organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-(2,4,6-Tri­methyl­phen­yl)butan-2-one

CROSSMARK_Color_square_no_text.svg

aCollege of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, People's Republic of China
*Correspondence e-mail: lfy20110407@163.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 24 April 2017; accepted 5 May 2017; online 9 May 2017)

In the title compound, C13H18O, the 3-oxobutyl group is approximately planar [maximum deviation = 0.029 (4) Å] and its mean plane is twisted with respect to the benzene ring at 84.0 (2)°. In the crystal, weak C—H⋯π inter­actions link the mol­ecules into supra­molecular chains propagating along the a axis.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The β-diketone motif is a versatile metal coordinating ligand that is readily derivatized and able to form complexes with a wide range of metal ions (Bray et al., 2007[Bray, D. J., Jolliffe, K. A., Lindoy, L. F. & McMurtrie, J. C. (2007). Tetrahedron, 63, 1953-1958.]; Chen et al., 2010[Chen, X.-Y., Yang, X.-P. & Holliday, B. J. (2010). Inorg. Chem. 49, 2583-2585.]). It has also been shown to be an attractive ligand for the preparation of metallo-supra­molecular structures. However, our attempts at forming lanthanide–transition metal complexes using the normal procedure of heating with a lanthanide salt in the presence of base were unsuccessful. Rather than obtaining the desired lanthanide metal complex upon cooling the reaction mixture, we isolated solids that contained no metal ion. An X-ray crystal structure determination confirmed that this product was the ketone derivative of compound (II) (Fig. 2[link]), which could be attributed to the alkaline hydrolysis of the β-diketone groups (Hauser et al., 1948[Hauser, C. R., Swamer, F. W. & Ringler, B. I. (1948). J. Am. Chem. Soc. 70, 4023-4026.]; Pearson & Mayerle, 1951[Pearson, R. G. & Mayerle, E. A. (1951). J. Am. Chem. Soc. 73, 926-930.]). Herein we report the synthesis and structure of the title compound.

[Figure 2]
Figure 2
Steps in the synthesis of the title compound.

In the mol­ecule (Fig. 1[link]), the 3′-oxo-butyl group is nearly planar, the maximum deviation being 0.029 (4) Å (C1 atom), and its mean plane is oriented at 84.0 (2)° with respect to the benzene ring.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, shown with atom labels and 30% probability displacement ellipsoids.

In the crystal, weak C—H–π inter­actions (Table 1[link]) link the mol­ecules into supra­molecular chains propagating along the a-axis direction.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11BCg1i 0.96 2.76 3.642 (5) 154
Symmetry code: (i) x+1, y, z.

Synthesis and crystallization

The synthesis procedures for the title compound are shown in Fig. 2[link]. Acetyl­acetone (9 mmol, 900 mg) was added to 30 ml tert-butanol in the presence of t-BuOK. After 1 h, 2-(bromo­meth­yl)-1,3,5-tri­methyl­benzene (9 mmol, 1917 mg) was added to the above mixture, then 0.25 g KI was added. The mixture was then refluxed under argon for 72 h. After cooling to room temperature, the solvent was evaporated. The product was extracted with di­chloro­methane­(50 ml), and the organic phase was washed with water (50 ml). Then the organic phase was dried by magnesium sulfate and filtered. White solids were obtained after the di­chloro­methane solvent was evaporated [compound (II)]. Yield: 63% (based on acetyl­acetone). Compound (II) (6 mmol, 1392 mg) was dissolved in 20 ml ethanol, then 6 mmol NaOH (0.1 mol l−1) was added to adjust the pH of the mixture to 7. Then 2 mmol europium(III) chloride, (0.2 mol l−1 in ethanol) was added drop by drop. The mixture was refluxed for 2 h. The filtrate was dissolved in di­chloro­methane/ether. Colorless block-shaped crystals were obtained by slow evaporation after one week.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C13H18O
Mr 190.27
Crystal system, space group Orthorhombic, P212121
Temperature (K) 293
a, b, c (Å) 4.8462 (10), 7.8042 (16), 30.996 (6)
V3) 1172.3 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.28 × 0.25 × 0.23
 
Data collection
Diffractometer Rigaku MM007-HF CCD (Saturn 724+)
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.982, 0.985
No. of measured, independent and observed [I > 2σ(I)] reflections 11150, 2673, 1626
Rint 0.078
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.081, 0.168, 1.09
No. of reflections 2673
No. of parameters 131
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.12, −0.13
Absolute structure Flack x determined using 411 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.5 (10)
Computer programs: CrystalStructure (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalStructure. Rigaku Americas, The Woodlands.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: CrystalStructure (Rigaku/MSC, 2006); cell refinement: CrystalStructure (Rigaku/MSC, 2006); data reduction: CrystalStructure (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

4-(2,4,6-Trimethylphenyl)butan-2-one top
Crystal data top
C13H18ODx = 1.078 Mg m3
Mr = 190.27Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 11221 reflections
a = 4.8462 (10) Åθ = 3.3–27.5°
b = 7.8042 (16) ŵ = 0.07 mm1
c = 30.996 (6) ÅT = 293 K
V = 1172.3 (4) Å3Block, colorless
Z = 40.28 × 0.25 × 0.23 mm
F(000) = 416
Data collection top
Rigaku MM007-HF CCD (Saturn 724+)
diffractometer
1626 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.078
ω scans at fixed χ = 45°θmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 65
Tmin = 0.982, Tmax = 0.985k = 1010
11150 measured reflectionsl = 4039
2673 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.081H-atom parameters constrained
wR(F2) = 0.168 w = 1/[σ2(Fo2) + (0.0612P)2 + 0.1143P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2673 reflectionsΔρmax = 0.12 e Å3
131 parametersΔρmin = 0.13 e Å3
0 restraintsAbsolute structure: Flack x determined using 411 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.5 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms were geometrically fixed and refined in riding mode with C—H = 0.93–0.97 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2549 (8)0.2228 (5)0.24165 (11)0.0573 (9)
C20.1217 (9)0.2873 (6)0.28200 (12)0.0719 (12)
H2A0.16940.21360.30570.108*
H2B0.07500.28830.27840.108*
H2C0.18520.40140.28790.108*
C30.1343 (8)0.2873 (5)0.20018 (11)0.0595 (10)
H3A0.12670.41140.20130.071*
H3B0.05370.24560.19780.071*
C40.2930 (8)0.2343 (5)0.15972 (11)0.0644 (11)
H4A0.48280.27240.16230.077*
H4B0.29400.11030.15760.077*
C50.1684 (7)0.3087 (5)0.11887 (11)0.0503 (9)
C60.2388 (7)0.4738 (5)0.10572 (11)0.0556 (10)
C70.1185 (8)0.5412 (5)0.06896 (11)0.0594 (10)
H70.16810.65100.06030.071*
C80.0712 (8)0.4524 (5)0.04478 (11)0.0591 (10)
C90.1382 (8)0.2888 (5)0.05782 (12)0.0604 (10)
H90.26380.22570.04160.073*
C100.0231 (8)0.2157 (5)0.09455 (11)0.0565 (10)
C110.4462 (9)0.5809 (6)0.13046 (14)0.0804 (13)
H11A0.44810.69530.11910.121*
H11B0.62640.53110.12760.121*
H11C0.39540.58410.16040.121*
C120.2043 (10)0.5318 (6)0.00512 (13)0.0871 (15)
H12A0.11280.49080.02030.131*
H12B0.18840.65420.00660.131*
H12C0.39570.50030.00410.131*
C130.1044 (11)0.0326 (6)0.10584 (15)0.0824 (14)
H13A0.05220.04140.10230.124*
H13B0.25060.00430.08710.124*
H13C0.16620.02810.13530.124*
O10.4465 (7)0.1257 (4)0.24275 (10)0.0920 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.058 (2)0.057 (2)0.057 (2)0.000 (2)0.010 (2)0.0008 (19)
C20.081 (3)0.081 (3)0.053 (2)0.002 (3)0.005 (2)0.007 (2)
C30.056 (2)0.070 (2)0.052 (2)0.018 (2)0.0019 (18)0.0011 (19)
C40.059 (2)0.078 (3)0.056 (2)0.017 (2)0.002 (2)0.000 (2)
C50.0426 (18)0.062 (2)0.0466 (18)0.0125 (18)0.0052 (17)0.0037 (17)
C60.0446 (19)0.068 (3)0.054 (2)0.0000 (19)0.0102 (17)0.0121 (19)
C70.062 (2)0.055 (2)0.062 (2)0.001 (2)0.013 (2)0.0027 (19)
C80.062 (2)0.067 (3)0.0481 (19)0.007 (2)0.0015 (18)0.0006 (19)
C90.066 (2)0.062 (2)0.053 (2)0.003 (2)0.0032 (19)0.0114 (19)
C100.062 (2)0.054 (2)0.054 (2)0.005 (2)0.012 (2)0.0034 (18)
C110.063 (2)0.095 (3)0.082 (3)0.017 (3)0.001 (2)0.014 (2)
C120.099 (3)0.097 (3)0.066 (3)0.007 (3)0.009 (3)0.018 (3)
C130.103 (3)0.061 (3)0.083 (3)0.004 (3)0.003 (3)0.002 (2)
O10.089 (2)0.105 (2)0.081 (2)0.048 (2)0.0164 (18)0.0056 (17)
Geometric parameters (Å, º) top
C1—O11.199 (4)C7—C81.374 (5)
C1—C21.495 (5)C7—H70.9300
C1—C31.499 (5)C8—C91.378 (5)
C2—H2A0.9600C8—C121.520 (5)
C2—H2B0.9600C9—C101.390 (5)
C2—H2C0.9600C9—H90.9300
C3—C41.528 (5)C10—C131.523 (6)
C3—H3A0.9700C11—H11A0.9600
C3—H3B0.9700C11—H11B0.9600
C4—C51.518 (5)C11—H11C0.9600
C4—H4A0.9700C12—H12A0.9600
C4—H4B0.9700C12—H12B0.9600
C5—C61.394 (5)C12—H12C0.9600
C5—C101.399 (5)C13—H13A0.9600
C6—C71.384 (5)C13—H13B0.9600
C6—C111.515 (5)C13—H13C0.9600
O1—C1—C2121.6 (3)C6—C7—H7118.7
O1—C1—C3122.6 (3)C7—C8—C9117.7 (4)
C2—C1—C3115.9 (3)C7—C8—C12121.3 (4)
C1—C2—H2A109.5C9—C8—C12121.0 (4)
C1—C2—H2B109.5C8—C9—C10121.7 (4)
H2A—C2—H2B109.5C8—C9—H9119.1
C1—C2—H2C109.5C10—C9—H9119.1
H2A—C2—H2C109.5C9—C10—C5119.6 (3)
H2B—C2—H2C109.5C9—C10—C13118.0 (4)
C1—C3—C4114.6 (3)C5—C10—C13122.3 (4)
C1—C3—H3A108.6C6—C11—H11A109.5
C4—C3—H3A108.6C6—C11—H11B109.5
C1—C3—H3B108.6H11A—C11—H11B109.5
C4—C3—H3B108.6C6—C11—H11C109.5
H3A—C3—H3B107.6H11A—C11—H11C109.5
C5—C4—C3112.4 (3)H11B—C11—H11C109.5
C5—C4—H4A109.1C8—C12—H12A109.5
C3—C4—H4A109.1C8—C12—H12B109.5
C5—C4—H4B109.1H12A—C12—H12B109.5
C3—C4—H4B109.1C8—C12—H12C109.5
H4A—C4—H4B107.9H12A—C12—H12C109.5
C6—C5—C10119.0 (3)H12B—C12—H12C109.5
C6—C5—C4120.0 (3)C10—C13—H13A109.5
C10—C5—C4121.0 (3)C10—C13—H13B109.5
C7—C6—C5119.3 (4)H13A—C13—H13B109.5
C7—C6—C11119.1 (4)C10—C13—H13C109.5
C5—C6—C11121.6 (4)H13A—C13—H13C109.5
C8—C7—C6122.7 (4)H13B—C13—H13C109.5
C8—C7—H7118.7
O1—C1—C3—C46.0 (6)C6—C7—C8—C91.1 (5)
C2—C1—C3—C4173.9 (4)C6—C7—C8—C12178.6 (4)
C1—C3—C4—C5177.8 (3)C7—C8—C9—C101.1 (5)
C3—C4—C5—C684.4 (4)C12—C8—C9—C10178.5 (4)
C3—C4—C5—C1093.8 (4)C8—C9—C10—C50.8 (5)
C10—C5—C6—C70.2 (5)C8—C9—C10—C13178.6 (4)
C4—C5—C6—C7178.5 (3)C6—C5—C10—C90.3 (5)
C10—C5—C6—C11179.6 (3)C4—C5—C10—C9178.6 (3)
C4—C5—C6—C112.1 (5)C6—C5—C10—C13178.0 (3)
C5—C6—C7—C80.6 (5)C4—C5—C10—C133.7 (5)
C11—C6—C7—C8180.0 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the benzene ring.
D—H···AD—HH···AD···AD—H···A
C11—H11B···Cg1i0.962.763.642 (5)154
Symmetry code: (i) x+1, y, z.
 

Funding information

Funding for this research was provided by: National Natural Science Foundation of China (award No. 21161023); Natural Science Foundation of Yunnan Province, China (award No. 2009CD048).

References

First citationBray, D. J., Jolliffe, K. A., Lindoy, L. F. & McMurtrie, J. C. (2007). Tetrahedron, 63, 1953–1958.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, X.-Y., Yang, X.-P. & Holliday, B. J. (2010). Inorg. Chem. 49, 2583–2585.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHauser, C. R., Swamer, F. W. & Ringler, B. I. (1948). J. Am. Chem. Soc. 70, 4023–4026.  CrossRef PubMed CAS Web of Science Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPearson, R. G. & Mayerle, E. A. (1951). J. Am. Chem. Soc. 73, 926–930.  CrossRef CAS Web of Science Google Scholar
First citationRigaku/MSC (2006). CrystalStructure. Rigaku Americas, The Woodlands.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds