organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-Meth­­oxy-N-(1-methyl-1H-indazol-7-yl)benzene­sulfonamide hemihydrate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, Béni-Mellal, BP 523, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: l_bouissane@yahoo.com

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 15 April 2017; accepted 29 April 2017; online 5 May 2017)

The asymmetric unit of the title compound, 2C15H15N3O3S·H2O, comprises two crystallographically independent organic mol­ecules and one water mol­ecule, all in general positions. Each organic mol­ecule comprises an indazolyl system linked through a sulfonamide group to a meth­oxy­benzene ring. The most important difference between the two organic mol­ecules is the dihedral angle between the fused-ring system and the meth­oxy­benzene ring, which is 56.32 (7)° in one mol­ecule and 35.35 (8)° in the other. In the crystal, the organic and water mol­ecules are connected into supra­molecular chains along the c axis through O—H⋯N, O—H⋯O, N—H⋯O and N—-H⋯N hydrogen bonds; in addition, a ππ inter­action between pyrazolyl rings [inter-centroid separation = 3.7547 (12) Å] is noted.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Sulfonamides and their derivatives constitute an important class of therapeutic agents that exhibit a broad spectrum of pharmacological profiles, such as anti-bacterial, diuretic, hypoglycaemic, anti-thyroid, anti-viral, anti-inflammatory and anti-parasitic activities among others (Ranjith et al., 2014[Ranjith, P. K., Pakkath, R., Haridas, K. R. & Kumari, S. N. (2014). Eur. J. Med. Chem. 71, 354-365.]; Shah et al., 2013[Shoaib Ahmad Shah, S., Rivera, G. & Ashfaq, M. (2013). Mini Rev. Med. Chem. 13, 70-86.]; Scozzafava et al., 2013[Scozzafava, A., Carta, F. & Supuran, C. T. (2013). Expert Opin. Ther. Pat. 23, 203-213.]; Greig et al., 2013[Greig, I. R., Coste, E., Ralston, S. H. & van 't Hof, R. J. (2013). Bioorg. Med. Chem. Lett. 23, 816-820.]). In our previous work, we have found that indazoles bearing aryl­sulfonamide groups showed anti-proliferative activity against human (colon and prostate) and murine (leukaemia) cell lines (Abbassi et al., 2012[Abbassi, N., Chicha, H., Rakib, el M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240-249.], 2014[Abbassi, N., Rakib, E. M., Chicha, H., Bouissane, L., Hannioui, A., Aiello, C., Gangemi, R., Castagnola, P., Rosano, C. & Viale, M. (2014). Arch. Pharm. Chem. Life Sci. 347, 423-431.]; Bouissane, et al., 2006[Bouissane, L., El Kazzouli, S., Léonce, S., Pfeiffer, B., Rakib, M. E., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078-1088.]).

The asymmetric unit of the title compound contains two independent organic mol­ecules and one water mol­ecule, as shown in Fig. 1[link]. The fused five- and six-membered rings of each mol­ecule are almost coplanar, with the maximum deviation from the mean plane being 0.020 (2) Å for the C12 atom and 0.022 (2) Å for the C27 atom in the first and second mol­ecules, respectively. The dihedral angles between the indazolyl system and the meth­oxy­benzene ring are 56.32 (7) and 35.35 (8)° in the first and second mol­ecules, respectively.

[Figure 1]
Figure 1
Plot of the mol­ecules comprising the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

In the crystal, the organic mol­ecules are connected through the water mol­ecule by O7—H7A⋯N6, O7—H7B⋯O2, N1—HN1⋯O7 and N4—HN4⋯N3 hydrogen bonds (Table 1[link]), in addition to ππ inter­actions between pyrazole rings as shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯N6i 0.83 2.03 2.828 (2) 160
O7—H7B⋯O2ii 0.83 2.08 2.8831 (18) 162
N1—HN1⋯O7 0.86 1.92 2.7745 (18) 177
N4—HN4⋯N3 0.83 2.26 3.060 (2) 163
Symmetry codes: (i) x, y, z+1; (ii) -x+2, -y, -z+2.
[Figure 2]
Figure 2
Crystal packing for the title compound showing hydrogen bonds as blue dashed lines and ππ inter­actions between pyrazole rings as green dashed lines.

Synthesis and crystallization

A mixture of 1-methyl-7-nitro­indazole (1.22 mmol) and anhydrous SnCl2 (1.1 g, 6.1 mmol) in ethane­thiol (25 ml) was heated at 308 K for 4 h. After reduction, the starting material had been consumed and the solution was allowed to cool. The pH of the solution was made slightly basic (pH = 7–8) by addition of 5% aqueous potassium bicarbonate. Extraction with EtOAc followed. The organic phase was washed with brine and dried over magnesium sulfate. The solvent was removed to afford the amine, which was immediately dissolved in pyridine (5 ml) and then reacted with 4-meth­oxy­benzene­sulfonyl chloride (0.26 g, 1.25 mmol) at room temperature for 24 h. After the reaction mixture had been concentrated in vacuo, the resulting residue was purified by flash chromatography (elution was with EtOAc/hexane 1:9). The title compound was recrystallized from acetone solution, yield 62%; m.p. 439 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Three reflections, i.e. (010), (0[\overline{1}]1) and (001), were omitted from the final cycles of refinement owing to poor agreement.

Table 2
Experimental details

Crystal data
Chemical formula 2C15H15N3O3S·H2O
Mr 652.73
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 8.3013 (5), 13.1934 (8), 15.3583 (9)
α, β, γ (°) 103.241 (3), 105.470 (3), 93.046 (3)
V3) 1566.30 (16)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.23
Crystal size (mm) 0.33 × 0.26 × 0.22
 
Data collection
Diffractometer Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.663, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 52678, 8793, 6373
Rint 0.038
(sin θ/λ)max−1) 0.694
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.126, 1.01
No. of reflections 8793
No. of parameters 410
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.36, −0.27
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXTL2014/7 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL2014/7 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

4-Methoxy-N-(1-methyl-1H-indazol-7-yl)benzenesulfonamide hemihydrate top
Crystal data top
2C15H15N3O3S·H2OZ = 2
Mr = 652.73F(000) = 684
Triclinic, P1Dx = 1.384 Mg m3
a = 8.3013 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.1934 (8) ÅCell parameters from 8793 reflections
c = 15.3583 (9) Åθ = 2.4–29.6°
α = 103.241 (3)°µ = 0.23 mm1
β = 105.470 (3)°T = 296 K
γ = 93.046 (3)°Block, colourless
V = 1566.30 (16) Å30.33 × 0.26 × 0.22 mm
Data collection top
Bruker X8 APEX
diffractometer
8793 independent reflections
Radiation source: fine-focus sealed tube6373 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
φ and ω scansθmax = 29.6°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1111
Tmin = 0.663, Tmax = 0.746k = 1818
52678 measured reflectionsl = 2121
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0597P)2 + 0.3677P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
8793 reflectionsΔρmax = 0.36 e Å3
410 parametersΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7955 (3)0.5081 (2)1.36936 (15)0.0819 (7)
H1A0.77110.56701.41160.123*
H1B0.90310.48861.39780.123*
H1C0.71000.45001.35530.123*
C20.8330 (2)0.46149 (14)1.21830 (12)0.0519 (4)
C30.8606 (2)0.35988 (14)1.22437 (12)0.0523 (4)
H30.85500.33821.27710.063*
C40.8961 (2)0.29174 (13)1.15114 (11)0.0475 (4)
H40.91460.22361.15450.057*
C50.90435 (18)0.32425 (12)1.07256 (11)0.0413 (3)
C60.8740 (2)0.42508 (13)1.06623 (13)0.0506 (4)
H60.87710.44651.01300.061*
C70.8392 (2)0.49298 (14)1.13927 (14)0.0590 (4)
H70.81970.56081.13560.071*
C80.63751 (17)0.16629 (12)0.88692 (10)0.0384 (3)
C90.5267 (2)0.20653 (14)0.93452 (12)0.0490 (4)
H90.55700.21720.99910.059*
C100.3695 (2)0.23200 (16)0.88899 (13)0.0581 (5)
H100.29850.25910.92390.070*
C110.3193 (2)0.21774 (15)0.79473 (13)0.0555 (4)
H110.21600.23590.76490.067*
C120.42742 (19)0.17504 (14)0.74370 (11)0.0471 (4)
C130.58508 (17)0.14913 (11)0.78936 (10)0.0384 (3)
C140.4189 (2)0.14518 (17)0.64821 (12)0.0588 (5)
H140.32800.15260.60030.071*
C150.8160 (2)0.06416 (15)0.72874 (13)0.0546 (4)
H15A0.81910.02730.66770.082*
H15B0.82600.01650.76820.082*
H15C0.90760.11980.75500.082*
C160.6073 (3)0.5679 (2)0.86652 (16)0.0869 (7)
H16A0.55830.62690.89370.130*
H16B0.72300.57240.90180.130*
H16C0.54690.50420.86740.130*
C170.6649 (2)0.49176 (14)0.72376 (13)0.0549 (4)
C180.7408 (2)0.41260 (14)0.75749 (12)0.0543 (4)
H180.74820.40880.81810.065*
C190.8056 (2)0.33912 (14)0.70115 (11)0.0521 (4)
H190.85760.28610.72420.063*
C200.7939 (2)0.34356 (13)0.61088 (11)0.0470 (4)
C210.7174 (2)0.42338 (15)0.57673 (13)0.0586 (4)
H210.70930.42700.51600.070*
C220.6541 (3)0.49656 (16)0.63312 (15)0.0650 (5)
H220.60330.55010.61040.078*
C230.57109 (19)0.17150 (12)0.41223 (11)0.0419 (3)
C240.4319 (2)0.21437 (14)0.42935 (13)0.0530 (4)
H240.42680.23390.49060.064*
C250.2974 (2)0.22982 (16)0.35798 (17)0.0661 (5)
H250.20480.25800.37270.079*
C260.3001 (2)0.20434 (16)0.26802 (16)0.0675 (5)
H260.21190.21630.22100.081*
C270.4389 (2)0.15954 (14)0.24732 (12)0.0544 (4)
C280.57333 (19)0.14280 (12)0.31873 (11)0.0425 (3)
C290.4819 (3)0.11994 (18)0.16507 (13)0.0704 (6)
H290.41570.11990.10580.085*
C300.8443 (2)0.06187 (16)0.31512 (15)0.0652 (5)
H30A0.86620.00600.26900.098*
H30B0.84090.03720.36880.098*
H30C0.93210.11940.33310.098*
N10.79869 (15)0.14195 (10)0.93399 (9)0.0409 (3)
HN10.80190.10000.96970.049*
N20.65791 (16)0.10768 (11)0.72168 (9)0.0458 (3)
N30.55537 (19)0.10556 (14)0.63529 (10)0.0578 (4)
N40.70516 (16)0.15252 (11)0.48502 (9)0.0456 (3)
HN40.67300.12760.52320.055*
N50.68470 (18)0.09626 (12)0.27673 (10)0.0515 (3)
N60.6269 (3)0.08297 (14)0.18201 (11)0.0690 (5)
O10.7990 (2)0.53534 (11)1.28620 (10)0.0743 (4)
O21.09600 (13)0.18909 (10)1.02068 (8)0.0530 (3)
O30.96160 (15)0.29187 (10)0.91188 (8)0.0534 (3)
O40.5979 (2)0.56814 (12)0.77337 (11)0.0761 (4)
O50.98772 (16)0.19783 (11)0.59488 (9)0.0679 (4)
O60.90416 (17)0.28627 (11)0.46690 (9)0.0658 (4)
O70.8147 (2)0.01367 (11)1.05542 (10)0.0801 (5)
H7A0.75950.01871.09370.120*
H7B0.84020.04701.04510.120*
S10.95253 (4)0.23680 (3)0.98091 (3)0.04128 (10)
S20.86491 (5)0.24489 (4)0.53781 (3)0.05034 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0833 (15)0.0967 (17)0.0597 (13)0.0026 (13)0.0285 (11)0.0002 (12)
C20.0429 (8)0.0515 (9)0.0548 (10)0.0010 (7)0.0146 (7)0.0015 (8)
C30.0503 (9)0.0619 (10)0.0455 (9)0.0055 (8)0.0141 (7)0.0148 (8)
C40.0465 (8)0.0496 (9)0.0477 (9)0.0107 (7)0.0115 (7)0.0161 (7)
C50.0319 (7)0.0465 (8)0.0444 (8)0.0041 (6)0.0086 (6)0.0124 (6)
C60.0512 (9)0.0494 (9)0.0564 (10)0.0037 (7)0.0180 (8)0.0212 (8)
C70.0639 (11)0.0436 (9)0.0728 (12)0.0073 (8)0.0240 (9)0.0159 (8)
C80.0340 (7)0.0427 (7)0.0395 (7)0.0028 (6)0.0114 (6)0.0120 (6)
C90.0442 (8)0.0609 (10)0.0425 (8)0.0045 (7)0.0171 (7)0.0090 (7)
C100.0388 (8)0.0741 (12)0.0627 (11)0.0111 (8)0.0225 (8)0.0095 (9)
C110.0333 (7)0.0688 (11)0.0637 (11)0.0078 (7)0.0118 (7)0.0175 (9)
C120.0350 (7)0.0586 (9)0.0465 (8)0.0006 (7)0.0081 (6)0.0167 (7)
C130.0346 (7)0.0420 (7)0.0394 (7)0.0013 (6)0.0119 (6)0.0112 (6)
C140.0418 (9)0.0862 (13)0.0460 (9)0.0006 (9)0.0045 (7)0.0232 (9)
C150.0563 (10)0.0571 (10)0.0557 (10)0.0161 (8)0.0254 (8)0.0119 (8)
C160.0716 (14)0.1005 (18)0.0711 (14)0.0149 (13)0.0200 (11)0.0130 (13)
C170.0530 (9)0.0466 (9)0.0579 (10)0.0013 (7)0.0119 (8)0.0047 (8)
C180.0607 (10)0.0539 (10)0.0411 (8)0.0004 (8)0.0087 (7)0.0061 (7)
C190.0582 (10)0.0487 (9)0.0421 (8)0.0054 (8)0.0037 (7)0.0100 (7)
C200.0454 (8)0.0475 (9)0.0418 (8)0.0002 (7)0.0062 (6)0.0075 (7)
C210.0665 (11)0.0605 (11)0.0521 (10)0.0080 (9)0.0149 (8)0.0231 (8)
C220.0736 (13)0.0541 (10)0.0705 (12)0.0168 (9)0.0172 (10)0.0242 (9)
C230.0410 (7)0.0429 (8)0.0404 (8)0.0030 (6)0.0108 (6)0.0092 (6)
C240.0499 (9)0.0535 (10)0.0587 (10)0.0091 (7)0.0222 (8)0.0116 (8)
C250.0444 (9)0.0633 (11)0.0949 (16)0.0151 (8)0.0205 (10)0.0261 (11)
C260.0470 (10)0.0710 (12)0.0803 (14)0.0057 (9)0.0016 (9)0.0346 (11)
C270.0530 (10)0.0577 (10)0.0474 (9)0.0054 (8)0.0028 (7)0.0199 (8)
C280.0409 (7)0.0442 (8)0.0404 (8)0.0002 (6)0.0106 (6)0.0091 (6)
C290.0777 (14)0.0827 (14)0.0419 (10)0.0124 (12)0.0044 (9)0.0180 (9)
C300.0521 (10)0.0683 (12)0.0724 (13)0.0089 (9)0.0279 (9)0.0002 (10)
N10.0403 (6)0.0462 (7)0.0392 (6)0.0078 (5)0.0107 (5)0.0173 (5)
N20.0427 (7)0.0572 (8)0.0379 (7)0.0051 (6)0.0134 (5)0.0105 (6)
N30.0528 (8)0.0804 (11)0.0369 (7)0.0020 (7)0.0103 (6)0.0137 (7)
N40.0461 (7)0.0519 (7)0.0365 (6)0.0035 (6)0.0084 (5)0.0110 (6)
N50.0542 (8)0.0567 (8)0.0421 (7)0.0012 (6)0.0191 (6)0.0044 (6)
N60.0888 (13)0.0728 (11)0.0403 (8)0.0145 (10)0.0256 (8)0.0013 (7)
O10.0868 (10)0.0645 (8)0.0705 (9)0.0059 (8)0.0361 (8)0.0005 (7)
O20.0393 (6)0.0674 (7)0.0522 (7)0.0187 (5)0.0100 (5)0.0160 (6)
O30.0507 (6)0.0659 (7)0.0529 (7)0.0045 (6)0.0208 (5)0.0266 (6)
O40.0813 (10)0.0655 (9)0.0754 (10)0.0197 (8)0.0236 (8)0.0019 (7)
O50.0500 (7)0.0782 (9)0.0602 (8)0.0173 (6)0.0015 (6)0.0052 (7)
O60.0613 (8)0.0764 (9)0.0588 (8)0.0076 (7)0.0245 (6)0.0107 (7)
O70.1307 (14)0.0656 (9)0.0751 (9)0.0411 (9)0.0604 (10)0.0357 (7)
S10.03386 (17)0.0517 (2)0.0421 (2)0.00845 (15)0.01207 (14)0.01725 (16)
S20.0423 (2)0.0591 (3)0.0438 (2)0.00319 (18)0.00828 (16)0.00708 (18)
Geometric parameters (Å, º) top
C1—O11.411 (3)C17—C221.387 (3)
C1—H1A0.9600C18—C191.377 (2)
C1—H1B0.9600C18—H180.9300
C1—H1C0.9600C19—C201.379 (2)
C2—O11.356 (2)C19—H190.9300
C2—C71.382 (3)C20—C211.391 (2)
C2—C31.392 (3)C20—S21.7512 (17)
C3—C41.379 (2)C21—C221.368 (3)
C3—H30.9300C21—H210.9300
C4—C51.387 (2)C22—H220.9300
C4—H40.9300C23—C241.374 (2)
C5—C61.387 (2)C23—C281.404 (2)
C5—S11.7544 (16)C23—N41.4301 (19)
C6—C71.372 (3)C24—C251.402 (3)
C6—H60.9300C24—H240.9300
C7—H70.9300C25—C261.352 (3)
C8—C91.376 (2)C25—H250.9300
C8—C131.404 (2)C26—C271.400 (3)
C8—N11.4324 (18)C26—H260.9300
C9—C101.404 (2)C27—C291.398 (3)
C9—H90.9300C27—C281.408 (2)
C10—C111.360 (3)C28—N51.358 (2)
C10—H100.9300C29—N61.307 (3)
C11—C121.401 (2)C29—H290.9300
C11—H110.9300C30—N51.442 (2)
C12—C141.410 (2)C30—H30A0.9600
C12—C131.410 (2)C30—H30B0.9600
C13—N21.3619 (19)C30—H30C0.9600
C14—N31.316 (2)N1—S11.6256 (13)
C14—H140.9300N1—HN10.8600
C15—N21.448 (2)N2—N31.3651 (19)
C15—H15A0.9600N4—S21.6441 (14)
C15—H15B0.9600N4—HN40.8284
C15—H15C0.9600N5—N61.371 (2)
C16—O41.413 (3)O2—S11.4337 (11)
C16—H16A0.9600O3—S11.4307 (12)
C16—H16B0.9600O5—S21.4259 (13)
C16—H16C0.9600O6—S21.4259 (14)
C17—O41.356 (2)O7—H7A0.8299
C17—C181.378 (3)O7—H7B0.8299
O1—C1—H1A109.5C19—C20—C21119.72 (16)
O1—C1—H1B109.5C19—C20—S2119.93 (13)
H1A—C1—H1B109.5C21—C20—S2120.25 (13)
O1—C1—H1C109.5C22—C21—C20119.56 (17)
H1A—C1—H1C109.5C22—C21—H21120.2
H1B—C1—H1C109.5C20—C21—H21120.2
O1—C2—C7115.49 (17)C21—C22—C17120.74 (18)
O1—C2—C3124.28 (17)C21—C22—H22119.6
C7—C2—C3120.23 (16)C17—C22—H22119.6
C4—C3—C2119.14 (16)C24—C23—C28116.88 (15)
C4—C3—H3120.4C24—C23—N4122.16 (15)
C2—C3—H3120.4C28—C23—N4120.92 (14)
C3—C4—C5120.33 (16)C23—C24—C25122.49 (18)
C3—C4—H4119.8C23—C24—H24118.8
C5—C4—H4119.8C25—C24—H24118.8
C4—C5—C6120.26 (15)C26—C25—C24120.99 (18)
C4—C5—S1119.56 (12)C26—C25—H25119.5
C6—C5—S1120.19 (12)C24—C25—H25119.5
C7—C6—C5119.37 (16)C25—C26—C27118.40 (17)
C7—C6—H6120.3C25—C26—H26120.8
C5—C6—H6120.3C27—C26—H26120.8
C6—C7—C2120.64 (16)C29—C27—C26134.62 (19)
C6—C7—H7119.7C29—C27—C28104.63 (17)
C2—C7—H7119.7C26—C27—C28120.72 (17)
C9—C8—C13116.97 (14)N5—C28—C23132.75 (15)
C9—C8—N1121.96 (13)N5—C28—C27106.74 (14)
C13—C8—N1121.07 (13)C23—C28—C27120.50 (15)
C8—C9—C10122.28 (15)N6—C29—C27111.51 (17)
C8—C9—H9118.9N6—C29—H29124.2
C10—C9—H9118.9C27—C29—H29124.2
C11—C10—C9121.10 (15)N5—C30—H30A109.5
C11—C10—H10119.4N5—C30—H30B109.5
C9—C10—H10119.4H30A—C30—H30B109.5
C10—C11—C12118.25 (15)N5—C30—H30C109.5
C10—C11—H11120.9H30A—C30—H30C109.5
C12—C11—H11120.9H30B—C30—H30C109.5
C11—C12—C14135.14 (16)C8—N1—S1118.27 (10)
C11—C12—C13120.65 (15)C8—N1—HN1118.1
C14—C12—C13104.18 (14)S1—N1—HN1110.3
N2—C13—C8132.50 (14)C13—N2—N3110.83 (13)
N2—C13—C12106.78 (13)C13—N2—C15130.26 (14)
C8—C13—C12120.72 (13)N3—N2—C15118.85 (14)
N3—C14—C12111.63 (15)C14—N3—N2106.58 (14)
N3—C14—H14124.2C23—N4—S2118.47 (11)
C12—C14—H14124.2C23—N4—HN4113.9
N2—C15—H15A109.5S2—N4—HN4111.1
N2—C15—H15B109.5C28—N5—N6110.14 (15)
H15A—C15—H15B109.5C28—N5—C30131.09 (14)
N2—C15—H15C109.5N6—N5—C30118.77 (15)
H15A—C15—H15C109.5C29—N6—N5106.98 (16)
H15B—C15—H15C109.5C2—O1—C1117.75 (17)
O4—C16—H16A109.5C17—O4—C16118.23 (17)
O4—C16—H16B109.5H7A—O7—H7B107.4
H16A—C16—H16B109.5O3—S1—O2118.81 (7)
O4—C16—H16C109.5O3—S1—N1107.97 (7)
H16A—C16—H16C109.5O2—S1—N1105.66 (7)
H16B—C16—H16C109.5O3—S1—C5107.83 (8)
O4—C17—C18124.60 (18)O2—S1—C5107.82 (7)
O4—C17—C22115.79 (17)N1—S1—C5108.38 (7)
C18—C17—C22119.62 (17)O6—S2—O5120.27 (9)
C19—C18—C17119.84 (17)O6—S2—N4106.67 (7)
C19—C18—H18120.1O5—S2—N4105.43 (8)
C17—C18—H18120.1O6—S2—C20108.53 (8)
C18—C19—C20120.52 (16)O5—S2—C20108.31 (8)
C18—C19—H19119.7N4—S2—C20106.89 (7)
C20—C19—H19119.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···N6i0.832.032.828 (2)160
O7—H7B···O2ii0.832.082.8831 (18)162
N1—HN1···O70.861.922.7745 (18)177
N4—HN4···N30.832.263.060 (2)163
Symmetry codes: (i) x, y, z+1; (ii) x+2, y, z+2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and the University Sultan Moulay Slimane, Beni-Mellal, Morocco, for financial support.

References

First citationAbbassi, N., Chicha, H., Rakib, el M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240–249.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAbbassi, N., Rakib, E. M., Chicha, H., Bouissane, L., Hannioui, A., Aiello, C., Gangemi, R., Castagnola, P., Rosano, C. & Viale, M. (2014). Arch. Pharm. Chem. Life Sci. 347, 423–431.  Web of Science CrossRef CAS Google Scholar
First citationBouissane, L., El Kazzouli, S., Léonce, S., Pfeiffer, B., Rakib, M. E., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078–1088.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGreig, I. R., Coste, E., Ralston, S. H. & van 't Hof, R. J. (2013). Bioorg. Med. Chem. Lett. 23, 816–820.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRanjith, P. K., Pakkath, R., Haridas, K. R. & Kumari, S. N. (2014). Eur. J. Med. Chem. 71, 354–365.  Web of Science CrossRef CAS PubMed Google Scholar
First citationScozzafava, A., Carta, F. & Supuran, C. T. (2013). Expert Opin. Ther. Pat. 23, 203–213.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShoaib Ahmad Shah, S., Rivera, G. & Ashfaq, M. (2013). Mini Rev. Med. Chem. 13, 70–86.  CrossRef PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds