organic compounds
2-(1-Hexyl-2-oxo-2,3-dihydro-1H-indol-3-ylidene)propanedinitrile
aLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Mohammed V University, Rabat, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: irayni@yahoo.fr
In the title compound, C17H17N3O, the indolone ring system is almost planar, with an angle of 0.76 (14)° between the five- and six-membered rings. The dicyanomethylidene substituent lies close to the indolene plane. In the crystal, offset π-stacking interactions between five- and six-membered rings of indolene stack the molecules along the c-axis direction.
Keywords: crystal structure; indolone; π-stacking.
CCDC reference: 1549179
Structure description
Oxindole derivatives are used in a wide range of biological applications, including as NMDA antagonists (Kang et al., 2002) and calcium channel blockers (Swensen et al., 2012), as well as having antiangiogenic (Whatmore et al., 2002) and anticancer properties (Peddibhotla, 2009). In a continuaton of our previous research on the synthesis of new heterocyclic systems containing the oxindole unit (Alsubari et al., 2009; Al Mamari et al., 2012), we report here the synthesis and the of the title compound (Fig. 1).
The bicyclic portion of the molecule is almost planar with the five- and six-membered rings inclined to one another by 0.76 (14)°. The dicyanomethylidene substituent is with this ring system, as indicated by the C6—C7—C9—C10 torsion angle of −1.5 (5)°.
In the crystal, the indolone units stack along the c-axis direction as a result of π–π stacking interactions between the five- and six-membered rings (Fig. 2), with Cg1⋯Cg2i = Cg1ii⋯Cg2 = 3.6985 (18) Å. The stacking is such that the n-hexyl chains all point in the same direction and are arranged one on top of the other (Fig. 3).
Synthesis and crystallization
A mixture of 1-hexyl-1H-indol-2,3-dione (0.5 g, 2.1 mmol), malononitrile (0.14 g, 2.1 mmol) and iodine (0.05 g, 0.21 mmol) in ethanol (10 ml), was heated at 333 K for appropriately 1 h. The reaction was monitored by After completion, the mixture was treated with aqueous Na2S2O3 solution, extracted with ethyl acetate (2 × 10 ml). The extract was dried over sodium sulfate, filtered and the solvent was evaporated under reduced pressure. The product obtained was recrystallized from an ethanol solution to afford the title compound as orange plate-like crystals.
Refinement
Crystal and . Independent of the H atoms attached to C17 did not result in a satisfactory geometry for the methyl group so these H atoms were included as riding contributions in idealized positions. The could not be determined with certainty.
details appear in Table 1Structural data
CCDC reference: 1549179
https://doi.org/10.1107/S2414314617007064/sj4112sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617007064/sj4112Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314617007064/sj4112Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2414314617007064/sj4112Isup4.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C17H17N3O | Dx = 1.261 Mg m−3 |
Mr = 279.33 | Cu Kα radiation, λ = 1.54178 Å |
Orthorhombic, Pna21 | Cell parameters from 9234 reflections |
a = 12.0350 (5) Å | θ = 3.6–72.6° |
b = 24.5052 (9) Å | µ = 0.64 mm−1 |
c = 4.9909 (2) Å | T = 150 K |
V = 1471.92 (10) Å3 | Plate, orange |
Z = 4 | 0.31 × 0.12 × 0.03 mm |
F(000) = 592 |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 2456 independent reflections |
Radiation source: INCOATEC IµS micro-focus source | 2293 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.050 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 72.7°, θmin = 3.6° |
ω scans | h = −14→14 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | k = −30→26 |
Tmin = 0.86, Tmax = 0.98 | l = −6→5 |
10951 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: mixed |
wR(F2) = 0.114 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0724P)2 + 0.2296P] where P = (Fo2 + 2Fc2)/3 |
2456 reflections | (Δ/σ)max < 0.001 |
247 parameters | Δρmax = 0.38 e Å−3 |
1 restraint | Δρmin = −0.19 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Independent refinement of the hydrogen atoms attached to C17 did not result in a satisfactory geometry for the methyl group so these hydroges were inclused as riding contributions in idealized positions. The absolute structure could not be determined with certainty. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.43707 (17) | 0.23427 (8) | 0.8224 (5) | 0.0360 (5) | |
N1 | 0.57751 (17) | 0.23919 (8) | 0.5072 (5) | 0.0253 (5) | |
N2 | 0.4030 (2) | 0.02200 (11) | 0.4344 (7) | 0.0404 (7) | |
N3 | 0.2816 (2) | 0.13700 (11) | 1.0310 (6) | 0.0380 (6) | |
C1 | 0.6233 (2) | 0.20390 (10) | 0.3149 (6) | 0.0226 (6) | |
C2 | 0.7104 (2) | 0.21380 (11) | 0.1406 (6) | 0.0273 (6) | |
H2 | 0.754 (3) | 0.2494 (13) | 0.128 (8) | 0.034 (9)* | |
C3 | 0.7402 (2) | 0.17153 (12) | −0.0332 (6) | 0.0296 (6) | |
H3 | 0.800 (3) | 0.1766 (14) | −0.155 (9) | 0.036 (9)* | |
C4 | 0.6858 (2) | 0.12108 (12) | −0.0306 (7) | 0.0297 (6) | |
H4 | 0.707 (3) | 0.0939 (15) | −0.151 (9) | 0.037 (9)* | |
C5 | 0.5998 (2) | 0.11140 (11) | 0.1507 (6) | 0.0253 (6) | |
H5 | 0.562 (3) | 0.0746 (13) | 0.145 (8) | 0.027 (8)* | |
C6 | 0.56841 (19) | 0.15300 (10) | 0.3244 (6) | 0.0217 (5) | |
C7 | 0.48545 (19) | 0.15684 (10) | 0.5328 (6) | 0.0230 (5) | |
C8 | 0.4937 (2) | 0.21416 (11) | 0.6448 (6) | 0.0263 (6) | |
C9 | 0.41289 (19) | 0.11947 (11) | 0.6307 (6) | 0.0247 (6) | |
C10 | 0.4070 (2) | 0.06503 (12) | 0.5225 (7) | 0.0308 (6) | |
C11 | 0.3402 (2) | 0.13069 (11) | 0.8536 (6) | 0.0286 (6) | |
C12 | 0.6099 (2) | 0.29548 (11) | 0.5559 (7) | 0.0283 (6) | |
H12A | 0.611 (3) | 0.3029 (16) | 0.756 (9) | 0.045 (11)* | |
H12B | 0.690 (3) | 0.3001 (15) | 0.493 (9) | 0.047 (10)* | |
C13 | 0.5359 (2) | 0.33637 (11) | 0.4133 (6) | 0.0262 (6) | |
H13A | 0.455 (3) | 0.3282 (13) | 0.473 (8) | 0.032 (8)* | |
H13B | 0.543 (3) | 0.3296 (15) | 0.234 (9) | 0.038 (10)* | |
C14 | 0.5682 (2) | 0.39492 (11) | 0.4838 (7) | 0.0281 (6) | |
H14A | 0.564 (3) | 0.3969 (14) | 0.707 (8) | 0.034 (9)* | |
H14B | 0.644 (3) | 0.4013 (17) | 0.415 (9) | 0.054 (12)* | |
C15 | 0.4910 (2) | 0.43796 (10) | 0.3688 (6) | 0.0276 (6) | |
H15A | 0.480 (3) | 0.4318 (16) | 0.158 (10) | 0.054 (12)* | |
H15B | 0.529 (3) | 0.4761 (15) | 0.403 (9) | 0.042 (10)* | |
C16 | 0.3748 (2) | 0.43823 (11) | 0.4915 (7) | 0.0292 (6) | |
H16A | 0.386 (4) | 0.4422 (16) | 0.692 (10) | 0.050 (11)* | |
H16B | 0.338 (3) | 0.4034 (14) | 0.448 (7) | 0.033 (9)* | |
C17 | 0.3042 (2) | 0.48580 (12) | 0.3981 (8) | 0.0369 (7) | |
H17A | 0.2310 | 0.4839 | 0.4838 | 0.055* | |
H17B | 0.2953 | 0.4841 | 0.2031 | 0.055* | |
H17C | 0.3406 | 0.5202 | 0.4469 | 0.055* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0386 (11) | 0.0338 (11) | 0.0357 (13) | 0.0015 (9) | 0.0127 (10) | −0.0065 (9) |
N1 | 0.0279 (10) | 0.0208 (11) | 0.0272 (13) | −0.0012 (8) | 0.0058 (10) | −0.0009 (9) |
N2 | 0.0466 (14) | 0.0266 (12) | 0.0480 (18) | −0.0084 (11) | 0.0080 (13) | 0.0004 (12) |
N3 | 0.0358 (12) | 0.0448 (15) | 0.0335 (15) | −0.0027 (11) | 0.0075 (13) | 0.0050 (12) |
C1 | 0.0231 (11) | 0.0216 (12) | 0.0231 (14) | 0.0015 (10) | 0.0004 (10) | 0.0002 (10) |
C2 | 0.0264 (12) | 0.0294 (13) | 0.0262 (15) | −0.0021 (10) | 0.0041 (12) | 0.0047 (12) |
C3 | 0.0245 (11) | 0.0352 (14) | 0.0291 (16) | 0.0025 (11) | 0.0061 (12) | 0.0033 (13) |
C4 | 0.0302 (13) | 0.0298 (13) | 0.0290 (16) | 0.0055 (11) | 0.0050 (12) | −0.0030 (12) |
C5 | 0.0245 (11) | 0.0248 (13) | 0.0265 (15) | 0.0020 (10) | 0.0005 (11) | −0.0001 (12) |
C6 | 0.0193 (11) | 0.0214 (12) | 0.0245 (14) | 0.0013 (9) | 0.0002 (10) | 0.0027 (10) |
C7 | 0.0238 (11) | 0.0232 (12) | 0.0221 (13) | 0.0020 (9) | 0.0006 (10) | 0.0008 (11) |
C8 | 0.0270 (11) | 0.0260 (12) | 0.0258 (14) | 0.0015 (10) | 0.0016 (12) | −0.0005 (12) |
C9 | 0.0221 (11) | 0.0282 (13) | 0.0238 (14) | −0.0009 (9) | 0.0020 (11) | 0.0041 (11) |
C10 | 0.0292 (12) | 0.0307 (14) | 0.0324 (16) | −0.0047 (10) | 0.0047 (12) | 0.0063 (13) |
C11 | 0.0246 (12) | 0.0320 (14) | 0.0292 (16) | −0.0008 (10) | 0.0006 (12) | 0.0059 (12) |
C12 | 0.0305 (12) | 0.0224 (13) | 0.0320 (17) | −0.0010 (10) | −0.0017 (12) | −0.0044 (11) |
C13 | 0.0312 (13) | 0.0224 (12) | 0.0249 (15) | −0.0002 (10) | −0.0010 (11) | −0.0016 (11) |
C14 | 0.0269 (12) | 0.0226 (12) | 0.0347 (17) | −0.0007 (10) | 0.0053 (12) | −0.0032 (12) |
C15 | 0.0331 (14) | 0.0205 (12) | 0.0291 (16) | −0.0015 (10) | 0.0049 (12) | 0.0050 (12) |
C16 | 0.0288 (12) | 0.0255 (13) | 0.0333 (17) | −0.0007 (11) | 0.0017 (12) | 0.0006 (12) |
C17 | 0.0323 (14) | 0.0287 (14) | 0.050 (2) | 0.0023 (12) | −0.0044 (14) | 0.0024 (14) |
O1—C8 | 1.222 (4) | C9—C11 | 1.442 (4) |
N1—C8 | 1.365 (4) | C12—C13 | 1.518 (4) |
N1—C1 | 1.405 (4) | C12—H12A | 1.01 (4) |
N1—C12 | 1.454 (3) | C12—H12B | 1.02 (4) |
N2—C10 | 1.144 (4) | C13—C14 | 1.527 (4) |
N3—C11 | 1.142 (4) | C13—H13A | 1.03 (3) |
C1—C2 | 1.383 (4) | C13—H13B | 0.91 (4) |
C1—C6 | 1.412 (4) | C14—C15 | 1.518 (4) |
C2—C3 | 1.398 (4) | C14—H14A | 1.12 (4) |
C2—H2 | 1.02 (3) | C14—H14B | 0.99 (4) |
C3—C4 | 1.399 (4) | C15—C16 | 1.526 (4) |
C3—H3 | 0.95 (4) | C15—H15A | 1.07 (5) |
C4—C5 | 1.395 (4) | C15—H15B | 1.06 (4) |
C4—H4 | 0.93 (4) | C16—C17 | 1.516 (4) |
C5—C6 | 1.390 (4) | C16—H16A | 1.02 (5) |
C5—H5 | 1.01 (3) | C16—H16B | 0.99 (3) |
C6—C7 | 1.445 (4) | C17—H17A | 0.9800 |
C7—C9 | 1.357 (4) | C17—H17B | 0.9800 |
C7—C8 | 1.515 (4) | C17—H17C | 0.9800 |
C9—C10 | 1.441 (4) | ||
C8—N1—C1 | 110.9 (2) | C13—C12—H12A | 111 (2) |
C8—N1—C12 | 122.7 (2) | N1—C12—H12B | 108 (2) |
C1—N1—C12 | 126.4 (2) | C13—C12—H12B | 110 (2) |
C2—C1—N1 | 128.2 (2) | H12A—C12—H12B | 106 (3) |
C2—C1—C6 | 122.0 (3) | C12—C13—C14 | 111.3 (2) |
N1—C1—C6 | 109.7 (2) | C12—C13—H13A | 107 (2) |
C1—C2—C3 | 117.0 (2) | C14—C13—H13A | 110.7 (19) |
C1—C2—H2 | 125 (2) | C12—C13—H13B | 107 (2) |
C3—C2—H2 | 118 (2) | C14—C13—H13B | 112 (2) |
C2—C3—C4 | 121.9 (3) | H13A—C13—H13B | 110 (3) |
C2—C3—H3 | 120 (2) | C15—C14—C13 | 114.2 (2) |
C4—C3—H3 | 118 (2) | C15—C14—H14A | 108.5 (19) |
C5—C4—C3 | 120.2 (3) | C13—C14—H14A | 105.0 (18) |
C5—C4—H4 | 120 (2) | C15—C14—H14B | 109 (2) |
C3—C4—H4 | 120 (2) | C13—C14—H14B | 108 (2) |
C6—C5—C4 | 118.8 (2) | H14A—C14—H14B | 113 (3) |
C6—C5—H5 | 124 (2) | C14—C15—C16 | 114.3 (2) |
C4—C5—H5 | 118 (2) | C14—C15—H15A | 110 (2) |
C5—C6—C1 | 120.0 (2) | C16—C15—H15A | 107 (2) |
C5—C6—C7 | 133.2 (2) | C14—C15—H15B | 107 (2) |
C1—C6—C7 | 106.9 (2) | C16—C15—H15B | 109 (2) |
C9—C7—C6 | 131.3 (3) | H15A—C15—H15B | 110 (3) |
C9—C7—C8 | 122.4 (2) | C17—C16—C15 | 113.2 (2) |
C6—C7—C8 | 106.3 (2) | C17—C16—H16A | 107 (2) |
O1—C8—N1 | 126.6 (3) | C15—C16—H16A | 106 (3) |
O1—C8—C7 | 127.2 (3) | C17—C16—H16B | 110.2 (19) |
N1—C8—C7 | 106.2 (2) | C15—C16—H16B | 108.7 (19) |
C7—C9—C10 | 121.4 (3) | H16A—C16—H16B | 111 (3) |
C7—C9—C11 | 122.7 (3) | C16—C17—H17A | 109.5 |
C10—C9—C11 | 115.8 (2) | C16—C17—H17B | 109.5 |
N2—C10—C9 | 179.3 (3) | H17A—C17—H17B | 109.5 |
N3—C11—C9 | 176.8 (3) | C16—C17—H17C | 109.5 |
N1—C12—C13 | 113.0 (2) | H17A—C17—H17C | 109.5 |
N1—C12—H12A | 110 (2) | H17B—C17—H17C | 109.5 |
C8—N1—C1—C2 | −178.7 (3) | C1—N1—C8—O1 | −179.2 (3) |
C12—N1—C1—C2 | 2.8 (5) | C12—N1—C8—O1 | −0.7 (5) |
C8—N1—C1—C6 | −0.3 (3) | C1—N1—C8—C7 | 0.7 (3) |
C12—N1—C1—C6 | −178.7 (3) | C12—N1—C8—C7 | 179.2 (2) |
N1—C1—C2—C3 | −179.9 (3) | C9—C7—C8—O1 | −2.6 (5) |
C6—C1—C2—C3 | 1.8 (4) | C6—C7—C8—O1 | 179.0 (3) |
C1—C2—C3—C4 | −0.7 (4) | C9—C7—C8—N1 | 177.5 (3) |
C2—C3—C4—C5 | −0.7 (4) | C6—C7—C8—N1 | −0.9 (3) |
C3—C4—C5—C6 | 1.0 (4) | C6—C7—C9—C10 | −1.5 (5) |
C4—C5—C6—C1 | 0.0 (4) | C8—C7—C9—C10 | −179.5 (3) |
C4—C5—C6—C7 | −179.6 (3) | C6—C7—C9—C11 | 176.2 (3) |
C2—C1—C6—C5 | −1.5 (4) | C8—C7—C9—C11 | −1.8 (4) |
N1—C1—C6—C5 | 179.9 (2) | C8—N1—C12—C13 | −81.7 (3) |
C2—C1—C6—C7 | 178.2 (3) | C1—N1—C12—C13 | 96.6 (3) |
N1—C1—C6—C7 | −0.4 (3) | N1—C12—C13—C14 | 176.4 (2) |
C5—C6—C7—C9 | 2.2 (5) | C12—C13—C14—C15 | −174.6 (3) |
C1—C6—C7—C9 | −177.5 (3) | C13—C14—C15—C16 | 68.5 (3) |
C5—C6—C7—C8 | −179.5 (3) | C14—C15—C16—C17 | 173.0 (3) |
C1—C6—C7—C8 | 0.8 (3) |
Acknowledgements
The support of NSF-MRI Grant #1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.
References
Al Mamari, K., Ennajih, H., Zouihri, H., Bouhfid, R., Ng, S. W. & Essassi, E. M. (2012). Tetrahedron Lett. 53, 2328–2331. Web of Science CSD CrossRef CAS Google Scholar
Alsubari, A., Bouhfid, R. & Essassi, E. M. (2009). Arkivoc, 12, 337–346. Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Kang, T. H., Murakami, Y., Matsumoto, K., Takayama, H., Kitajima, M., Aimi, N. & Watanabe, H. (2002). Eur. J. Pharmacol. 455, 27–34. Web of Science CrossRef PubMed CAS Google Scholar
Peddibhotla, S. (2009). Curr. Bioact. Compd. 5, 20–38. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Swensen, A. M., et al. (2012). Mol. Pharmacol. 81, 488–497. Web of Science CrossRef CAS PubMed Google Scholar
Whatmore, J. L., Swann, E., Barraja, P., Newsome, J. J., Bunderson, M., Beall, H. D., Tooke, J. E. & Moody, C. J. (2002). Angiogenesis, 5, 45–51. CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.