organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-N-[(Anthracen-9-yl)methyl­­idene]hydroxyl­amine

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Mohammed V University, Rabat, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: sebhaoui.jihad@gmail.com

Edited by J. Simpson, University of Otago, New Zealand (Received 5 May 2017; accepted 7 May 2017; online 16 May 2017)

In the title compound, C15H11NO, the anthracene unit is slightly bowed. Inversion-related pairs of O—H⋯N hydrogen bonds form dimers that are stacked along the b-axis direction by offset ππ stacking inter­actions between the anthracene units.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Oximes constitute the key structural motif in numerous drug scaffolds and bioactive compounds, including macrolide anti­biotics (roxithromycin), anti­fungal agents (econazole), cytotoxic agents (Park et al., 2005[Park, H. J., Lee, K., Park, S. J., Ahn, B., Lee, J. C., Cho, H. Y. & Lee, K. I. (2005). Bioorg. Med. Chem. Lett. 15, 3307-3312.]) and anti-inflammatory derivatives (cloximate). They are also inter­mediates in the production of isoxazole derivatives by 1,3-dipolar cyclo­addition (Tribak et al., 2017[Tribak, Z., Kandri Rodi, Y., Haoudi, A., Skalli, M. K., Mazzah, A., Akhazzane, M. & Essassi, E. M. (2017). J. Marocain Chim. Heterocycl. 16, 58-65.]; Al Houari et al., 2008[Al Houari, G., Kerbal, A., Miqueu, K., Sotiropoulos, J. M., Garrigues, B., Benhadda, T., Benlarbi, N., Safir, I. & FilaliBaba, M. (2008). J. Marocain Chim. Heterocycl. 7, 16-23.]). It is noteworthy that these compounds are also used in several important synthetic reactions, including oxime-carbapalladacycle-catalysed Suzuki cross-coupling of aryl chlorides in water (Botella & Nájera, 2002[Botella, L. & Nájera, C. (2002). Angew. Chem. Int. Ed. 41, 179-181.]), nucleophilic catalysis of oxime ligation (Dirksen et al., 2006[Dirksen, A., Hackeng, T. M. & Dawson, P. E. (2006). Angew. Chem. Int. Ed. 45, 7581-7584.]) and palladium-catalysed amination of aromatic C—H bonds with oxime esters (Tan & Hartwig, 2010[Tan, Y. & Hartwig, J. F. (2010). J. Am. Chem. Soc. 132, 3676-3677.]).

In the title compound (Fig. 1[link]), the anthracene moiety is slightly bowed, as indicated by the dihedral angles of 2.77 (4) and 2.13 (4)°, respectively, that the C2–C7 and C9–C14 rings make with the central ring. The hy­droxy­limino side chain is rotated out of the mean plane of the anthracene unit, as indicated by the C2—C1—C15—N1 torsion angle of −42.5 (1)° and C1—C15—N1—O1 torsion angle of −175.87 (8)°.

[Figure 1]
Figure 1
The title mol­ecule with labelling scheme and 50% probability displacement ellipsoids.

In the crystal, inversion-related pairs of O—H⋯N hydrogen bonds form dimers and generate R22(6) rings (Table 1[link]). These dimers form parallel stacks along the b-axis direction through offset ππ-stacking inter­actions between the anthracene moieties (Figs. 2[link] and 3[link]). The centroid–centroid distances between equivalent rings of adjacent anthracene ring systems are 3.869 (1) Å. The mean planes of the anthracene moieties are inclined by 24.43 (1)° to [010].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.954 (15) 1.937 (15) 2.8175 (12) 152.4 (13)
Symmetry code: (i) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
Packing viewed along the b-axis direction, with O—H⋯N hydrogen bonds and offset π-stacking inter­actions shown, respectively, as red and orange dashed lines.
[Figure 3]
Figure 3
Packing viewed along the a-axis direction, with O—H⋯N hydrogen bonds and offset π-stacking inter­actions shown, respectively, as red and orange dashed lines.

Synthesis and crystallization

A solution of 2.00 g (9.70 mmol) 9-anthraldehyde, 1.35 g) (19.39 mmol) hydroxyl­amine hydro­chloride and 775.74 mg) (19.39 mmol) of sodium hydroxide in 30 ml of ethanol and 10 ml of water, was refluxed for 30 min. The mixture reaction was neutralized with a solution of HCl, and extracted with di­chloro­methane. The solvent was removed under reduced pressure and the residue was recrystallized from ethanol ethanol to afford the title compound as light-yellow plates.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C15H11NO
Mr 221.25
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 13.463 (3), 3.8694 (8), 20.377 (4)
β (°) 101.023 (3)
V3) 1041.9 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.38 × 0.26 × 0.06
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.93, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 18825, 2790, 2217
Rint 0.035
(sin θ/λ)max−1) 0.685
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.125, 1.04
No. of reflections 2790
No. of parameters 198
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.44, −0.24
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(E)-N-[(Anthracen-9-yl)methylidene]hydroxylamine top
Crystal data top
C15H11NOF(000) = 464
Mr = 221.25Dx = 1.410 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.463 (3) ÅCell parameters from 7044 reflections
b = 3.8694 (8) Åθ = 2.3–29.1°
c = 20.377 (4) ŵ = 0.09 mm1
β = 101.023 (3)°T = 100 K
V = 1041.9 (4) Å3Plate, light yellow
Z = 40.38 × 0.26 × 0.06 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2790 independent reflections
Radiation source: fine-focus sealed tube2217 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 8.3333 pixels mm-1θmax = 29.1°, θmin = 1.5°
φ and ω scansh = 1818
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 55
Tmin = 0.93, Tmax = 0.99l = 2727
18825 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: difference Fourier map
wR(F2) = 0.125All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0909P)2]
where P = (Fo2 + 2Fc2)/3
2790 reflections(Δ/σ)max < 0.001
198 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.24 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 15 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.54777 (5)0.21769 (19)0.45469 (4)0.0199 (2)
H10.5653 (11)0.309 (4)0.4989 (8)0.042 (4)*
N10.45330 (6)0.3719 (2)0.43123 (4)0.0168 (2)
C10.31053 (7)0.3734 (2)0.34044 (5)0.0140 (2)
C20.23196 (7)0.4734 (2)0.37368 (5)0.0138 (2)
C30.23542 (7)0.4212 (3)0.44355 (5)0.0164 (2)
H30.2936 (10)0.307 (3)0.4700 (6)0.024 (3)*
C40.15692 (7)0.5188 (3)0.47305 (5)0.0188 (2)
H40.1611 (10)0.475 (4)0.5242 (7)0.029 (3)*
C50.06890 (8)0.6760 (3)0.43518 (5)0.0194 (2)
H50.0123 (11)0.754 (3)0.4558 (7)0.029 (3)*
C60.06159 (7)0.7253 (2)0.36835 (5)0.0177 (2)
H60.0024 (10)0.828 (3)0.3405 (6)0.023 (3)*
C70.14162 (7)0.6253 (2)0.33526 (5)0.0148 (2)
C80.13267 (7)0.6712 (2)0.26652 (5)0.0159 (2)
H80.0719 (9)0.784 (3)0.2404 (6)0.019 (3)*
C90.20768 (7)0.5601 (2)0.23283 (5)0.0149 (2)
C100.19705 (7)0.6009 (3)0.16186 (5)0.0168 (2)
H100.1347 (11)0.712 (3)0.1382 (6)0.029 (3)*
C110.26954 (7)0.4857 (3)0.12932 (5)0.0190 (2)
H110.2620 (9)0.508 (4)0.0774 (6)0.028 (3)*
C120.35777 (8)0.3213 (3)0.16552 (5)0.0186 (2)
H120.4090 (10)0.228 (3)0.1414 (6)0.024 (3)*
C130.37252 (8)0.2879 (3)0.23316 (5)0.0166 (2)
H130.4333 (10)0.174 (3)0.2577 (6)0.025 (3)*
C140.29814 (7)0.4042 (2)0.26996 (5)0.0141 (2)
C150.40798 (7)0.2371 (3)0.37667 (5)0.0165 (2)
H150.4403 (9)0.043 (3)0.3571 (6)0.023 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0135 (4)0.0277 (4)0.0173 (4)0.0058 (3)0.0002 (3)0.0001 (3)
N10.0120 (4)0.0192 (4)0.0184 (4)0.0016 (3)0.0008 (3)0.0028 (3)
C10.0129 (4)0.0131 (4)0.0154 (5)0.0015 (3)0.0010 (3)0.0007 (3)
C20.0130 (4)0.0132 (4)0.0151 (5)0.0013 (3)0.0022 (3)0.0006 (3)
C30.0149 (4)0.0182 (5)0.0153 (5)0.0016 (4)0.0014 (4)0.0000 (4)
C40.0190 (5)0.0211 (5)0.0168 (5)0.0025 (4)0.0045 (4)0.0011 (4)
C50.0178 (5)0.0197 (5)0.0219 (5)0.0001 (4)0.0070 (4)0.0032 (4)
C60.0140 (5)0.0165 (5)0.0219 (5)0.0014 (4)0.0022 (4)0.0013 (4)
C70.0138 (4)0.0128 (4)0.0176 (5)0.0014 (3)0.0026 (4)0.0012 (3)
C80.0133 (4)0.0149 (4)0.0182 (5)0.0003 (4)0.0001 (4)0.0006 (4)
C90.0144 (4)0.0136 (4)0.0159 (5)0.0028 (3)0.0013 (4)0.0001 (3)
C100.0157 (5)0.0181 (5)0.0155 (5)0.0038 (4)0.0002 (4)0.0012 (4)
C110.0206 (5)0.0207 (5)0.0157 (5)0.0056 (4)0.0034 (4)0.0008 (4)
C120.0189 (5)0.0191 (5)0.0192 (5)0.0037 (4)0.0074 (4)0.0025 (4)
C130.0141 (5)0.0164 (5)0.0192 (5)0.0015 (4)0.0030 (4)0.0006 (4)
C140.0131 (4)0.0129 (4)0.0161 (5)0.0024 (3)0.0024 (4)0.0015 (3)
C150.0157 (5)0.0168 (5)0.0169 (5)0.0015 (4)0.0029 (4)0.0006 (3)
Geometric parameters (Å, º) top
O1—N11.4036 (10)C6—H60.971 (13)
O1—H10.954 (15)C7—C81.3940 (14)
N1—C151.2733 (13)C8—C91.3932 (14)
C1—C21.4148 (12)C8—H80.989 (12)
C1—C141.4188 (13)C9—C101.4344 (14)
C1—C151.4745 (14)C9—C141.4377 (14)
C2—C31.4300 (13)C10—C111.3561 (14)
C2—C71.4399 (13)C10—H100.984 (14)
C3—C41.3652 (13)C11—C121.4228 (15)
C3—H30.968 (13)C11—H111.047 (12)
C4—C51.4214 (14)C12—C131.3605 (15)
C4—H41.047 (13)C12—H120.988 (13)
C5—C61.3598 (15)C13—C141.4334 (13)
C5—H50.985 (14)C13—H130.980 (13)
C6—C71.4294 (13)C15—H150.988 (12)
N1—O1—H1102.1 (9)C9—C8—H8118.3 (7)
C15—N1—O1112.02 (8)C7—C8—H8120.0 (7)
C2—C1—C14120.51 (8)C8—C9—C10121.39 (9)
C2—C1—C15122.23 (8)C8—C9—C14119.40 (9)
C14—C1—C15117.26 (8)C10—C9—C14119.20 (9)
C1—C2—C3123.58 (8)C11—C10—C9120.96 (9)
C1—C2—C7118.85 (8)C11—C10—H10122.1 (7)
C3—C2—C7117.54 (8)C9—C10—H10116.9 (7)
C4—C3—C2121.25 (9)C10—C11—C12120.06 (9)
C4—C3—H3119.6 (7)C10—C11—H11121.8 (7)
C2—C3—H3119.2 (7)C12—C11—H11118.1 (7)
C3—C4—C5120.96 (9)C13—C12—C11120.89 (9)
C3—C4—H4119.6 (7)C13—C12—H12119.2 (8)
C5—C4—H4119.4 (7)C11—C12—H12119.9 (8)
C6—C5—C4119.80 (9)C12—C13—C14121.26 (9)
C6—C5—H5118.0 (8)C12—C13—H13120.4 (7)
C4—C5—H5122.2 (8)C14—C13—H13118.3 (7)
C5—C6—C7121.18 (9)C1—C14—C13122.99 (9)
C5—C6—H6122.5 (7)C1—C14—C9119.46 (8)
C7—C6—H6116.4 (7)C13—C14—C9117.55 (9)
C8—C7—C6120.76 (9)N1—C15—C1121.50 (9)
C8—C7—C2120.00 (8)N1—C15—H15119.2 (7)
C6—C7—C2119.24 (9)C1—C15—H15119.2 (7)
C9—C8—C7121.62 (9)
C14—C1—C2—C3174.19 (8)C8—C9—C10—C11178.66 (9)
C15—C1—C2—C36.34 (14)C14—C9—C10—C111.97 (14)
C14—C1—C2—C73.51 (13)C9—C10—C11—C120.02 (15)
C15—C1—C2—C7175.96 (8)C10—C11—C12—C132.31 (15)
C1—C2—C3—C4179.17 (9)C11—C12—C13—C142.53 (15)
C7—C2—C3—C41.44 (14)C2—C1—C14—C13176.13 (8)
C2—C3—C4—C50.00 (15)C15—C1—C14—C134.38 (13)
C3—C4—C5—C61.12 (15)C2—C1—C14—C94.20 (14)
C4—C5—C6—C70.72 (15)C15—C1—C14—C9175.29 (8)
C5—C6—C7—C8178.83 (9)C12—C13—C14—C1179.84 (9)
C5—C6—C7—C20.75 (14)C12—C13—C14—C90.49 (14)
C1—C2—C7—C80.05 (13)C8—C9—C14—C11.43 (14)
C3—C2—C7—C8177.79 (8)C10—C9—C14—C1177.96 (8)
C1—C2—C7—C6179.63 (8)C8—C9—C14—C13178.89 (8)
C3—C2—C7—C61.79 (13)C10—C9—C14—C131.72 (13)
C6—C7—C8—C9176.82 (8)O1—N1—C15—C1175.87 (8)
C2—C7—C8—C92.75 (14)C2—C1—C15—N142.53 (14)
C7—C8—C9—C10178.57 (8)C14—C1—C15—N1136.96 (10)
C7—C8—C9—C142.05 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.954 (15)1.937 (15)2.8175 (12)152.4 (13)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationAl Houari, G., Kerbal, A., Miqueu, K., Sotiropoulos, J. M., Garrigues, B., Benhadda, T., Benlarbi, N., Safir, I. & FilaliBaba, M. (2008). J. Marocain Chim. Heterocycl. 7, 16–23.  CAS Google Scholar
First citationBotella, L. & Nájera, C. (2002). Angew. Chem. Int. Ed. 41, 179–181.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDirksen, A., Hackeng, T. M. & Dawson, P. E. (2006). Angew. Chem. Int. Ed. 45, 7581–7584.  Web of Science CrossRef CAS Google Scholar
First citationPark, H. J., Lee, K., Park, S. J., Ahn, B., Lee, J. C., Cho, H. Y. & Lee, K. I. (2005). Bioorg. Med. Chem. Lett. 15, 3307–3312.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTan, Y. & Hartwig, J. F. (2010). J. Am. Chem. Soc. 132, 3676–3677.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationTribak, Z., Kandri Rodi, Y., Haoudi, A., Skalli, M. K., Mazzah, A., Akhazzane, M. & Essassi, E. M. (2017). J. Marocain Chim. Heterocycl. 16, 58–65.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds