organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-(1-Hexyl-2-oxo-2,3-di­hydro-1H-indol-3-yl­­idene)propanedi­nitrile

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Mohammed V University, Rabat, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: irayni@yahoo.fr

Edited by J. Simpson, University of Otago, New Zealand (Received 9 May 2017; accepted 11 May 2017; online 16 May 2017)

In the title compound, C17H17N3O, the indolone ring system is almost planar, with an angle of 0.76 (14)° between the five- and six-membered rings. The di­cyano­methyl­idene substituent lies close to the indolene plane. In the crystal, offset π-stacking inter­actions between five- and six-membered rings of indolene stack the mol­ecules along the c-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Oxindole derivatives are used in a wide range of biological applications, including as NMDA antagonists (Kang et al., 2002[Kang, T. H., Murakami, Y., Matsumoto, K., Takayama, H., Kitajima, M., Aimi, N. & Watanabe, H. (2002). Eur. J. Pharmacol. 455, 27-34.]) and calcium channel blockers (Swensen et al., 2012[Swensen, A. M., et al. (2012). Mol. Pharmacol. 81, 488-497.]), as well as having anti­angiogenic (Whatmore et al., 2002[Whatmore, J. L., Swann, E., Barraja, P., Newsome, J. J., Bunderson, M., Beall, H. D., Tooke, J. E. & Moody, C. J. (2002). Angiogenesis, 5, 45-51.]) and anti­cancer properties (Peddibhotla, 2009[Peddibhotla, S. (2009). Curr. Bioact. Compd. 5, 20-38.]). In a continuaton of our previous research on the synthesis of new heterocyclic systems containing the oxindole unit (Alsubari et al., 2009[Alsubari, A., Bouhfid, R. & Essassi, E. M. (2009). Arkivoc, 12, 337-346.]; Al Mamari et al., 2012[Al Mamari, K., Ennajih, H., Zouihri, H., Bouhfid, R., Ng, S. W. & Essassi, E. M. (2012). Tetrahedron Lett. 53, 2328-2331.]), we report here the synthesis and the crystal structure of the title compound (Fig. 1[link]).

[Figure 1]
Figure 1
The title mol­ecule, showing the atom-labelling scheme and 50% probability displacement ellipsoids.

The bicyclic portion of the mol­ecule is almost planar with the five- and six-membered rings inclined to one another by 0.76 (14)°. The di­cyano­methyl­idene substituent is with this ring system, as indicated by the C6—C7—C9—C10 torsion angle of −1.5 (5)°.

In the crystal, the indolone units stack along the c-axis direction as a result of ππ stacking inter­actions between the five- and six-membered rings (Fig. 2[link]), with Cg1⋯Cg2i = Cg1iiCg2 = 3.6985 (18) Å. The stacking is such that the n-hexyl chains all point in the same direction and are arranged one on top of the other (Fig. 3[link]).

[Figure 2]
Figure 2
Detail of the π-stacking inter­actions. Cg1 and Cg2 are, respectively, the centroids of the five- and six-membered rings. [Symmetry codes: (i) x, y, z + 1; (ii) x, y, z − 1.]
[Figure 3]
Figure 3
The packing viewed along the c-axis direction.

Synthesis and crystallization

A mixture of 1-hexyl-1H-indol-2,3-dione (0.5 g, 2.1 mmol), malono­nitrile (0.14 g, 2.1 mmol) and iodine (0.05 g, 0.21 mmol) in ethanol (10 ml), was heated at 333 K for appropriately 1 h. The reaction was monitored by thin-layer chromatography. After completion, the mixture was treated with aqueous Na2S2O3 solution, extracted with ethyl acetate (2 × 10 ml). The extract was dried over sodium sulfate, filtered and the solvent was evaporated under reduced pressure. The product obtained was recrystallized from an ethanol solution to afford the title compound as orange plate-like crystals.

Refinement

Crystal and refinement details appear in Table 1[link]. Independent refinement of the H atoms attached to C17 did not result in a satisfactory geometry for the methyl group so these H atoms were included as riding contributions in idealized positions. The absolute structure could not be determined with certainty.

Table 1
Experimental details

Crystal data
Chemical formula C17H17N3O
Mr 279.33
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 150
a, b, c (Å) 12.0350 (5), 24.5052 (9), 4.9909 (2)
V3) 1471.92 (10)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.64
Crystal size (mm) 0.31 × 0.12 × 0.03
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.86, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 10951, 2456, 2293
Rint 0.050
(sin θ/λ)max−1) 0.619
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.114, 1.08
No. of reflections 2456
No. of parameters 247
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.38, −0.19
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

2-(1-Hexyl-2-oxo-2,3-dihydro-1H-indol-3-ylidene)propanedinitrile top
Crystal data top
C17H17N3ODx = 1.261 Mg m3
Mr = 279.33Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, Pna21Cell parameters from 9234 reflections
a = 12.0350 (5) Åθ = 3.6–72.6°
b = 24.5052 (9) ŵ = 0.64 mm1
c = 4.9909 (2) ÅT = 150 K
V = 1471.92 (10) Å3Plate, orange
Z = 40.31 × 0.12 × 0.03 mm
F(000) = 592
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2456 independent reflections
Radiation source: INCOATEC IµS micro-focus source2293 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.050
Detector resolution: 10.4167 pixels mm-1θmax = 72.7°, θmin = 3.6°
ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 3026
Tmin = 0.86, Tmax = 0.98l = 65
10951 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: mixed
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0724P)2 + 0.2296P]
where P = (Fo2 + 2Fc2)/3
2456 reflections(Δ/σ)max < 0.001
247 parametersΔρmax = 0.38 e Å3
1 restraintΔρmin = 0.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Independent refinement of the hydrogen atoms attached to C17 did not result in a satisfactory geometry for the methyl group so these hydroges were inclused as riding contributions in idealized positions. The absolute structure could not be determined with certainty.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.43707 (17)0.23427 (8)0.8224 (5)0.0360 (5)
N10.57751 (17)0.23919 (8)0.5072 (5)0.0253 (5)
N20.4030 (2)0.02200 (11)0.4344 (7)0.0404 (7)
N30.2816 (2)0.13700 (11)1.0310 (6)0.0380 (6)
C10.6233 (2)0.20390 (10)0.3149 (6)0.0226 (6)
C20.7104 (2)0.21380 (11)0.1406 (6)0.0273 (6)
H20.754 (3)0.2494 (13)0.128 (8)0.034 (9)*
C30.7402 (2)0.17153 (12)0.0332 (6)0.0296 (6)
H30.800 (3)0.1766 (14)0.155 (9)0.036 (9)*
C40.6858 (2)0.12108 (12)0.0306 (7)0.0297 (6)
H40.707 (3)0.0939 (15)0.151 (9)0.037 (9)*
C50.5998 (2)0.11140 (11)0.1507 (6)0.0253 (6)
H50.562 (3)0.0746 (13)0.145 (8)0.027 (8)*
C60.56841 (19)0.15300 (10)0.3244 (6)0.0217 (5)
C70.48545 (19)0.15684 (10)0.5328 (6)0.0230 (5)
C80.4937 (2)0.21416 (11)0.6448 (6)0.0263 (6)
C90.41289 (19)0.11947 (11)0.6307 (6)0.0247 (6)
C100.4070 (2)0.06503 (12)0.5225 (7)0.0308 (6)
C110.3402 (2)0.13069 (11)0.8536 (6)0.0286 (6)
C120.6099 (2)0.29548 (11)0.5559 (7)0.0283 (6)
H12A0.611 (3)0.3029 (16)0.756 (9)0.045 (11)*
H12B0.690 (3)0.3001 (15)0.493 (9)0.047 (10)*
C130.5359 (2)0.33637 (11)0.4133 (6)0.0262 (6)
H13A0.455 (3)0.3282 (13)0.473 (8)0.032 (8)*
H13B0.543 (3)0.3296 (15)0.234 (9)0.038 (10)*
C140.5682 (2)0.39492 (11)0.4838 (7)0.0281 (6)
H14A0.564 (3)0.3969 (14)0.707 (8)0.034 (9)*
H14B0.644 (3)0.4013 (17)0.415 (9)0.054 (12)*
C150.4910 (2)0.43796 (10)0.3688 (6)0.0276 (6)
H15A0.480 (3)0.4318 (16)0.158 (10)0.054 (12)*
H15B0.529 (3)0.4761 (15)0.403 (9)0.042 (10)*
C160.3748 (2)0.43823 (11)0.4915 (7)0.0292 (6)
H16A0.386 (4)0.4422 (16)0.692 (10)0.050 (11)*
H16B0.338 (3)0.4034 (14)0.448 (7)0.033 (9)*
C170.3042 (2)0.48580 (12)0.3981 (8)0.0369 (7)
H17A0.23100.48390.48380.055*
H17B0.29530.48410.20310.055*
H17C0.34060.52020.44690.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0386 (11)0.0338 (11)0.0357 (13)0.0015 (9)0.0127 (10)0.0065 (9)
N10.0279 (10)0.0208 (11)0.0272 (13)0.0012 (8)0.0058 (10)0.0009 (9)
N20.0466 (14)0.0266 (12)0.0480 (18)0.0084 (11)0.0080 (13)0.0004 (12)
N30.0358 (12)0.0448 (15)0.0335 (15)0.0027 (11)0.0075 (13)0.0050 (12)
C10.0231 (11)0.0216 (12)0.0231 (14)0.0015 (10)0.0004 (10)0.0002 (10)
C20.0264 (12)0.0294 (13)0.0262 (15)0.0021 (10)0.0041 (12)0.0047 (12)
C30.0245 (11)0.0352 (14)0.0291 (16)0.0025 (11)0.0061 (12)0.0033 (13)
C40.0302 (13)0.0298 (13)0.0290 (16)0.0055 (11)0.0050 (12)0.0030 (12)
C50.0245 (11)0.0248 (13)0.0265 (15)0.0020 (10)0.0005 (11)0.0001 (12)
C60.0193 (11)0.0214 (12)0.0245 (14)0.0013 (9)0.0002 (10)0.0027 (10)
C70.0238 (11)0.0232 (12)0.0221 (13)0.0020 (9)0.0006 (10)0.0008 (11)
C80.0270 (11)0.0260 (12)0.0258 (14)0.0015 (10)0.0016 (12)0.0005 (12)
C90.0221 (11)0.0282 (13)0.0238 (14)0.0009 (9)0.0020 (11)0.0041 (11)
C100.0292 (12)0.0307 (14)0.0324 (16)0.0047 (10)0.0047 (12)0.0063 (13)
C110.0246 (12)0.0320 (14)0.0292 (16)0.0008 (10)0.0006 (12)0.0059 (12)
C120.0305 (12)0.0224 (13)0.0320 (17)0.0010 (10)0.0017 (12)0.0044 (11)
C130.0312 (13)0.0224 (12)0.0249 (15)0.0002 (10)0.0010 (11)0.0016 (11)
C140.0269 (12)0.0226 (12)0.0347 (17)0.0007 (10)0.0053 (12)0.0032 (12)
C150.0331 (14)0.0205 (12)0.0291 (16)0.0015 (10)0.0049 (12)0.0050 (12)
C160.0288 (12)0.0255 (13)0.0333 (17)0.0007 (11)0.0017 (12)0.0006 (12)
C170.0323 (14)0.0287 (14)0.050 (2)0.0023 (12)0.0044 (14)0.0024 (14)
Geometric parameters (Å, º) top
O1—C81.222 (4)C9—C111.442 (4)
N1—C81.365 (4)C12—C131.518 (4)
N1—C11.405 (4)C12—H12A1.01 (4)
N1—C121.454 (3)C12—H12B1.02 (4)
N2—C101.144 (4)C13—C141.527 (4)
N3—C111.142 (4)C13—H13A1.03 (3)
C1—C21.383 (4)C13—H13B0.91 (4)
C1—C61.412 (4)C14—C151.518 (4)
C2—C31.398 (4)C14—H14A1.12 (4)
C2—H21.02 (3)C14—H14B0.99 (4)
C3—C41.399 (4)C15—C161.526 (4)
C3—H30.95 (4)C15—H15A1.07 (5)
C4—C51.395 (4)C15—H15B1.06 (4)
C4—H40.93 (4)C16—C171.516 (4)
C5—C61.390 (4)C16—H16A1.02 (5)
C5—H51.01 (3)C16—H16B0.99 (3)
C6—C71.445 (4)C17—H17A0.9800
C7—C91.357 (4)C17—H17B0.9800
C7—C81.515 (4)C17—H17C0.9800
C9—C101.441 (4)
C8—N1—C1110.9 (2)C13—C12—H12A111 (2)
C8—N1—C12122.7 (2)N1—C12—H12B108 (2)
C1—N1—C12126.4 (2)C13—C12—H12B110 (2)
C2—C1—N1128.2 (2)H12A—C12—H12B106 (3)
C2—C1—C6122.0 (3)C12—C13—C14111.3 (2)
N1—C1—C6109.7 (2)C12—C13—H13A107 (2)
C1—C2—C3117.0 (2)C14—C13—H13A110.7 (19)
C1—C2—H2125 (2)C12—C13—H13B107 (2)
C3—C2—H2118 (2)C14—C13—H13B112 (2)
C2—C3—C4121.9 (3)H13A—C13—H13B110 (3)
C2—C3—H3120 (2)C15—C14—C13114.2 (2)
C4—C3—H3118 (2)C15—C14—H14A108.5 (19)
C5—C4—C3120.2 (3)C13—C14—H14A105.0 (18)
C5—C4—H4120 (2)C15—C14—H14B109 (2)
C3—C4—H4120 (2)C13—C14—H14B108 (2)
C6—C5—C4118.8 (2)H14A—C14—H14B113 (3)
C6—C5—H5124 (2)C14—C15—C16114.3 (2)
C4—C5—H5118 (2)C14—C15—H15A110 (2)
C5—C6—C1120.0 (2)C16—C15—H15A107 (2)
C5—C6—C7133.2 (2)C14—C15—H15B107 (2)
C1—C6—C7106.9 (2)C16—C15—H15B109 (2)
C9—C7—C6131.3 (3)H15A—C15—H15B110 (3)
C9—C7—C8122.4 (2)C17—C16—C15113.2 (2)
C6—C7—C8106.3 (2)C17—C16—H16A107 (2)
O1—C8—N1126.6 (3)C15—C16—H16A106 (3)
O1—C8—C7127.2 (3)C17—C16—H16B110.2 (19)
N1—C8—C7106.2 (2)C15—C16—H16B108.7 (19)
C7—C9—C10121.4 (3)H16A—C16—H16B111 (3)
C7—C9—C11122.7 (3)C16—C17—H17A109.5
C10—C9—C11115.8 (2)C16—C17—H17B109.5
N2—C10—C9179.3 (3)H17A—C17—H17B109.5
N3—C11—C9176.8 (3)C16—C17—H17C109.5
N1—C12—C13113.0 (2)H17A—C17—H17C109.5
N1—C12—H12A110 (2)H17B—C17—H17C109.5
C8—N1—C1—C2178.7 (3)C1—N1—C8—O1179.2 (3)
C12—N1—C1—C22.8 (5)C12—N1—C8—O10.7 (5)
C8—N1—C1—C60.3 (3)C1—N1—C8—C70.7 (3)
C12—N1—C1—C6178.7 (3)C12—N1—C8—C7179.2 (2)
N1—C1—C2—C3179.9 (3)C9—C7—C8—O12.6 (5)
C6—C1—C2—C31.8 (4)C6—C7—C8—O1179.0 (3)
C1—C2—C3—C40.7 (4)C9—C7—C8—N1177.5 (3)
C2—C3—C4—C50.7 (4)C6—C7—C8—N10.9 (3)
C3—C4—C5—C61.0 (4)C6—C7—C9—C101.5 (5)
C4—C5—C6—C10.0 (4)C8—C7—C9—C10179.5 (3)
C4—C5—C6—C7179.6 (3)C6—C7—C9—C11176.2 (3)
C2—C1—C6—C51.5 (4)C8—C7—C9—C111.8 (4)
N1—C1—C6—C5179.9 (2)C8—N1—C12—C1381.7 (3)
C2—C1—C6—C7178.2 (3)C1—N1—C12—C1396.6 (3)
N1—C1—C6—C70.4 (3)N1—C12—C13—C14176.4 (2)
C5—C6—C7—C92.2 (5)C12—C13—C14—C15174.6 (3)
C1—C6—C7—C9177.5 (3)C13—C14—C15—C1668.5 (3)
C5—C6—C7—C8179.5 (3)C14—C15—C16—C17173.0 (3)
C1—C6—C7—C80.8 (3)
 

Acknowledgements

The support of NSF-MRI Grant #1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationAl Mamari, K., Ennajih, H., Zouihri, H., Bouhfid, R., Ng, S. W. & Essassi, E. M. (2012). Tetrahedron Lett. 53, 2328–2331.  Web of Science CSD CrossRef CAS Google Scholar
First citationAlsubari, A., Bouhfid, R. & Essassi, E. M. (2009). Arkivoc, 12, 337–346.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKang, T. H., Murakami, Y., Matsumoto, K., Takayama, H., Kitajima, M., Aimi, N. & Watanabe, H. (2002). Eur. J. Pharmacol. 455, 27–34.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPeddibhotla, S. (2009). Curr. Bioact. Compd. 5, 20–38.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSwensen, A. M., et al. (2012). Mol. Pharmacol. 81, 488–497.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWhatmore, J. L., Swann, E., Barraja, P., Newsome, J. J., Bunderson, M., Beall, H. D., Tooke, J. E. & Moody, C. J. (2002). Angiogenesis, 5, 45–51.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds