13)
H34A0.53050.13220.23950.089*
H34B0.42940.12750.28430.089*
H34C0.49750.25480.29780.089*
C350.4787 (3)0.0994 (4)0.4377 (2)0.0409 (12)
H35A0.51670.13740.48410.049*
H35B0.42580.16220.42660.049*
C360.4393 (3)0.0357 (5)0.4642 (2)0.0371 (11)
O370.51499 (19)0.1230 (3)0.48663 (15)0.0444 (8)
H370.5662 (19)0.111 (4)0.463 (2)0.067*
C380.8072 (3)0.0694 (4)0.3662 (2)0.0495 (13)
H38A0.85150.00660.36390.074*
H38B0.82010.13140.31980.074*
H38C0.81490.11740.41940.074*
C390.6915 (3)0.0493 (3)0.27373 (18)0.0543 (14)
H39A0.73160.12970.26910.081*
H39B0.62510.07560.26790.081*
H39C0.70810.01500.22950.081*
C400.3803 (3)0.0181 (5)0.5426 (2)0.0577 (13)
H40A0.41930.02150.58690.087*
H40B0.32680.04170.53070.087*
H40C0.35670.10640.56100.087*
C410.3790 (3)0.1033 (4)0.3960 (2)0.0557 (13)
H41A0.35230.18760.41770.084*
H41B0.32770.04230.37950.084*
H41C0.41870.12300.34730.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O110.0255 (18)0.039 (2)0.104 (2)0.0015 (18)0.0051 (17)0.029 (2)
C120.029 (2)0.035 (3)0.055 (2)0.002 (2)0.001 (3)0.001 (3)
C130.037 (3)0.031 (3)0.055 (3)0.012 (2)0.011 (2)0.009 (2)
N140.034 (2)0.043 (3)0.045 (2)0.002 (2)0.0089 (17)0.0028 (17)
C140.062 (4)0.095 (4)0.055 (3)0.004 (3)0.005 (3)0.018 (3)
C150.055 (3)0.035 (3)0.051 (2)0.009 (3)0.004 (2)0.001 (2)
C160.033 (3)0.034 (3)0.034 (2)0.003 (2)0.003 (2)0.004 (2)
O170.0292 (18)0.068 (2)0.0355 (16)0.0103 (16)0.0004 (15)0.0111 (14)
C180.047 (3)0.086 (4)0.046 (2)0.004 (3)0.002 (3)0.002 (3)
C190.030 (3)0.043 (3)0.058 (3)0.001 (2)0.006 (2)0.012 (2)
C200.055 (3)0.051 (3)0.040 (2)0.001 (2)0.001 (2)0.012 (2)
C210.038 (3)0.070 (4)0.050 (2)0.021 (3)0.008 (2)0.008 (2)
O310.0303 (18)0.0394 (17)0.0452 (16)0.0008 (15)0.0075 (13)0.0113 (15)
C320.023 (2)0.046 (3)0.030 (2)0.012 (2)0.003 (2)0.002 (2)
C330.049 (3)0.035 (3)0.034 (2)0.001 (2)0.002 (2)0.0092 (19)
N340.030 (2)0.032 (2)0.034 (2)0.0035 (18)0.0050 (18)0.0084 (16)
C340.043 (3)0.089 (4)0.046 (2)0.000 (3)0.014 (2)0.028 (3)
C350.047 (3)0.038 (3)0.037 (3)0.005 (2)0.006 (2)0.001 (2)
C360.029 (3)0.040 (3)0.041 (2)0.003 (2)0.006 (2)0.003 (2)
O370.0283 (19)0.043 (2)0.0613 (18)0.0015 (17)0.0105 (14)0.0197 (15)
C380.035 (3)0.066 (4)0.047 (2)0.013 (3)0.004 (2)0.013 (2)
C390.050 (3)0.072 (4)0.041 (2)0.011 (3)0.008 (2)0.023 (2)
C400.040 (3)0.083 (4)0.050 (2)0.007 (3)0.014 (3)0.001 (3)
C410.044 (3)0.065 (3)0.058 (3)0.013 (3)0.006 (2)0.006 (3)
Geometric parameters (Å, º) top
O11—C121.430 (5)O31—C321.431 (4)
O11—H110.76 (2)O31—H310.74 (2)
C12—C191.499 (5)C32—C331.513 (5)
C12—C131.525 (5)C32—C381.518 (5)
C12—C181.535 (5)C32—C391.532 (4)
C13—N141.446 (4)C33—N341.468 (5)
C13—H13A0.9900C33—H33A0.9900
C13—H13B0.9900C33—H33B0.9900
N14—C141.459 (4)N34—C351.465 (4)
N14—C151.465 (4)N34—C341.468 (4)
C14—H14A0.9800C34—H34A0.9800
C14—H14B0.9800C34—H34B0.9800
C14—H14C0.9800C34—H34C0.9800
C15—C161.517 (5)C35—C361.510 (5)
C15—H15A0.9900C35—H35A0.9900
C15—H15B0.9900C35—H35B0.9900
C16—O171.449 (4)C36—O371.423 (5)
C16—C201.506 (4)C36—C401.516 (5)
C16—C211.505 (5)C36—C411.539 (5)
O17—H170.80 (2)O37—H370.83 (2)
C18—H18A0.9800C38—H38A0.9800
C18—H18B0.9800C38—H38B0.9800
C18—H18C0.9800C38—H38C0.9800
C19—H19A0.9800C39—H39A0.9800
C19—H19B0.9800C39—H39B0.9800
C19—H19C0.9800C39—H39C0.9800
C20—H20A0.9800C40—H40A0.9800
C20—H20B0.9800C40—H40B0.9800
C20—H20C0.9800C40—H40C0.9800
C21—H21A0.9800C41—H41A0.9800
C21—H21B0.9800C41—H41B0.9800
C21—H21C0.9800C41—H41C0.9800
C12—O11—H11118 (4)C32—O31—H31106 (3)
O11—C12—C19110.2 (4)O31—C32—C33108.7 (3)
O11—C12—C13104.8 (3)O31—C32—C38111.4 (3)
C19—C12—C13113.5 (4)C33—C32—C38110.2 (4)
O11—C12—C18109.0 (4)O31—C32—C39104.8 (3)
C19—C12—C18110.4 (3)C33—C32—C39111.4 (3)
C13—C12—C18108.8 (3)C38—C32—C39110.1 (3)
N14—C13—C12114.5 (3)N34—C33—C32113.7 (3)
N14—C13—H13A108.6N34—C33—H33A108.8
C12—C13—H13A108.6C32—C33—H33A108.8
N14—C13—H13B108.6N34—C33—H33B108.8
C12—C13—H13B108.6C32—C33—H33B108.8
H13A—C13—H13B107.6H33A—C33—H33B107.7
C13—N14—C14110.8 (4)C33—N34—C35115.4 (3)
C13—N14—C15115.3 (3)C33—N34—C34111.6 (3)
C14—N14—C15112.4 (3)C35—N34—C34112.5 (3)
N14—C14—H14A109.5N34—C34—H34A109.5
N14—C14—H14B109.5N34—C34—H34B109.5
H14A—C14—H14B109.5H34A—C34—H34B109.5
N14—C14—H14C109.5N34—C34—H34C109.5
H14A—C14—H14C109.5H34A—C34—H34C109.5
H14B—C14—H14C109.5H34B—C34—H34C109.5
N14—C15—C16115.5 (4)N34—C35—C36112.6 (3)
N14—C15—H15A108.4N34—C35—H35A109.1
C16—C15—H15A108.4C36—C35—H35A109.1
N14—C15—H15B108.4N34—C35—H35B109.1
C16—C15—H15B108.4C36—C35—H35B109.1
H15A—C15—H15B107.5H35A—C35—H35B107.8
O17—C16—C20108.4 (3)O37—C36—C35109.3 (3)
O17—C16—C21105.9 (3)O37—C36—C40106.0 (3)
C20—C16—C21112.6 (3)C35—C36—C40109.6 (4)
O17—C16—C15109.3 (3)O37—C36—C41109.4 (3)
C20—C16—C15110.3 (3)C35—C36—C41113.0 (3)
C21—C16—C15110.1 (4)C40—C36—C41109.4 (4)
C16—O17—H17112 (3)C36—O37—H37117 (3)
C12—C18—H18A109.5C32—C38—H38A109.5
C12—C18—H18B109.5C32—C38—H38B109.5
H18A—C18—H18B109.5H38A—C38—H38B109.5
C12—C18—H18C109.5C32—C38—H38C109.5
H18A—C18—H18C109.5H38A—C38—H38C109.5
H18B—C18—H18C109.5H38B—C38—H38C109.5
C12—C19—H19A109.5C32—C39—H39A109.5
C12—C19—H19B109.5C32—C39—H39B109.5
H19A—C19—H19B109.5H39A—C39—H39B109.5
C12—C19—H19C109.5C32—C39—H39C109.5
H19A—C19—H19C109.5H39A—C39—H39C109.5
H19B—C19—H19C109.5H39B—C39—H39C109.5
C16—C20—H20A109.5C36—C40—H40A109.5
C16—C20—H20B109.5C36—C40—H40B109.5
H20A—C20—H20B109.5H40A—C40—H40B109.5
C16—C20—H20C109.5C36—C40—H40C109.5
H20A—C20—H20C109.5H40A—C40—H40C109.5
H20B—C20—H20C109.5H40B—C40—H40C109.5
C16—C21—H21A109.5C36—C41—H41A109.5
C16—C21—H21B109.5C36—C41—H41B109.5
H21A—C21—H21B109.5H41A—C41—H41B109.5
C16—C21—H21C109.5C36—C41—H41C109.5
H21A—C21—H21C109.5H41A—C41—H41C109.5
H21B—C21—H21C109.5H41B—C41—H41C109.5
O11—C12—C13—N1465.9 (4)O31—C32—C33—N3461.5 (4)
C19—C12—C13—N1454.4 (5)C38—C32—C33—N34176.0 (3)
C18—C12—C13—N14177.7 (3)C39—C32—C33—N3453.5 (4)
C12—C13—N14—C14105.6 (4)C32—C33—N34—C35117.1 (4)
C12—C13—N14—C15125.2 (4)C32—C33—N34—C34112.8 (4)
C13—N14—C15—C1694.1 (4)C33—N34—C35—C36118.2 (4)
C14—N14—C15—C16137.5 (3)C34—N34—C35—C36112.2 (4)
N14—C15—C16—O1762.5 (4)N34—C35—C36—O3763.3 (4)
N14—C15—C16—C2056.6 (4)N34—C35—C36—C40179.0 (3)
N14—C15—C16—C21178.5 (3)N34—C35—C36—C4158.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O370.76 (2)1.91 (2)2.656 (3)168 (5)
O17—H17···O110.80 (2)1.84 (2)2.621 (4)165 (4)
O31—H31···O17i0.74 (2)1.99 (2)2.712 (3)165 (4)
O37—H37···O310.83 (2)1.89 (2)2.715 (4)174 (4)
Symmetry code: (i) x+1/2, y+1/2, z.
 

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBerends, T., Iovkova, L., Bradtmöller, G., Oppel, I., Schürmann, M. & Jurkschat, K. (2009). Z. Anorg. Allg. Chem. 635, 369–374.  Web of Science CSD CrossRef CAS Google Scholar
First citationBernstein, J. (1991). Acta Cryst. B47, 1004–1010.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Etter, M. C. & MacDonald, J. C. (1990). J. Chem. Soc. Perkin Trans. 2, pp. 695–698.  CrossRef Web of Science Google Scholar
First citationChurakov, A. V., Lermontova, E. K., Zaitsev, K. V., Huang, M., Karlov, S. S., Zaitseva, G. S. & Howard, J. A. K. (2009). Acta Cryst. C65, o587–o592.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C. (1991). J. Phys. Chem. 95, 4601–4610.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGlowacki, B., Lutter, M., Alnasr, H., Seymen, R., Hiller, W. & Jurkschat, K. (2017). Inorg. Chem. 56, 4937–4949.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGlowacki, B., Lutter, M., Schollmeyer, D., Hiller, W. & Jurkschat, K. (2016). Inorg. Chem. 55, 10218–10228.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGock, M., Wiedemann, B., Dietz, C., Bai, C., Lutter, M., Abeyawarathan, V. & Jurkschat, K. (2013). Organometallics, 32, 4262–4269.  Web of Science CSD CrossRef CAS Google Scholar
First citationHong, Y., Mun, S. -D., Lee, J. Do & Kim, Y. (2008). J. Organomet. Chem. 693, 1945–1951.  Google Scholar
First citationIovkova-Berends, L., Berends, T., Zöller, T., Bradtmöller, G., Herres-Pawlis, S. & Jurkschat, K. (2012). Eur. J. Inorg. Chem. pp. 3191–3199.  Google Scholar
First citationIovkova-Berends, L., Berends, T., Zöller, T., Schollmeyer, D., Bradtmöller, G. & Jurkschat, K. (2012). Eur. J. Inorg. Chem. pp. 3463–3473.  Google Scholar
First citationLutter, M., Iovkova-Berends, L., Dietz, C., Jouikov, V. & Jurkschat, K. (2012). Main Group Met. Chem. 35, 41–45.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZöller, T., Dietz, C., Iovkova-Berends, L., Karsten, O., Bradtmöller, G., Wiegand, A. K., Wang, Y., Jouikov, V. & Jurkschat, K. (2012). Inorg. Chem. 51, 1041–1056.  Web of Science PubMed Google Scholar
First citationZöller, T., Iovkova-Berends, L., Dietz, C., Berends, T. & Jurkschat, K. (2011). Chem. Eur. J. 17, 2361–2364.  Web of Science PubMed Google Scholar
First citationZöller, T. & Jurkschat, K. (2013). Inorg. Chem. 52, 1872–1882.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds