organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(2Z)-2-Benzyl­­idene-4-octa­decyl-3,4-di­hydro-2H-1,4-benzo­thia­zin-3-one

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de, Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: ellouz.chimie@gmail.com

Edited by O. Blacque, University of Zürich, Switzerland (Received 5 May 2017; accepted 9 May 2017; online 23 May 2017)

The octa­decyl chain in the title compound, C33H47NOS, is in the `fully extended' conformation. A puckering analysis of the thia­zine ring was performed. The mol­ecules form micellar blocks in the crystal by inter­calation of the extended octa­decyl chains and association of the di­hydro benzo­thia­zine units through C—H⋯O hydrogen bonds. These blocks are associated through inter­calation of the pendant phenyl groups which reside on the outer edges of each block.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

1,4-Benzo­thia­zine derivatives constitute an important class of heterocyclic compounds which, even when part of a complex mol­ecule, possess a wide spectrum of biological activities (Sebbar et al., 2016a[Sebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Zerzouf, A., Talbaoui, A., Bakri, Y., Saadi, M. & Ammari, L. E. (2016a). Res. Chem. Intermed. 42, 6845-6862.]; Gupta et al., 2009[Gupta, S., Ajmera, N., Meena, P., Gautam, N., Kumar, A. & Gautam, D. C. (2009). Jordanian J. Chem. 4, 209-221.]). Several sulfur- and nitro­gen-containing heterocycles have been well studied and various 1,4-benzo­thia­zine derivatives have been synthesized by several methods (Dixit et al., 2008[Dixit, Y., Dixit, R., Gautam, N. & Gautam, D. C. (2008). E-J. Chem. 5, 1063-1068.], 2009[Dixit, Y., Dixit, R., Gautam, N. & Gautam, D. C. (2009). Nucleosides Nucleotides Nucleic Acids, 28, 998-1006.]). Benzo­thia­zines have found widespread application as anti­bacterial (Armenise et al., 2012[Armenise, D., Muraglia, M., Florio, M. A., De Laurentis, N., Rosato, A., Carrieri, A., Corbo, F. & Franchini, C. (2012). Arch. Pharm. Pharm. Med. Chem. 345, 407-416.]; Sabatini et al., 2008[Sabatini, S., Kaatz, G. W., Rossolini, G. M., Brandini, D. & Fravolini, A. (2008). J. Med. Chem. 51, 4321-4330.]), analgesic (Warren et al., 1987[Warren, B. K. & Knaus, E. E. (1987). Eur. J. Med. Chem. 22, 411-415.]), anti­cancer (Jacquot et al., 2001[Jacquot, Y., Bermont, L., Giorgi, H., Refouvelet, B. L., Adessi, G., Daubrosse, E. & Xicluna, A. (2001). Eur. J. Med. Chem. 36, 127-136.]) and anti­convulsant (Kalluraya et al., 2005[Kalluraya, B., Chimbalkar, R. M. & Hegde, J. C. (2005). Indian J. Heterocycl. Chem. 15, 15-18.]) agents. As a continuation of our research work devoted to the development of N-substituted benzo­thia­zine derivatives and evaluating their potential pharmacological activities, we have studied the condensation reaction of 1-bromo­octa­decane with (E)-2-(benzyl­idene)-3,4-di­hydro-2H-1,4-benzo­thia­zin-3-one under phase-transfer catalysis conditions using tetra-n-butyl­ammonium bromide (TBAB) as catalyst and potassium carbonate as base (Sebbar et al., 2016b[Sebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2016b). IUCr Data, 1, x161012.], Sebbar et al., 2014[Sebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o614.]; Ellouz et al., 2016[Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y., Mague, J. T. & Zouihri, H. (2016). IUCr Data, 1, x160764.]). The crystal structure of the compound obtained is reported in this work (Fig. 1[link]).

[Figure 1]
Figure 1
The title mol­ecule with the labelling scheme and 50% probability displacement ellipsoids. Intra­molecular hydrogen bonds are shown as dashed lines.

In the title compound, the octa­decyl chain is in the `fully extended' conformation. A Cremer–Pople puckering analysis of the six-membered heterocyclic ring gave the parameters Q = 0.443 (1) Å, θ = 109.7 (2)° and φ = 154.3 (2)°. The pendant phenyl ring is rotationally disordered over two sites having approximately equal occupancy about the C9—C10 bond by 41.1 (2)°. The dihedral angle between the C10–C15 and the C1–C6 rings is 58.4 (1)° while that for the other component (C10A–C15A) is 32.9 (1)°. Intra­molecular C—H⋯O and C—H⋯S inter­actions occur (Table 1[link] and Fig. 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.95 (2) 2.40 (2) 3.298 (2) 158.0 (18)
C9—H9⋯O1 0.97 (2) 2.367 (19) 2.769 (2) 104.1 (13)
C11—H11⋯S1 0.95 2.58 3.225 (2) 126
C16—H16B⋯O1 0.97 (2) 2.17 (2) 2.679 (2) 111.3 (15)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

In the crystal, the mol­ecules form micellar blocks through inter­calation of the octa­decyl chains and association of the polar head groups along the c-axis direction through C3—H3⋯O1 hydrogen bonds (Table 2[link] and Fig. 2[link]). These blocks are associated through inter­calation of the pendant phenyl rings, which reside on the outer edges of each block (Fig. 2[link]).

Table 2
Experimental details

Crystal data
Chemical formula C33H47NOS
Mr 505.77
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 33.8411 (7), 4.7106 (1), 18.0987 (4)
β (°) 90.470 (1)
V3) 2885.05 (11)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.17
Crystal size (mm) 0.24 × 0.11 × 0.03
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.81, 0.97
No. of measured, independent and observed [I > 2σ(I)] reflections 21375, 5792, 4927
Rint 0.040
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.120, 1.06
No. of reflections 5792
No. of parameters 524
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.34, −0.46
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).
[Figure 2]
Figure 2
The packing of the title mol­ecule, viewed along the b-axis direction, with C—H⋯O hydrogen bonds shown as dashed lines.

Synthesis and crystallization

To a solution of 2-(benzyl­idene)-3,4-di­hydro-2H-1,4-benzo­thia­zin-3-one (0.5 g, 2 mmol), potassium carbonate (0.55 g, 4 mmol) and tetra-n-butyl ammonium bromide (0.064 g, 0.2 mmol) in DMF (15 ml) was added 1-bromo­octa­decane (1.33 g, 4 mmol). Stirring was continued at room temperature for 12 h. The mixture was filtered and the solvent removed. The residue was extracted with water. The organic compound was chromatographed on a column of silica gel with ethyl acetate–hexane (9/1) as eluent. The solid product was purified by recrystallization from ethanol solution to afford colourless crystals in 63% yield.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The pendant phenyl ring is rotationally disordered over two sites having approximately equal occupancy [ratio 0.503 (4):0.497 (4)]. The two components were refined as rigid hexa­gons with the attached hydrogen atoms in idealized positions.

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(2Z)-2-Benzylidene-4-octadecyl-3,4-dihydro-2H-1,4-benzothiazin-3-one top
Crystal data top
C33H47NOSF(000) = 1104
Mr = 505.77Dx = 1.164 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 33.8411 (7) ÅCell parameters from 9991 reflections
b = 4.7106 (1) Åθ = 2.6–74.7°
c = 18.0987 (4) ŵ = 1.17 mm1
β = 90.470 (1)°T = 150 K
V = 2885.05 (11) Å3Plate, colourless
Z = 40.24 × 0.11 × 0.03 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
5792 independent reflections
Radiation source: INCOATEC IµS micro-focus source4927 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.040
Detector resolution: 10.4167 pixels mm-1θmax = 74.7°, θmin = 2.6°
ω scansh = 4242
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 55
Tmin = 0.81, Tmax = 0.97l = 2122
21375 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: mixed
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0511P)2 + 1.3651P]
where P = (Fo2 + 2Fc2)/3
5792 reflections(Δ/σ)max < 0.001
524 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.46 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The pendant phenyl ring is rotationally disordered over two sites having approximately equal occupancies. The two components were refined as rigid hexagons with the attached hydrogen atoms in idealized positions.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.10593 (2)0.77362 (9)0.55251 (2)0.03197 (13)
O10.17114 (4)0.2595 (3)0.43940 (7)0.0463 (4)
N10.17320 (4)0.3357 (3)0.56293 (7)0.0261 (3)
C10.15506 (4)0.4140 (3)0.63057 (8)0.0245 (3)
C20.16804 (5)0.2944 (4)0.69743 (9)0.0295 (3)
H20.1873 (6)0.151 (4)0.6974 (10)0.033 (5)*
C30.15261 (5)0.3838 (4)0.76417 (9)0.0348 (4)
H30.1623 (6)0.303 (5)0.8089 (12)0.047 (6)*
C40.12362 (5)0.5891 (4)0.76594 (10)0.0358 (4)
H40.1125 (7)0.651 (5)0.8107 (13)0.051 (6)*
C50.10945 (5)0.7024 (4)0.70018 (10)0.0339 (4)
H50.0881 (6)0.846 (5)0.7002 (11)0.040 (5)*
C60.12506 (4)0.6157 (3)0.63291 (9)0.0270 (3)
C70.11658 (4)0.5095 (4)0.48802 (9)0.0273 (3)
C80.15556 (5)0.3606 (4)0.49388 (9)0.0302 (4)
C90.09375 (5)0.4468 (4)0.42866 (9)0.0291 (3)
H90.1057 (6)0.313 (4)0.3946 (10)0.032 (5)*
C100.05477 (6)0.5456 (5)0.40246 (18)0.031 (2)0.503 (4)
C110.03828 (7)0.7998 (5)0.42615 (15)0.0306 (9)0.503 (4)
H110.05320.92480.45660.037*0.503 (4)
C120.00007 (7)0.8709 (5)0.40525 (15)0.0349 (9)0.503 (4)
H120.01131.04460.42140.042*0.503 (4)
C130.02194 (6)0.6879 (6)0.36066 (17)0.036 (2)0.503 (4)
H130.04820.73660.34640.043*0.503 (4)
C140.00545 (9)0.4338 (6)0.3370 (2)0.0456 (12)0.503 (4)
H140.02040.30880.30650.055*0.503 (4)
C150.03290 (9)0.3627 (5)0.3579 (2)0.0388 (10)0.503 (4)
H150.04420.18900.34170.047*0.503 (4)
C10A0.05253 (6)0.5378 (6)0.41016 (14)0.0224 (19)0.497 (4)
C11A0.02588 (7)0.6580 (6)0.45914 (11)0.0300 (9)0.497 (4)
H11A0.03390.69860.50850.036*0.497 (4)
C12A0.01246 (6)0.7186 (6)0.43597 (13)0.0313 (9)0.497 (4)
H12A0.03070.80060.46940.038*0.497 (4)
C13A0.02416 (6)0.6590 (7)0.36382 (13)0.034 (2)0.497 (4)
H13A0.05040.70040.34800.040*0.497 (4)
C14A0.00249 (8)0.5389 (7)0.31484 (10)0.0345 (10)0.497 (4)
H14A0.00550.49820.26550.041*0.497 (4)
C15A0.04083 (7)0.4783 (7)0.33801 (13)0.0297 (9)0.497 (4)
H15A0.05900.39620.30450.036*0.497 (4)
C160.21002 (5)0.1695 (4)0.56682 (10)0.0298 (4)
H16A0.2051 (6)0.004 (5)0.5980 (11)0.037 (5)*
H16B0.2162 (6)0.114 (5)0.5165 (12)0.043 (6)*
C170.24455 (5)0.3396 (4)0.59860 (10)0.0304 (4)
H17A0.2350 (6)0.459 (5)0.6395 (11)0.039 (5)*
H17B0.2534 (6)0.473 (5)0.5603 (12)0.043 (6)*
C180.27795 (5)0.1485 (4)0.62544 (11)0.0333 (4)
H18A0.2663 (6)0.011 (5)0.6624 (12)0.045 (6)*
H18B0.2885 (6)0.046 (5)0.5832 (12)0.047 (6)*
C190.31103 (5)0.3118 (4)0.66399 (10)0.0331 (4)
H19A0.2991 (6)0.421 (4)0.7056 (11)0.038 (5)*
H19B0.3222 (6)0.448 (5)0.6307 (11)0.040 (5)*
C200.34370 (5)0.1221 (4)0.69465 (11)0.0363 (4)
H20A0.3316 (6)0.017 (5)0.7293 (12)0.046 (6)*
H20B0.3545 (7)0.012 (5)0.6542 (13)0.052 (6)*
C210.37560 (5)0.2852 (4)0.73656 (11)0.0365 (4)
H21A0.3627 (6)0.390 (5)0.7799 (12)0.045 (6)*
H21B0.3879 (6)0.424 (5)0.7029 (12)0.045 (6)*
C220.40833 (5)0.0963 (5)0.76801 (11)0.0379 (4)
H22A0.3964 (7)0.048 (5)0.8017 (13)0.051 (6)*
H22B0.4214 (7)0.016 (5)0.7276 (13)0.052 (6)*
C230.43998 (5)0.2610 (5)0.81015 (11)0.0386 (4)
H23A0.4269 (6)0.369 (5)0.8512 (12)0.046 (6)*
H23B0.4523 (7)0.398 (5)0.7763 (12)0.048 (6)*
C240.47278 (5)0.0739 (5)0.84179 (11)0.0391 (4)
H24A0.4852 (7)0.046 (5)0.8010 (13)0.057 (7)*
H24B0.4609 (7)0.072 (5)0.8751 (13)0.053 (6)*
C250.50452 (5)0.2404 (5)0.88337 (11)0.0389 (4)
H25A0.4916 (6)0.354 (5)0.9245 (12)0.047 (6)*
H25B0.5166 (7)0.384 (5)0.8489 (12)0.050 (6)*
C260.53738 (5)0.0544 (5)0.91556 (11)0.0386 (4)
H26A0.5498 (7)0.069 (5)0.8743 (13)0.052 (6)*
H26B0.5253 (6)0.087 (5)0.9512 (12)0.046 (6)*
C270.56926 (5)0.2235 (5)0.95610 (11)0.0388 (4)
H27A0.5568 (7)0.338 (5)0.9957 (12)0.049 (6)*
H27B0.5805 (6)0.363 (5)0.9208 (12)0.046 (6)*
C280.60229 (5)0.0411 (4)0.98870 (11)0.0374 (4)
H28A0.5905 (6)0.100 (5)1.0231 (11)0.039 (5)*
H28B0.6146 (6)0.083 (5)0.9474 (12)0.044 (6)*
C290.63446 (5)0.2137 (4)1.02729 (11)0.0374 (4)
H29A0.6453 (7)0.356 (5)0.9902 (13)0.053 (6)*
H29B0.6224 (6)0.331 (5)1.0664 (12)0.045 (6)*
C300.66771 (5)0.0345 (4)1.06014 (10)0.0355 (4)
H30A0.6799 (6)0.094 (5)1.0206 (12)0.047 (6)*
H30B0.6561 (6)0.098 (5)1.0982 (11)0.042 (6)*
C310.70000 (5)0.2102 (4)1.09748 (11)0.0374 (4)
H31A0.6871 (7)0.327 (5)1.1351 (13)0.052 (6)*
H31B0.7112 (7)0.341 (5)1.0589 (13)0.057 (7)*
C320.73361 (5)0.0345 (4)1.13048 (11)0.0392 (4)
H32A0.7216 (7)0.103 (5)1.1672 (13)0.053 (6)*
H32B0.7455 (7)0.088 (5)1.0913 (13)0.054 (6)*
C330.76560 (6)0.2158 (5)1.16623 (14)0.0476 (5)
H33A0.7546 (8)0.322 (6)1.2070 (15)0.067 (8)*
H33B0.7871 (8)0.105 (6)1.1857 (14)0.065 (7)*
H33C0.7764 (8)0.352 (6)1.1291 (16)0.076 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0329 (2)0.0295 (2)0.0333 (2)0.00240 (16)0.01019 (16)0.00035 (16)
O10.0316 (6)0.0827 (11)0.0247 (6)0.0151 (7)0.0012 (5)0.0048 (6)
N10.0202 (6)0.0350 (7)0.0230 (6)0.0002 (5)0.0045 (5)0.0004 (5)
C10.0185 (6)0.0308 (8)0.0240 (7)0.0039 (6)0.0033 (6)0.0003 (6)
C20.0244 (7)0.0367 (9)0.0272 (8)0.0018 (7)0.0040 (6)0.0034 (7)
C30.0333 (8)0.0463 (10)0.0248 (8)0.0042 (8)0.0043 (7)0.0030 (7)
C40.0350 (9)0.0454 (10)0.0270 (8)0.0031 (8)0.0017 (7)0.0054 (7)
C50.0293 (8)0.0375 (9)0.0349 (9)0.0003 (7)0.0012 (7)0.0046 (7)
C60.0226 (7)0.0293 (8)0.0290 (8)0.0039 (6)0.0047 (6)0.0008 (6)
C70.0232 (7)0.0326 (8)0.0260 (8)0.0018 (6)0.0018 (6)0.0052 (6)
C80.0230 (7)0.0426 (9)0.0250 (8)0.0015 (7)0.0035 (6)0.0017 (7)
C90.0249 (7)0.0373 (9)0.0251 (8)0.0019 (7)0.0027 (6)0.0035 (7)
C100.016 (3)0.035 (5)0.043 (4)0.004 (3)0.007 (3)0.003 (3)
C110.0276 (16)0.036 (2)0.0277 (17)0.0018 (14)0.0063 (14)0.0041 (15)
C120.0316 (17)0.041 (2)0.0325 (18)0.0055 (16)0.0018 (14)0.0077 (16)
C130.024 (3)0.037 (3)0.047 (5)0.004 (3)0.012 (3)0.016 (3)
C140.033 (2)0.052 (3)0.052 (3)0.008 (2)0.021 (2)0.005 (2)
C150.033 (2)0.040 (2)0.043 (2)0.0020 (18)0.0105 (17)0.0011 (19)
C10A0.030 (3)0.028 (4)0.009 (2)0.004 (3)0.012 (2)0.009 (2)
C11A0.0283 (16)0.0331 (19)0.0285 (18)0.0023 (14)0.0025 (14)0.0014 (15)
C12A0.0259 (16)0.0324 (19)0.0357 (19)0.0026 (14)0.0003 (14)0.0028 (15)
C13A0.028 (4)0.039 (4)0.035 (4)0.009 (3)0.006 (3)0.007 (3)
C14A0.034 (2)0.041 (2)0.029 (2)0.0054 (17)0.0120 (16)0.0041 (16)
C15A0.0301 (18)0.036 (2)0.0224 (19)0.0003 (16)0.0055 (14)0.0004 (15)
C160.0222 (7)0.0362 (9)0.0308 (9)0.0022 (7)0.0042 (6)0.0034 (7)
C170.0195 (7)0.0363 (9)0.0352 (9)0.0005 (7)0.0031 (6)0.0007 (7)
C180.0218 (7)0.0388 (9)0.0393 (10)0.0013 (7)0.0058 (7)0.0014 (8)
C190.0209 (7)0.0401 (10)0.0383 (9)0.0013 (7)0.0051 (7)0.0007 (8)
C200.0219 (7)0.0456 (11)0.0413 (10)0.0032 (7)0.0058 (7)0.0013 (9)
C210.0223 (8)0.0477 (11)0.0395 (10)0.0005 (7)0.0054 (7)0.0001 (8)
C220.0223 (8)0.0505 (11)0.0408 (10)0.0019 (8)0.0048 (7)0.0015 (9)
C230.0235 (8)0.0538 (12)0.0385 (10)0.0007 (8)0.0063 (7)0.0008 (9)
C240.0223 (8)0.0557 (12)0.0392 (10)0.0023 (8)0.0053 (7)0.0025 (9)
C250.0238 (8)0.0555 (12)0.0373 (10)0.0001 (8)0.0067 (7)0.0012 (9)
C260.0233 (8)0.0538 (12)0.0385 (10)0.0024 (8)0.0048 (7)0.0028 (9)
C270.0261 (8)0.0523 (12)0.0378 (10)0.0012 (8)0.0067 (7)0.0016 (9)
C280.0245 (8)0.0507 (11)0.0369 (10)0.0025 (8)0.0057 (7)0.0034 (8)
C290.0274 (8)0.0457 (11)0.0388 (10)0.0019 (8)0.0086 (7)0.0006 (8)
C300.0261 (8)0.0436 (10)0.0367 (9)0.0040 (7)0.0061 (7)0.0018 (8)
C310.0306 (8)0.0414 (10)0.0402 (10)0.0044 (8)0.0111 (8)0.0006 (8)
C320.0309 (8)0.0441 (11)0.0424 (10)0.0060 (8)0.0091 (8)0.0007 (9)
C330.0365 (10)0.0537 (13)0.0524 (13)0.0048 (9)0.0201 (9)0.0014 (10)
Geometric parameters (Å, º) top
S1—C71.7456 (17)C18—C191.523 (2)
S1—C61.7536 (16)C18—H18A1.01 (2)
O1—C81.219 (2)C18—H18B0.98 (2)
N1—C81.386 (2)C19—C201.523 (2)
N1—C11.423 (2)C19—H19A1.00 (2)
N1—C161.473 (2)C19—H19B0.96 (2)
C1—C61.391 (2)C20—C211.522 (2)
C1—C21.402 (2)C20—H20A1.00 (2)
C2—C31.385 (2)C20—H20B0.97 (2)
C2—H20.94 (2)C21—C221.527 (2)
C3—C41.378 (3)C21—H21A1.03 (2)
C3—H30.95 (2)C21—H21B0.99 (2)
C4—C51.386 (3)C22—C231.522 (3)
C4—H40.94 (2)C22—H22A1.00 (2)
C5—C61.392 (2)C22—H22B1.01 (2)
C5—H50.99 (2)C23—C241.525 (3)
C7—C91.351 (2)C23—H23A1.01 (2)
C7—C81.497 (2)C23—H23B0.99 (2)
C9—C101.474 (2)C24—C251.524 (3)
C9—C10A1.495 (2)C24—H24A1.02 (2)
C9—H90.97 (2)C24—H24B1.00 (2)
C10—C111.3900C25—C261.527 (3)
C10—C151.3900C25—H25A1.02 (2)
C11—C121.3900C25—H25B1.01 (2)
C11—H110.9500C26—C271.524 (3)
C12—C131.3900C26—H26A1.04 (2)
C12—H120.9500C26—H26B1.02 (2)
C13—C141.3900C27—C281.525 (2)
C13—H130.9500C27—H27A0.99 (2)
C14—C151.3900C27—H27B0.99 (2)
C14—H140.9500C28—C291.524 (3)
C15—H150.9500C28—H28A1.00 (2)
C10A—C11A1.3900C28—H28B1.04 (2)
C10A—C15A1.3900C29—C301.524 (2)
C11A—C12A1.3900C29—H29A1.02 (2)
C11A—H11A0.9500C29—H29B0.99 (2)
C12A—C13A1.3900C30—C311.524 (2)
C12A—H12A0.9500C30—H30A1.03 (2)
C13A—C14A1.3900C30—H30B1.01 (2)
C13A—H13A0.9500C31—C321.525 (2)
C14A—C15A1.3900C31—H31A0.98 (2)
C14A—H14A0.9500C31—H31B1.01 (3)
C15A—H15A0.9500C32—C331.519 (3)
C16—C171.526 (2)C32—H32A1.02 (2)
C16—H16A1.01 (2)C32—H32B1.00 (2)
C16—H16B0.97 (2)C33—H33A0.97 (3)
C17—C181.521 (2)C33—H33B0.96 (3)
C17—H17A0.99 (2)C33—H33C1.00 (3)
C17—H17B0.98 (2)
C7—S1—C6100.11 (8)C18—C19—H19A107.8 (12)
C8—N1—C1124.64 (13)C20—C19—H19B109.4 (12)
C8—N1—C16116.50 (13)C18—C19—H19B110.0 (12)
C1—N1—C16117.88 (13)H19A—C19—H19B107.0 (17)
C6—C1—C2118.13 (15)C21—C20—C19113.28 (16)
C6—C1—N1121.57 (14)C21—C20—H20A108.1 (12)
C2—C1—N1120.28 (14)C19—C20—H20A108.3 (12)
C3—C2—C1120.85 (16)C21—C20—H20B112.1 (13)
C3—C2—H2119.1 (11)C19—C20—H20B108.3 (13)
C1—C2—H2120.0 (11)H20A—C20—H20B106.3 (18)
C4—C3—C2120.47 (16)C20—C21—C22113.64 (16)
C4—C3—H3120.2 (13)C20—C21—H21A108.6 (12)
C2—C3—H3119.3 (13)C22—C21—H21A107.9 (12)
C3—C4—C5119.42 (17)C20—C21—H21B109.1 (12)
C3—C4—H4121.7 (14)C22—C21—H21B107.9 (13)
C5—C4—H4118.8 (14)H21A—C21—H21B109.7 (18)
C4—C5—C6120.45 (17)C23—C22—C21113.26 (17)
C4—C5—H5120.6 (12)C23—C22—H22A109.1 (13)
C6—C5—H5118.9 (12)C21—C22—H22A109.2 (13)
C1—C6—C5120.61 (15)C23—C22—H22B108.7 (13)
C1—C6—S1121.94 (12)C21—C22—H22B110.8 (13)
C5—C6—S1117.44 (13)H22A—C22—H22B105.5 (19)
C9—C7—C8116.86 (15)C22—C23—C24113.61 (17)
C9—C7—S1124.60 (13)C22—C23—H23A108.4 (12)
C8—C7—S1118.24 (11)C24—C23—H23A109.8 (12)
O1—C8—N1120.71 (15)C22—C23—H23B108.8 (13)
O1—C8—C7120.83 (14)C24—C23—H23B107.6 (13)
N1—C8—C7118.45 (14)H23A—C23—H23B108.4 (19)
C7—C9—C10133.75 (18)C25—C24—C23113.32 (17)
C7—C9—C10A129.94 (18)C25—C24—H24A110.4 (14)
C7—C9—H9114.1 (11)C23—C24—H24A110.5 (13)
C10—C9—H9112.1 (11)C25—C24—H24B109.9 (13)
C10A—C9—H9115.8 (11)C23—C24—H24B109.2 (13)
C11—C10—C15120.0H24A—C24—H24B103.0 (19)
C11—C10—C9122.23 (17)C24—C25—C26113.65 (17)
C15—C10—C9117.51 (17)C24—C25—H25A109.0 (12)
C12—C11—C10120.0C26—C25—H25A109.8 (12)
C12—C11—H11120.0C24—C25—H25B109.1 (13)
C10—C11—H11120.0C26—C25—H25B109.0 (13)
C13—C12—C11120.0H25A—C25—H25B106.0 (18)
C13—C12—H12120.0C27—C26—C25113.19 (17)
C11—C12—H12120.0C27—C26—H26A110.5 (13)
C12—C13—C14120.0C25—C26—H26A110.1 (13)
C12—C13—H13120.0C27—C26—H26B108.9 (12)
C14—C13—H13120.0C25—C26—H26B108.9 (12)
C13—C14—C15120.0H26A—C26—H26B104.9 (18)
C13—C14—H14120.0C26—C27—C28113.91 (17)
C15—C14—H14120.0C26—C27—H27A109.1 (13)
C14—C15—C10120.0C28—C27—H27A109.9 (13)
C14—C15—H15120.0C26—C27—H27B108.0 (13)
C10—C15—H15120.0C28—C27—H27B109.8 (13)
C11A—C10A—C15A120.0H27A—C27—H27B105.9 (19)
C11A—C10A—C9125.66 (17)C29—C28—C27113.29 (17)
C15A—C10A—C9114.25 (17)C29—C28—H28A111.0 (12)
C10A—C11A—C12A120.0C27—C28—H28A108.8 (12)
C10A—C11A—H11A120.0C29—C28—H28B109.9 (12)
C12A—C11A—H11A120.0C27—C28—H28B109.6 (12)
C13A—C12A—C11A120.0H28A—C28—H28B103.8 (17)
C13A—C12A—H12A120.0C30—C29—C28113.95 (16)
C11A—C12A—H12A120.0C30—C29—H29A110.6 (13)
C12A—C13A—C14A120.0C28—C29—H29A108.0 (13)
C12A—C13A—H13A120.0C30—C29—H29B109.7 (13)
C14A—C13A—H13A120.0C28—C29—H29B109.2 (13)
C15A—C14A—C13A120.0H29A—C29—H29B105.0 (18)
C15A—C14A—H14A120.0C29—C30—C31113.38 (16)
C13A—C14A—H14A120.0C29—C30—H30A110.7 (12)
C14A—C15A—C10A120.0C31—C30—H30A109.8 (12)
C14A—C15A—H15A120.0C29—C30—H30B108.5 (12)
C10A—C15A—H15A120.0C31—C30—H30B108.3 (12)
N1—C16—C17112.56 (14)H30A—C30—H30B105.8 (18)
N1—C16—H16A108.3 (11)C30—C31—C32114.12 (16)
C17—C16—H16A110.1 (11)C30—C31—H31A106.9 (14)
N1—C16—H16B106.6 (12)C32—C31—H31A111.5 (13)
C17—C16—H16B108.8 (13)C30—C31—H31B107.2 (14)
H16A—C16—H16B110.3 (17)C32—C31—H31B108.7 (14)
C18—C17—C16111.98 (15)H31A—C31—H31B108 (2)
C18—C17—H17A110.1 (12)C33—C32—C31112.85 (17)
C16—C17—H17A109.3 (12)C33—C32—H32A111.6 (13)
C18—C17—H17B111.8 (12)C31—C32—H32A107.6 (13)
C16—C17—H17B107.8 (12)C33—C32—H32B109.6 (13)
H17A—C17—H17B105.5 (17)C31—C32—H32B109.8 (13)
C17—C18—C19112.89 (15)H32A—C32—H32B105.1 (19)
C17—C18—H18A107.3 (12)C32—C33—H33A109.8 (16)
C19—C18—H18A107.9 (12)C32—C33—H33B112.7 (16)
C17—C18—H18B108.6 (13)H33A—C33—H33B107 (2)
C19—C18—H18B109.7 (13)C32—C33—H33C109.8 (16)
H18A—C18—H18B110.3 (18)H33A—C33—H33C109 (2)
C20—C19—C18113.54 (16)H33B—C33—H33C108 (2)
C20—C19—H19A108.8 (12)
C8—N1—C1—C624.7 (2)C10—C11—C12—C130.0
C16—N1—C1—C6167.07 (14)C11—C12—C13—C140.0
C8—N1—C1—C2157.30 (16)C12—C13—C14—C150.0
C16—N1—C1—C210.9 (2)C13—C14—C15—C100.0
C6—C1—C2—C32.8 (2)C11—C10—C15—C140.0
N1—C1—C2—C3175.29 (15)C9—C10—C15—C14174.3 (3)
C1—C2—C3—C41.2 (3)C7—C9—C10A—C11A15.3 (3)
C2—C3—C4—C51.1 (3)C7—C9—C10A—C15A168.19 (19)
C3—C4—C5—C61.7 (3)C15A—C10A—C11A—C12A0.0
C2—C1—C6—C52.2 (2)C9—C10A—C11A—C12A176.3 (3)
N1—C1—C6—C5175.88 (15)C10A—C11A—C12A—C13A0.0
C2—C1—C6—S1178.72 (12)C11A—C12A—C13A—C14A0.0
N1—C1—C6—S13.2 (2)C12A—C13A—C14A—C15A0.0
C4—C5—C6—C10.1 (3)C13A—C14A—C15A—C10A0.0
C4—C5—C6—S1179.09 (14)C11A—C10A—C15A—C14A0.0
C7—S1—C6—C125.40 (15)C9—C10A—C15A—C14A176.7 (2)
C7—S1—C6—C5155.46 (13)C8—N1—C16—C17122.78 (16)
C6—S1—C7—C9146.07 (15)C1—N1—C16—C1768.02 (19)
C6—S1—C7—C840.46 (14)N1—C16—C17—C18161.52 (15)
C1—N1—C8—O1171.61 (16)C16—C17—C18—C19174.54 (15)
C16—N1—C8—O13.2 (2)C17—C18—C19—C20177.06 (16)
C1—N1—C8—C77.2 (2)C18—C19—C20—C21177.02 (16)
C16—N1—C8—C7175.62 (14)C19—C20—C21—C22179.56 (16)
C9—C7—C8—O121.7 (3)C20—C21—C22—C23179.70 (16)
S1—C7—C8—O1152.32 (15)C21—C22—C23—C24179.97 (16)
C9—C7—C8—N1157.19 (16)C22—C23—C24—C25179.53 (16)
S1—C7—C8—N128.8 (2)C23—C24—C25—C26179.72 (16)
C8—C7—C9—C10179.2 (2)C24—C25—C26—C27179.20 (16)
S1—C7—C9—C105.6 (3)C25—C26—C27—C28179.93 (16)
C8—C7—C9—C10A174.2 (2)C26—C27—C28—C29178.50 (16)
S1—C7—C9—C10A12.3 (3)C27—C28—C29—C30179.97 (16)
C7—C9—C10—C1120.0 (4)C28—C29—C30—C31179.07 (16)
C7—C9—C10—C15154.1 (2)C29—C30—C31—C32179.82 (17)
C15—C10—C11—C120.0C30—C31—C32—C33179.12 (18)
C9—C10—C11—C12174.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.95 (2)2.40 (2)3.298 (2)158.0 (18)
C9—H9···O10.97 (2)2.367 (19)2.769 (2)104.1 (13)
C11—H11···S10.952.583.225 (2)126
C16—H16B···O10.97 (2)2.17 (2)2.679 (2)111.3 (15)
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationArmenise, D., Muraglia, M., Florio, M. A., De Laurentis, N., Rosato, A., Carrieri, A., Corbo, F. & Franchini, C. (2012). Arch. Pharm. Pharm. Med. Chem. 345, 407–416.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDixit, Y., Dixit, R., Gautam, N. & Gautam, D. C. (2008). E-J. Chem. 5, 1063–1068.  CrossRef CAS Google Scholar
First citationDixit, Y., Dixit, R., Gautam, N. & Gautam, D. C. (2009). Nucleosides Nucleotides Nucleic Acids, 28, 998–1006.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEllouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y., Mague, J. T. & Zouihri, H. (2016). IUCr Data, 1, x160764.  Google Scholar
First citationGupta, S., Ajmera, N., Meena, P., Gautam, N., Kumar, A. & Gautam, D. C. (2009). Jordanian J. Chem. 4, 209–221.  CAS Google Scholar
First citationJacquot, Y., Bermont, L., Giorgi, H., Refouvelet, B. L., Adessi, G., Daubrosse, E. & Xicluna, A. (2001). Eur. J. Med. Chem. 36, 127–136.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKalluraya, B., Chimbalkar, R. M. & Hegde, J. C. (2005). Indian J. Heterocycl. Chem. 15, 15–18.  CAS Google Scholar
First citationSabatini, S., Kaatz, G. W., Rossolini, G. M., Brandini, D. & Fravolini, A. (2008). J. Med. Chem. 51, 4321–4330.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2016b). IUCr Data, 1, x161012.  Google Scholar
First citationSebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Zerzouf, A., Talbaoui, A., Bakri, Y., Saadi, M. & Ammari, L. E. (2016a). Res. Chem. Intermed. 42, 6845–6862.  CSD CrossRef CAS Google Scholar
First citationSebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o614.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWarren, B. K. & Knaus, E. E. (1987). Eur. J. Med. Chem. 22, 411–415.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds