metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis[N-benzyl-N-(2-phenyl­eth­yl)di­thio­carbamato-κ2S,S′](1,10-phenanthroline-κ2N,N′)zinc(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Annamalai University, Annamalainagar, Chidambaram 608 002, India, bDepartment of Studies in Physics, University of Mysore, Mysore 570 006, India, and cPG & Research Department of Physics, Government Arts College, Melur 625 106, India
*Correspondence e-mail: rbaskaran54@gmail.com

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 7 May 2017; accepted 17 May 2017; online 26 May 2017)

In the title compound, [Zn(C16H16NS2)2(C12H8N2)], the ZnII atom exists within an N2S4 donor set that defines a distorted octa­hedral geometry; weak intra­molecular C—H⋯S hydrogen bonds are noted. In the crystal, mol­ecules are linked via weak C—H⋯π inter­actions, forming C(11) chains propagating along [001].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Di­thio­carbamates are long known to be versatile ligands (Coucouvanis, 1979[Coucouvanis, D. (1979). Prog. Inorg. Chem. 26, 301-469.]; Hogarth, 2005[Hogarth, G. (2005). Prog. Inorg. Chem. 53, 71-561.]) due to their binding capacity to metal atoms, and they can also be used as chemotherapeutics, pesticides and fungicides (Hulanicki, 1967[Hulanicki, A. (1967). Talanta, 14, 1371-1392.]; Ivanov et al., 1999[Ivanov, A. V., Mitrofanova, V. I., Kritikos, M. & Antzutkin, O. N. (1999). Polyhedron, 18, 2069-2078.]). Di­thio­carbamates are the most frequently used bidentate sulfur ligands. In recent years, zinc di­thio­carbamates have continued to attract attention on account of their industrial applications (Jones & Jones, 1983[Jones, M. M. & Jones, S. G. (1983). Inorg. Chim. Acta, 79, 288-289.]). The affinity of zinc towards sulfur-containing ligands leads to many structurally novel complexes (Tiekink, 2003[Tiekink, E. R. T. (2003). CrystEngComm, 5, 101-113.]). Metal di­thio­carbamate complexes and their nitro­gen-donor adducts are useful precursors for the synthesis of metal–sulfide nanoparticles (Srinivasan & Thirumaran, 2012[Srinivasan, N. & Thirumaran, S. (2012). Superlattice Microstruct. 51, 912-920.]; Yan et al., 1999[Yan, P., Xie, Y., Qian, Y. & Liu, X. (1999). Chem. Commun. pp. 1293-1294.]). In view of the above importance of di­thio­carbamate derivatives, we have undertaken the single-crystal X-ray diffraction study of the title compound, and the results are presented herein.

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The Zn—S bond lengths are in good agreement with other zinc di­thio­carbamate complexes (Kant et al., 2012[Kant, R., Gupta, V. K., Kapoor, K., Valarmathi, P. & Thirumaran, S. (2012). Acta Cryst. E68, m12-m13.]; Ivanov et al., 2006[Ivanov, A. V., Gerasimenko, A. V., Konzelko, A. A., Ivanov, M. A., Antzutkin, O. N. & Forsling, W. (2006). Inorg. Chim. Acta, 359, 3855-3864.]). The short thio­uriede C—N bond lengths indicate that these have significant double-bond character. Similarly, the C—S distances lie between single- and double-bond lengths and prove that these bonds to have partial double-bond character. The zinc metal ion exists within an N2S4 donor set that defines a distorted octa­hedral geometry. The distortion is due in part to the acute bond angles subtended at zinc by the chelating ligands.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.

The mol­ecular structure maybe influenced by weak intra­molecular C—H⋯S hydrogen bonds (Table 1[link]). In the crystal packing, C—H⋯π inter­actions link the mol­ecules into C(11) chains propagating along [001]; see Fig. 2[link] and Table 1[link]. In addition to this, inter­molecular ππ inter­actions are also observed between the centroid of the rings (N4/C33–C36/C44) and (C36–C39/C43–C44) at (−x, −y, 1 − z) with a centroid–centroid distance of 3.766 (2) Å.

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the N1/C33–C36/C44 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯S1 0.97 2.63 3.046 (4) 106
C9—H9B⋯S2 0.97 2.59 3.016 (4) 107
C18—H18A⋯S4 0.97 2.65 3.000 (4) 102
C26—H26B⋯S3 0.97 2.53 3.060 (4) 115
C12—H12⋯Cgi 0.93 2.89 3.777 (5) 160
Symmetry code: (i) [x-{\script{3\over 2}}, -y-{\script{1\over 2}}, z-{\script{3\over 2}}].
[Figure 2]
Figure 2
The crystal packing of the title compound. Weak C—H⋯π inter­actions are shown as dashed lines (see Table 2[link]). For clarity, H atoms not involved in these inter­actions have been omitted.

Synthesis and crystallization

The title compound was prepared according to the literature procedure (Rani & Thirumaran, 2013[Rani, P. J. & Thirumaran, S. (2013). Eur. J. Med. Chem. 62, 139-147.]). Single crystals were obtained by slow evaporation of di­chloro­methane and ethyl acetate (2:1) solution of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The maximum and minimum residual electron density peaks of 1.11 and 0.39 e Å−3, respectively, are located 0.03 and 0.83 Å from the Zn1 atom.

Table 2
Experimental details

Crystal data
Chemical formula [Zn(C16H16NS2)2(C12H8N2)]
Mr 818.41
Crystal system, space group Monoclinic, P21/n
Temperature (K) 298
a, b, c (Å) 16.076 (3), 14.572 (2), 17.151 (2)
β (°) 96.629 (8)
V3) 3990.9 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.86
Crystal size (mm) 0.24 × 0.22 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.84, 0.85
No. of measured, independent and observed [I > 2σ(I)] reflections 18230, 9051, 6001
Rint 0.044
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.181, 1.04
No. of reflections 9051
No. of parameters 478
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.11, −0.39
Computer programs: APEX2, SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2/SAINT (Bruker, 2004); data reduction: SAINT/XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Bis[N-benzyl-N-(2-phenylethyl)dithiocarbamato-κ2S,S'](1,10-phenanthrolineκ2-N,N')zinc(II) top
Crystal data top
[Zn(C16H16NS2)2(C12H8N2)]F(000) = 1704
Mr = 818.41Dx = 1.362 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 16.076 (3) ÅCell parameters from 12234 reflections
b = 14.572 (2) Åθ = 3.3–26.4°
c = 17.151 (2) ŵ = 0.86 mm1
β = 96.629 (8)°T = 298 K
V = 3990.9 (10) Å3Block, brown
Z = 40.24 × 0.22 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6001 reflections with I > 2σ(I)
Radiation source: Sealed tubeRint = 0.044
ω and φ scanθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 2018
Tmin = 0.84, Tmax = 0.85k = 1813
18230 measured reflectionsl = 1222
9051 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.181 w = 1/[σ2(Fo2) + (0.0923P)2 + 1.0518P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
9051 reflectionsΔρmax = 1.11 e Å3
478 parametersΔρmin = 0.39 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.44340 (2)0.78266 (2)0.11581 (2)0.05327 (14)
S10.60074 (5)0.76988 (6)0.15144 (5)0.0606 (2)
S20.47447 (5)0.77993 (6)0.26228 (5)0.0595 (2)
S30.42542 (6)0.95155 (6)0.09034 (6)0.0682 (3)
S40.28729 (6)0.81866 (6)0.08990 (5)0.0601 (2)
N10.63881 (16)0.77183 (19)0.30803 (16)0.0554 (6)
N20.26299 (18)0.99571 (19)0.05570 (16)0.0577 (7)
N30.45893 (16)0.7483 (2)0.00687 (16)0.0556 (6)
N40.41053 (16)0.63575 (16)0.10380 (14)0.0491 (6)
C10.57767 (19)0.7727 (2)0.2472 (2)0.0520 (7)
C20.7285 (2)0.7759 (2)0.2971 (2)0.0591 (8)
H2A0.75800.81010.34030.071*
H2B0.73450.80920.24910.071*
C30.76887 (18)0.6826 (2)0.29289 (19)0.0534 (7)
C40.7812 (2)0.6460 (3)0.2216 (2)0.0738 (10)
H40.76270.67770.17590.089*
C50.8207 (3)0.5627 (4)0.2169 (3)0.0990 (15)
H50.82860.53880.16800.119*
C60.8485 (3)0.5147 (3)0.2834 (3)0.0891 (13)
H60.87570.45870.27980.107*
C70.8362 (3)0.5492 (3)0.3547 (3)0.0843 (12)
H70.85420.51630.39990.101*
C80.7970 (2)0.6334 (3)0.3603 (2)0.0717 (10)
H80.78950.65700.40940.086*
C90.6197 (2)0.7765 (2)0.3904 (2)0.0579 (8)
H9A0.66100.74170.42390.070*
H9B0.56510.74980.39430.070*
C100.6205 (3)0.8758 (3)0.4175 (2)0.0709 (10)
H10A0.58210.91080.38120.085*
H10B0.67620.90070.41580.085*
C110.5962 (2)0.8882 (2)0.5000 (2)0.0620 (8)
C120.6528 (3)0.9198 (3)0.5598 (2)0.0834 (12)
H120.70850.92800.55160.100*
C130.6276 (4)0.9396 (4)0.6319 (3)0.1032 (17)
H130.66610.96290.67160.124*
C140.5475 (5)0.9255 (3)0.6458 (3)0.1020 (17)
H140.53100.93910.69470.122*
C150.4910 (4)0.8914 (4)0.5876 (4)0.1061 (17)
H150.43610.88050.59720.127*
C160.5147 (3)0.8730 (3)0.5151 (3)0.0905 (13)
H160.47560.85020.47570.109*
C170.3196 (2)0.9295 (2)0.07673 (19)0.0549 (7)
C180.1722 (2)0.9789 (3)0.0535 (2)0.0612 (8)
H18A0.15880.91970.02940.073*
H18B0.14191.02550.02130.073*
C190.1441 (2)0.9805 (3)0.1350 (2)0.0713 (10)
H19A0.17620.93560.16760.086*
H19B0.15611.04050.15810.086*
C200.0524 (2)0.9604 (3)0.13529 (19)0.0609 (8)
C210.0215 (3)0.8714 (3)0.1240 (2)0.0761 (11)
H210.05740.82390.11400.091*
C220.0627 (3)0.8534 (4)0.1278 (3)0.0906 (14)
H220.08310.79410.11930.109*
C230.1160 (3)0.9227 (5)0.1439 (2)0.0968 (16)
H230.17200.91000.14800.116*
C240.0866 (3)1.0097 (4)0.1540 (2)0.0877 (14)
H240.12291.05680.16400.105*
C250.0040 (2)1.0288 (3)0.1495 (2)0.0709 (10)
H250.01471.08890.15610.085*
C260.2877 (2)1.0887 (2)0.0327 (2)0.0646 (9)
H26A0.25971.10240.01910.078*
H26B0.34761.08930.02950.078*
C270.2670 (2)1.1634 (2)0.0890 (2)0.0592 (8)
C280.2173 (2)1.2358 (3)0.0622 (3)0.0720 (10)
H280.19621.23950.00940.086*
C290.1986 (3)1.3047 (3)0.1149 (3)0.0844 (12)
H290.16581.35460.09680.101*
C300.2283 (3)1.2984 (3)0.1924 (3)0.0787 (11)
H300.21471.34340.22730.094*
C310.2776 (3)1.2270 (3)0.2188 (3)0.0806 (12)
H310.29841.22370.27160.097*
C320.2970 (3)1.1591 (3)0.1679 (2)0.0747 (10)
H320.33051.11010.18670.090*
C330.3880 (2)0.5807 (2)0.1593 (2)0.0621 (8)
H330.38740.60390.20980.075*
C340.3651 (2)0.4894 (3)0.1449 (3)0.0725 (10)
H340.35090.45240.18550.087*
C350.3637 (2)0.4550 (3)0.0712 (3)0.0726 (10)
H350.34770.39440.06110.087*
C360.3863 (2)0.5104 (2)0.0104 (2)0.0625 (9)
C370.3880 (2)0.4803 (3)0.0691 (3)0.0794 (12)
H370.37160.42070.08300.095*
C380.4129 (3)0.5371 (3)0.1234 (3)0.0816 (12)
H380.41300.51570.17450.098*
C390.4390 (2)0.6287 (3)0.1058 (2)0.0690 (10)
C400.4692 (3)0.6887 (4)0.1596 (2)0.0883 (14)
H400.47310.66960.21070.106*
C410.4930 (3)0.7753 (4)0.1366 (3)0.0898 (15)
H410.51350.81550.17200.108*
C420.4863 (2)0.8031 (3)0.0601 (2)0.0728 (10)
H420.50160.86280.04560.087*
C430.43604 (18)0.6620 (2)0.02923 (18)0.0525 (7)
C440.40974 (17)0.6017 (2)0.02984 (18)0.0486 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0580 (2)0.0468 (2)0.0536 (2)0.00002 (15)0.00018 (17)0.00421 (16)
S10.0571 (5)0.0653 (5)0.0581 (5)0.0045 (4)0.0014 (4)0.0148 (4)
S20.0494 (4)0.0664 (5)0.0614 (5)0.0048 (4)0.0010 (4)0.0096 (4)
S30.0610 (5)0.0534 (5)0.0898 (7)0.0001 (4)0.0067 (5)0.0041 (5)
S40.0629 (5)0.0519 (5)0.0657 (5)0.0007 (4)0.0082 (4)0.0078 (4)
N10.0489 (14)0.0607 (17)0.0551 (15)0.0023 (12)0.0001 (12)0.0111 (12)
N20.0642 (16)0.0549 (15)0.0533 (15)0.0067 (13)0.0033 (12)0.0009 (12)
N30.0543 (14)0.0599 (16)0.0518 (15)0.0003 (13)0.0029 (12)0.0055 (13)
N40.0557 (14)0.0428 (13)0.0490 (14)0.0008 (11)0.0073 (11)0.0019 (11)
C10.0513 (16)0.0419 (16)0.0604 (19)0.0001 (12)0.0037 (14)0.0103 (13)
C20.0492 (16)0.059 (2)0.066 (2)0.0035 (14)0.0030 (15)0.0088 (16)
C30.0407 (14)0.0590 (19)0.0592 (18)0.0035 (13)0.0008 (13)0.0049 (15)
C40.080 (2)0.079 (3)0.062 (2)0.018 (2)0.0058 (18)0.0100 (19)
C50.107 (3)0.093 (3)0.097 (3)0.033 (3)0.011 (3)0.028 (3)
C60.078 (3)0.058 (2)0.131 (4)0.011 (2)0.008 (3)0.004 (3)
C70.070 (2)0.086 (3)0.097 (3)0.010 (2)0.011 (2)0.034 (3)
C80.060 (2)0.089 (3)0.065 (2)0.0057 (19)0.0032 (17)0.003 (2)
C90.0608 (18)0.0516 (18)0.0596 (19)0.0034 (14)0.0007 (15)0.0028 (15)
C100.089 (3)0.059 (2)0.064 (2)0.0055 (19)0.0059 (19)0.0022 (17)
C110.074 (2)0.0536 (18)0.0574 (19)0.0016 (16)0.0024 (16)0.0027 (15)
C120.086 (3)0.099 (3)0.062 (2)0.015 (2)0.005 (2)0.008 (2)
C130.153 (5)0.100 (4)0.053 (2)0.022 (3)0.003 (3)0.005 (2)
C140.165 (5)0.077 (3)0.072 (3)0.016 (3)0.050 (3)0.000 (2)
C150.103 (4)0.104 (4)0.120 (4)0.006 (3)0.051 (4)0.001 (3)
C160.078 (3)0.098 (3)0.096 (3)0.004 (2)0.011 (2)0.016 (3)
C170.0644 (18)0.0510 (17)0.0501 (17)0.0059 (15)0.0098 (14)0.0010 (14)
C180.0623 (19)0.065 (2)0.0545 (19)0.0067 (16)0.0006 (15)0.0010 (16)
C190.074 (2)0.085 (3)0.054 (2)0.005 (2)0.0047 (17)0.0108 (18)
C200.0639 (19)0.068 (2)0.0490 (17)0.0059 (17)0.0014 (14)0.0074 (16)
C210.083 (3)0.073 (3)0.071 (2)0.005 (2)0.002 (2)0.003 (2)
C220.091 (3)0.101 (3)0.075 (3)0.026 (3)0.009 (2)0.010 (2)
C230.066 (2)0.167 (6)0.055 (2)0.001 (3)0.0039 (19)0.016 (3)
C240.074 (3)0.123 (4)0.063 (2)0.030 (3)0.004 (2)0.005 (3)
C250.073 (2)0.074 (2)0.064 (2)0.0131 (19)0.0002 (18)0.0025 (19)
C260.081 (2)0.0561 (19)0.0562 (19)0.0052 (17)0.0066 (17)0.0082 (16)
C270.0578 (18)0.0548 (19)0.064 (2)0.0002 (15)0.0053 (15)0.0006 (16)
C280.073 (2)0.060 (2)0.080 (3)0.0028 (18)0.0090 (19)0.0021 (19)
C290.074 (2)0.057 (2)0.121 (4)0.0095 (19)0.008 (3)0.010 (2)
C300.075 (2)0.070 (3)0.092 (3)0.012 (2)0.018 (2)0.023 (2)
C310.088 (3)0.082 (3)0.073 (3)0.010 (2)0.012 (2)0.020 (2)
C320.086 (3)0.072 (2)0.064 (2)0.010 (2)0.0000 (19)0.0037 (19)
C330.071 (2)0.0561 (19)0.0590 (19)0.0010 (16)0.0060 (16)0.0014 (16)
C340.072 (2)0.055 (2)0.091 (3)0.0109 (17)0.010 (2)0.010 (2)
C350.062 (2)0.0501 (19)0.104 (3)0.0102 (16)0.000 (2)0.010 (2)
C360.0527 (17)0.0552 (19)0.077 (2)0.0012 (15)0.0032 (16)0.0199 (18)
C370.068 (2)0.077 (3)0.089 (3)0.006 (2)0.008 (2)0.044 (2)
C380.079 (3)0.100 (3)0.063 (2)0.015 (2)0.004 (2)0.037 (2)
C390.0568 (19)0.098 (3)0.0502 (19)0.0176 (19)0.0021 (15)0.0117 (19)
C400.077 (3)0.139 (4)0.049 (2)0.025 (3)0.0095 (19)0.001 (3)
C410.078 (3)0.129 (5)0.065 (3)0.008 (3)0.019 (2)0.029 (3)
C420.065 (2)0.082 (3)0.072 (2)0.0064 (19)0.0103 (18)0.020 (2)
C430.0453 (15)0.0644 (19)0.0468 (16)0.0036 (14)0.0005 (12)0.0076 (15)
C440.0427 (14)0.0475 (16)0.0536 (17)0.0002 (12)0.0029 (12)0.0077 (13)
Geometric parameters (Å, º) top
Zn1—N32.205 (3)C18—C191.519 (5)
Zn1—N42.209 (2)C18—H18A0.9700
Zn1—S22.5043 (10)C18—H18B0.9700
Zn1—S32.5103 (11)C19—C201.504 (5)
Zn1—S12.5394 (10)C19—H19A0.9700
Zn1—S42.5522 (10)C19—H19B0.9700
S1—C11.725 (3)C20—C251.387 (5)
S2—C11.712 (3)C20—C211.395 (6)
S3—C171.721 (4)C21—C221.386 (6)
S4—C171.719 (3)C21—H210.9300
N1—C11.349 (4)C22—C231.373 (7)
N1—C21.476 (4)C22—H220.9300
N1—C91.482 (4)C23—C241.358 (7)
N2—C171.347 (4)C23—H230.9300
N2—C181.475 (4)C24—C251.366 (6)
N2—C261.478 (4)C24—H240.9300
N3—C421.326 (4)C25—H250.9300
N3—C431.353 (4)C26—C271.518 (5)
N4—C331.327 (4)C26—H26A0.9700
N4—C441.361 (4)C26—H26B0.9700
C2—C31.512 (5)C27—C281.371 (5)
C2—H2A0.9700C27—C321.383 (5)
C2—H2B0.9700C28—C291.407 (6)
C3—C41.369 (5)C28—H280.9300
C3—C81.391 (5)C29—C301.363 (6)
C4—C51.377 (6)C29—H290.9300
C4—H40.9300C30—C311.354 (6)
C5—C61.369 (7)C30—H300.9300
C5—H50.9300C31—C321.380 (5)
C6—C71.357 (6)C31—H310.9300
C6—H60.9300C32—H320.9300
C7—C81.387 (6)C33—C341.394 (5)
C7—H70.9300C33—H330.9300
C8—H80.9300C34—C351.359 (6)
C9—C101.519 (5)C34—H340.9300
C9—H9A0.9700C35—C361.399 (5)
C9—H9B0.9700C35—H350.9300
C10—C111.520 (5)C36—C441.413 (4)
C10—H10A0.9700C36—C371.435 (5)
C10—H10B0.9700C37—C381.342 (6)
C11—C121.371 (5)C37—H370.9300
C11—C161.382 (6)C38—C391.421 (6)
C12—C131.375 (6)C38—H380.9300
C12—H120.9300C39—C401.398 (6)
C13—C141.352 (8)C39—C431.407 (4)
C13—H130.9300C40—C411.363 (7)
C14—C151.364 (8)C40—H400.9300
C14—H140.9300C41—C421.389 (6)
C15—C161.368 (7)C41—H410.9300
C15—H150.9300C42—H420.9300
C16—H160.9300C43—C441.441 (5)
N3—Zn1—N475.10 (10)N2—C18—C19111.9 (3)
N3—Zn1—S2157.24 (8)N2—C18—H18A109.2
N4—Zn1—S295.51 (7)C19—C18—H18A109.2
N3—Zn1—S394.60 (8)N2—C18—H18B109.2
N4—Zn1—S3155.83 (7)C19—C18—H18B109.2
S2—Zn1—S3101.29 (3)H18A—C18—H18B107.9
N3—Zn1—S189.63 (7)C20—C19—C18113.4 (3)
N4—Zn1—S199.92 (7)C20—C19—H19A108.9
S2—Zn1—S171.32 (3)C18—C19—H19A108.9
S3—Zn1—S1101.84 (3)C20—C19—H19B108.9
N3—Zn1—S495.62 (7)C18—C19—H19B108.9
N4—Zn1—S487.89 (7)H19A—C19—H19B107.7
S2—Zn1—S4104.85 (3)C25—C20—C21117.5 (4)
S3—Zn1—S471.16 (3)C25—C20—C19121.5 (4)
S1—Zn1—S4171.52 (3)C21—C20—C19121.0 (3)
C1—S1—Zn184.82 (11)C22—C21—C20120.2 (4)
C1—S2—Zn186.19 (12)C22—C21—H21119.9
C17—S3—Zn186.12 (11)C20—C21—H21119.9
C17—S4—Zn184.84 (12)C23—C22—C21120.4 (5)
C1—N1—C2122.4 (3)C23—C22—H22119.8
C1—N1—C9121.7 (3)C21—C22—H22119.8
C2—N1—C9115.6 (3)C24—C23—C22119.7 (4)
C17—N2—C18121.6 (3)C24—C23—H23120.1
C17—N2—C26122.3 (3)C22—C23—H23120.1
C18—N2—C26116.2 (3)C23—C24—C25120.6 (4)
C42—N3—C43117.7 (3)C23—C24—H24119.7
C42—N3—Zn1127.1 (3)C25—C24—H24119.7
C43—N3—Zn1115.1 (2)C24—C25—C20121.5 (4)
C33—N4—C44118.3 (3)C24—C25—H25119.2
C33—N4—Zn1126.9 (2)C20—C25—H25119.2
C44—N4—Zn1114.61 (19)N2—C26—C27113.7 (3)
N1—C1—S2121.0 (3)N2—C26—H26A108.8
N1—C1—S1121.3 (2)C27—C26—H26A108.8
S2—C1—S1117.67 (19)N2—C26—H26B108.8
N1—C2—C3113.6 (3)C27—C26—H26B108.8
N1—C2—H2A108.8H26A—C26—H26B107.7
C3—C2—H2A108.8C28—C27—C32119.1 (4)
N1—C2—H2B108.8C28—C27—C26120.0 (3)
C3—C2—H2B108.8C32—C27—C26120.8 (3)
H2A—C2—H2B107.7C27—C28—C29119.5 (4)
C4—C3—C8118.3 (3)C27—C28—H28120.2
C4—C3—C2120.1 (3)C29—C28—H28120.2
C8—C3—C2121.6 (3)C30—C29—C28120.2 (4)
C3—C4—C5120.8 (4)C30—C29—H29119.9
C3—C4—H4119.6C28—C29—H29119.9
C5—C4—H4119.6C31—C30—C29120.2 (4)
C6—C5—C4120.6 (4)C31—C30—H30119.9
C6—C5—H5119.7C29—C30—H30119.9
C4—C5—H5119.7C30—C31—C32120.4 (4)
C7—C6—C5119.6 (4)C30—C31—H31119.8
C7—C6—H6120.2C32—C31—H31119.8
C5—C6—H6120.2C31—C32—C27120.5 (4)
C6—C7—C8120.4 (4)C31—C32—H32119.7
C6—C7—H7119.8C27—C32—H32119.7
C8—C7—H7119.8N4—C33—C34122.5 (3)
C7—C8—C3120.3 (4)N4—C33—H33118.7
C7—C8—H8119.8C34—C33—H33118.7
C3—C8—H8119.8C35—C34—C33119.5 (4)
N1—C9—C10109.9 (3)C35—C34—H34120.2
N1—C9—H9A109.7C33—C34—H34120.2
C10—C9—H9A109.7C34—C35—C36120.2 (3)
N1—C9—H9B109.7C34—C35—H35119.9
C10—C9—H9B109.7C36—C35—H35119.9
H9A—C9—H9B108.2C35—C36—C44116.9 (3)
C9—C10—C11113.8 (3)C35—C36—C37124.5 (4)
C9—C10—H10A108.8C44—C36—C37118.6 (4)
C11—C10—H10A108.8C38—C37—C36120.7 (4)
C9—C10—H10B108.8C38—C37—H37119.6
C11—C10—H10B108.8C36—C37—H37119.6
H10A—C10—H10B107.7C37—C38—C39122.4 (4)
C12—C11—C16118.3 (4)C37—C38—H38118.8
C12—C11—C10121.1 (4)C39—C38—H38118.8
C16—C11—C10120.5 (4)C40—C39—C43116.8 (4)
C11—C12—C13120.3 (5)C40—C39—C38124.4 (4)
C11—C12—H12119.8C43—C39—C38118.8 (4)
C13—C12—H12119.8C41—C40—C39119.8 (4)
C14—C13—C12120.8 (5)C41—C40—H40120.1
C14—C13—H13119.6C39—C40—H40120.1
C12—C13—H13119.6C40—C41—C42119.5 (4)
C13—C14—C15119.6 (4)C40—C41—H41120.2
C13—C14—H14120.2C42—C41—H41120.2
C15—C14—H14120.2N3—C42—C41122.9 (4)
C14—C15—C16120.3 (5)N3—C42—H42118.6
C14—C15—H15119.8C41—C42—H42118.6
C16—C15—H15119.8N3—C43—C39123.2 (3)
C15—C16—C11120.6 (5)N3—C43—C44117.4 (3)
C15—C16—H16119.7C39—C43—C44119.4 (3)
C11—C16—H16119.7N4—C44—C36122.5 (3)
N2—C17—S4120.2 (3)N4—C44—C43117.5 (3)
N2—C17—S3121.9 (3)C36—C44—C43120.0 (3)
S4—C17—S3117.83 (19)
C2—N1—C1—S2173.1 (2)C21—C20—C25—C241.4 (5)
C9—N1—C1—S20.4 (4)C19—C20—C25—C24176.4 (4)
C2—N1—C1—S15.0 (4)C17—N2—C26—C27114.4 (4)
C9—N1—C1—S1178.5 (2)C18—N2—C26—C2766.2 (4)
Zn1—S2—C1—N1177.3 (3)N2—C26—C27—C28122.9 (4)
Zn1—S2—C1—S10.82 (16)N2—C26—C27—C3256.6 (5)
Zn1—S1—C1—N1177.3 (3)C32—C27—C28—C290.6 (6)
Zn1—S1—C1—S20.81 (16)C26—C27—C28—C29180.0 (4)
C1—N1—C2—C392.6 (4)C27—C28—C29—C301.2 (6)
C9—N1—C2—C393.6 (3)C28—C29—C30—C311.5 (7)
N1—C2—C3—C4100.2 (4)C29—C30—C31—C321.1 (7)
N1—C2—C3—C882.0 (4)C30—C31—C32—C270.5 (6)
C8—C3—C4—C50.2 (6)C28—C27—C32—C310.2 (6)
C2—C3—C4—C5177.6 (4)C26—C27—C32—C31179.7 (4)
C3—C4—C5—C60.0 (7)C44—N4—C33—C341.1 (5)
C4—C5—C6—C70.7 (8)Zn1—N4—C33—C34177.3 (3)
C5—C6—C7—C81.1 (7)N4—C33—C34—C351.5 (6)
C6—C7—C8—C30.9 (6)C33—C34—C35—C360.9 (6)
C4—C3—C8—C70.2 (5)C34—C35—C36—C440.1 (5)
C2—C3—C8—C7178.0 (3)C34—C35—C36—C37179.1 (4)
C1—N1—C9—C1092.1 (4)C35—C36—C37—C38177.9 (4)
C2—N1—C9—C1081.8 (4)C44—C36—C37—C381.3 (5)
N1—C9—C10—C11176.4 (3)C36—C37—C38—C390.3 (6)
C9—C10—C11—C12114.3 (4)C37—C38—C39—C40176.8 (4)
C9—C10—C11—C1669.7 (5)C37—C38—C39—C432.2 (6)
C16—C11—C12—C132.8 (7)C43—C39—C40—C410.9 (6)
C10—C11—C12—C13173.3 (4)C38—C39—C40—C41179.8 (4)
C11—C12—C13—C142.0 (8)C39—C40—C41—C420.4 (7)
C12—C13—C14—C150.0 (8)C43—N3—C42—C410.7 (5)
C13—C14—C15—C161.3 (9)Zn1—N3—C42—C41179.2 (3)
C14—C15—C16—C110.5 (8)C40—C41—C42—N31.3 (7)
C12—C11—C16—C151.5 (7)C42—N3—C43—C390.8 (5)
C10—C11—C16—C15174.6 (4)Zn1—N3—C43—C39177.9 (2)
C18—N2—C17—S48.2 (4)C42—N3—C43—C44177.5 (3)
C26—N2—C17—S4171.1 (2)Zn1—N3—C43—C443.8 (3)
C18—N2—C17—S3172.5 (2)C40—C39—C43—N31.5 (5)
C26—N2—C17—S38.3 (4)C38—C39—C43—N3179.5 (3)
Zn1—S4—C17—N2177.3 (3)C40—C39—C43—C44176.7 (3)
Zn1—S4—C17—S32.12 (17)C38—C39—C43—C442.3 (5)
Zn1—S3—C17—N2177.2 (3)C33—N4—C44—C360.3 (4)
Zn1—S3—C17—S42.15 (17)Zn1—N4—C44—C36176.9 (2)
C17—N2—C18—C1977.9 (4)C33—N4—C44—C43178.8 (3)
C26—N2—C18—C19102.8 (4)Zn1—N4—C44—C434.6 (3)
N2—C18—C19—C20178.0 (3)C35—C36—C44—N40.2 (5)
C18—C19—C20—C25107.5 (4)C37—C36—C44—N4179.5 (3)
C18—C19—C20—C2174.8 (5)C35—C36—C44—C43178.2 (3)
C25—C20—C21—C220.5 (6)C37—C36—C44—C431.1 (5)
C19—C20—C21—C22177.3 (4)N3—C43—C44—N40.5 (4)
C20—C21—C22—C231.2 (6)C39—C43—C44—N4177.8 (3)
C21—C22—C23—C242.0 (7)N3—C43—C44—C36179.1 (3)
C22—C23—C24—C251.1 (7)C39—C43—C44—C360.8 (4)
C23—C24—C25—C200.6 (6)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the N1/C33–C36/C44 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2B···S10.972.633.046 (4)106
C9—H9B···S20.972.593.016 (4)107
C18—H18A···S40.972.653.000 (4)102
C26—H26B···S30.972.533.060 (4)115
C12—H12···Cgi0.932.893.777 (5)160
Symmetry code: (i) x3/2, y1/2, z3/2.
 

References

First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoucouvanis, D. (1979). Prog. Inorg. Chem. 26, 301–469.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHogarth, G. (2005). Prog. Inorg. Chem. 53, 71–561.  Web of Science CrossRef CAS Google Scholar
First citationHulanicki, A. (1967). Talanta, 14, 1371–1392.  CrossRef PubMed CAS Web of Science Google Scholar
First citationIvanov, A. V., Gerasimenko, A. V., Konzelko, A. A., Ivanov, M. A., Antzutkin, O. N. & Forsling, W. (2006). Inorg. Chim. Acta, 359, 3855–3864.  Web of Science CSD CrossRef CAS Google Scholar
First citationIvanov, A. V., Mitrofanova, V. I., Kritikos, M. & Antzutkin, O. N. (1999). Polyhedron, 18, 2069–2078.  Web of Science CSD CrossRef CAS Google Scholar
First citationJones, M. M. & Jones, S. G. (1983). Inorg. Chim. Acta, 79, 288–289.  CrossRef Google Scholar
First citationKant, R., Gupta, V. K., Kapoor, K., Valarmathi, P. & Thirumaran, S. (2012). Acta Cryst. E68, m12–m13.  CSD CrossRef IUCr Journals Google Scholar
First citationRani, P. J. & Thirumaran, S. (2013). Eur. J. Med. Chem. 62, 139–147.  CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrinivasan, N. & Thirumaran, S. (2012). Superlattice Microstruct. 51, 912–920.  CrossRef CAS Google Scholar
First citationTiekink, E. R. T. (2003). CrystEngComm, 5, 101–113.  Web of Science CrossRef CAS Google Scholar
First citationYan, P., Xie, Y., Qian, Y. & Liu, X. (1999). Chem. Commun. pp. 1293–1294.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds