organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3′-(4-Chloro­phen­yl)-4′-phenyl-3H,4′H-spiro­[benzo[b]thio­phene-2,5′-isoxazol]-3-one

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique, Faculté des Sciences Dhar EL Mahraz, Université Sidi Mohamed Ben Abdellah, BP 1796, 30000, Fès, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: m.bakhouch@yahoo.fr

Edited by J. Simpson, University of Otago, New Zealand (Received 1 May 2017; accepted 5 May 2017; online 12 May 2017)

The mol­ecule of the title compound, C22H14ClNO2S, is built up from an isoxazole ring linked to a benzo­thio­phene ring system with additional phenyl and 4-chloro­phenyl substituents. The benzo­thio­phene system is virtually planar with the largest deviation from the mean plane being 0.041 (2) Å, while the isoxazole ring adopts an envelope conformation. The plane of the benzo­thio­phene ring system is almost perpendicular to those of the phenyl and the 4-chloro­phenyl rings, with dihedral angles of 64.76 (10) and 82.81 (10)°, respectively, between them. The phenyl ring is inclined by 85.76 (12)° to the plane of the 4-chloro­phenyl ring, which in turn lies close to the plane of the isoxazole ring. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds and offset ππ inter­actions between the aromatic rings of adjacent benzo­thio­phene ring systems. These combine to form a three-dimensional network structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Spiro-isoxazolines exhibit a wide range of applications in many fields (Al Houari et al., 2008[Al Houari, G., Kerbal, A., Bennani, B., Baba, M. F., Daoudi, M. & Ben Hadda, T. (2008). ARKIVOC, xii, 42-50.]; Hwang et al., 2005[Hwang, I. T., Kim, H. R., Jeon, D. J., Hong, K. S., Song, J. H. & Cho, K. Y. (2005). J. Agric. Food Chem. 53, 8639-8643.]). Furthermore, they act as suitable precursors to a number of mol­ecules with biological activities (Bode & Carreira, 2001[Bode, J. W. & Carreira, E. M. (2001). Org. Lett. 3, 1587-1590.]; Tang et al., 2010[Tang, S., He, J., Sun, Y., He, L. & She, X. (2010). J. Org. Chem. 75, 1961-1966.]). The 1,3-dipolar cyclo­addition reaction of nitrile oxides to olefins is an efficient synthetic route to these heterocyclic systems in a one-pot reaction. In an extension of work in this area by our group (Bakhouch et al., 2014[Bakhouch, M., Al Houari, G., El Yazidi, M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o587.]; Boughaleb et al., 2011[Boughaleb, A., Zouihri, H., Gmouh, S., Kerbal, A. & El yazidi, M. (2011). Acta Cryst. E67, o1850.]), we have investigated the 1,3-dipolar cyclo­addition reaction of nitrile oxides with thio­aurones as the dipolarophile with an exocyclic double bond in order to determine if there were selectivity problems with cyclo­addition reaction. We report herein the 1,3-dipolar cyclo­addition reaction between p-chloro­benzo­nitriloxide and (Z)-2-benzylidene­benzo[b]thio­phen-3-one. The reaction is regiospecific and leads only to a single regioisomer as a racemic adduct. This regiospecifity was established by spectroscopic analysis IR, 1H NMR and 13C NMR and confirmed by the X-ray study.

In the title compound, the fused five- and six-membered benzo­thio­phene ring system is almost planar with the maximum deviation from the mean plane being 0.041 (2) Å at C8. The plane of this ring system makes dihedral angles of 64.76 (10) and 82.81 (10)°, respectively, with the planes through the phenyl and the 4-chloro­phenyl rings (Fig. 1[link]). The isoxazole ring (N1/O2/C8–C10) adopts an envelope conformation with atom C8 as the flap, as indicated by the total puckering amplitude Q2 = 0.2377 (19) Å, and spherical polar angle φ2 = 316.8 (5)°. The dihedral angle between the mean plane of the phenyl ring and that of the 4-chloro­phenyl group is 85.76 (12)°.

[Figure 1]
Figure 1
The mol­ecule of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

In the crystal, mol­ecules are linked by weak C9—H9⋯O2 hydrogen bonds (Table 1[link]) and ππ inter­actions between the C1–C6 benzene rings of the benzo­thio­phene ring system [inter­centroid distance 3.697 (2) Å], forming a three-dimensional network as shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O2i 0.98 2.66 3.574 (2) 155
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].
[Figure 2]
Figure 2
Crystal packing for the title compound, showing mol­ecules linked by hydrogen bonds (blue dashed lines) and ππ inter­actions (green lines).

Synthesis and crystallization

In a 100 ml flask, 2 mmol of (Z)-2-benzylidenebenzo[b]thiophen-3-one and 2.2 mmol of p-chloro­benzo­nitriloxide were dissolved in 20 ml of chloro­form. The mixture was cooled to 273 K under magnetic stirring in an ice bath. Then 15 ml of bleach (NaOCl, 24° Chl) was added dropwise without exceeding a temperature of 278 K. The mixture was left under magnetic stirring for 4 h at room temperature, washed with water until neutral pH and dried over sodium sulfate (Na2SO4). The solvent was then removed under reduced pressure and the resulting residue was crystallized by slow evaporation from ethanol solution (yield: 85%; m.p.: 475 K) giving colourless block-like.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C22H14ClNO2S
Mr 391.85
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 296
a, b, c (Å) 9.2518 (2), 10.3432 (2), 38.5674 (7)
V3) 3690.64 (13)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.34
Crystal size (mm) 0.36 × 0.28 × 0.25
 
Data collection
Diffractometer Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.639, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 70305, 4400, 3106
Rint 0.074
(sin θ/λ)max−1) 0.658
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.128, 1.02
No. of reflections 4400
No. of parameters 244
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.36
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).

3'-(4-Chlorophenyl)-4'-phenyl-3H,4'H-spiro[benzo[b]thiophene-2,5'-isoxazol]-3-one top
Crystal data top
C22H14ClNO2SDx = 1.410 Mg m3
Mr = 391.85Melting point: 475 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
a = 9.2518 (2) ÅCell parameters from 4400 reflections
b = 10.3432 (2) Åθ = 3.0–27.9°
c = 38.5674 (7) ŵ = 0.34 mm1
V = 3690.64 (13) Å3T = 296 K
Z = 8Block, colourless
F(000) = 16160.36 × 0.28 × 0.25 mm
Data collection top
Bruker X8 APEX
diffractometer
4400 independent reflections
Radiation source: fine-focus sealed tube3106 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
φ and ω scansθmax = 27.9°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1212
Tmin = 0.639, Tmax = 0.747k = 1313
70305 measured reflectionsl = 5049
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0527P)2 + 2.1391P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.002
4400 reflectionsΔρmax = 0.28 e Å3
244 parametersΔρmin = 0.36 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2379 (2)0.5465 (2)0.51932 (5)0.0419 (5)
C20.2730 (3)0.5365 (3)0.48431 (6)0.0593 (7)
H20.35070.48650.47700.071*
C30.1886 (4)0.6036 (3)0.46081 (7)0.0736 (9)
H30.21140.59920.43740.088*
C40.0723 (4)0.6764 (3)0.47105 (7)0.0706 (8)
H40.01750.71990.45460.085*
C50.0364 (3)0.6854 (2)0.50560 (6)0.0531 (6)
H50.04280.73410.51270.064*
C60.1210 (2)0.6202 (2)0.52966 (5)0.0381 (5)
C70.0987 (2)0.6213 (2)0.56734 (5)0.0374 (4)
C80.2113 (2)0.53115 (19)0.58570 (5)0.0343 (4)
C90.27888 (19)0.59366 (19)0.61807 (5)0.0316 (4)
H90.27340.68810.61650.038*
C100.17414 (19)0.54358 (19)0.64512 (5)0.0324 (4)
C110.1640 (2)0.58866 (19)0.68110 (5)0.0345 (4)
C120.0650 (2)0.5337 (2)0.70385 (6)0.0498 (6)
H120.00180.47050.69580.060*
C130.0587 (3)0.5714 (3)0.73808 (6)0.0565 (6)
H130.00690.53300.75320.068*
C140.1505 (2)0.6663 (2)0.74963 (6)0.0478 (5)
C150.2466 (3)0.7254 (3)0.72761 (6)0.0513 (6)
H150.30630.79130.73560.062*
C160.2536 (2)0.6858 (2)0.69323 (6)0.0437 (5)
H160.31900.72490.67820.052*
C170.4330 (2)0.5510 (2)0.62577 (5)0.0345 (4)
C180.4601 (2)0.4323 (2)0.64096 (7)0.0483 (6)
H180.38350.37990.64770.058*
C190.6009 (3)0.3912 (3)0.64614 (8)0.0638 (7)
H190.61840.31140.65650.077*
C200.7146 (3)0.4674 (3)0.63614 (7)0.0644 (8)
H200.80900.43910.63950.077*
C210.6887 (2)0.5858 (3)0.62118 (7)0.0594 (7)
H210.76580.63760.61440.071*
C220.5481 (2)0.6283 (2)0.61618 (6)0.0452 (5)
H220.53130.70910.60640.054*
N10.09749 (19)0.44767 (17)0.63487 (4)0.0400 (4)
O10.01108 (18)0.67623 (17)0.58298 (4)0.0557 (4)
O20.12943 (16)0.42202 (14)0.59942 (4)0.0427 (4)
Cl10.14661 (9)0.71124 (9)0.79305 (2)0.0767 (3)
S10.33513 (7)0.47121 (7)0.55304 (2)0.05245 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0456 (11)0.0433 (12)0.0368 (10)0.0099 (10)0.0034 (9)0.0048 (9)
C20.0639 (16)0.0671 (17)0.0468 (14)0.0162 (14)0.0149 (12)0.0139 (13)
C30.112 (3)0.078 (2)0.0310 (12)0.0293 (19)0.0042 (15)0.0040 (13)
C40.110 (2)0.0641 (17)0.0381 (13)0.0108 (18)0.0218 (15)0.0061 (13)
C50.0694 (16)0.0451 (13)0.0450 (13)0.0001 (12)0.0160 (12)0.0007 (11)
C60.0469 (11)0.0354 (10)0.0320 (10)0.0044 (9)0.0028 (9)0.0005 (8)
C70.0396 (10)0.0391 (11)0.0336 (10)0.0051 (9)0.0048 (9)0.0020 (9)
C80.0345 (10)0.0349 (10)0.0334 (10)0.0016 (8)0.0001 (8)0.0010 (8)
C90.0326 (9)0.0295 (10)0.0327 (9)0.0009 (8)0.0000 (8)0.0007 (8)
C100.0277 (9)0.0352 (10)0.0344 (10)0.0007 (8)0.0010 (7)0.0027 (8)
C110.0317 (9)0.0364 (10)0.0353 (10)0.0025 (8)0.0000 (8)0.0027 (8)
C120.0462 (12)0.0541 (14)0.0492 (13)0.0101 (11)0.0104 (10)0.0043 (11)
C130.0591 (14)0.0650 (16)0.0454 (13)0.0045 (13)0.0185 (11)0.0004 (12)
C140.0493 (12)0.0584 (14)0.0358 (11)0.0122 (11)0.0014 (10)0.0027 (11)
C150.0522 (13)0.0583 (15)0.0434 (12)0.0070 (11)0.0060 (11)0.0059 (11)
C160.0416 (11)0.0502 (13)0.0394 (11)0.0067 (10)0.0014 (10)0.0010 (10)
C170.0304 (9)0.0387 (11)0.0343 (10)0.0017 (8)0.0005 (8)0.0050 (8)
C180.0380 (11)0.0448 (13)0.0620 (15)0.0028 (10)0.0055 (10)0.0048 (11)
C190.0500 (14)0.0637 (17)0.0775 (19)0.0191 (13)0.0159 (13)0.0027 (14)
C200.0346 (12)0.093 (2)0.0660 (17)0.0149 (14)0.0103 (11)0.0278 (16)
C210.0344 (11)0.088 (2)0.0561 (15)0.0131 (12)0.0079 (10)0.0206 (14)
C220.0400 (11)0.0548 (14)0.0409 (12)0.0076 (10)0.0048 (9)0.0033 (10)
N10.0397 (9)0.0443 (10)0.0359 (9)0.0052 (8)0.0012 (7)0.0032 (8)
O10.0493 (9)0.0667 (11)0.0510 (10)0.0194 (8)0.0012 (8)0.0049 (8)
O20.0510 (9)0.0388 (8)0.0383 (8)0.0096 (7)0.0036 (7)0.0007 (6)
Cl10.0799 (5)0.1115 (7)0.0388 (3)0.0083 (4)0.0024 (3)0.0163 (4)
S10.0477 (3)0.0635 (4)0.0462 (3)0.0151 (3)0.0033 (3)0.0106 (3)
Geometric parameters (Å, º) top
C1—C61.382 (3)C11—C121.390 (3)
C1—C21.393 (3)C12—C131.378 (3)
C1—S11.763 (2)C12—H120.9300
C2—C31.383 (4)C13—C141.372 (4)
C2—H20.9300C13—H130.9300
C3—C41.371 (5)C14—C151.373 (3)
C3—H30.9300C14—Cl11.738 (2)
C4—C51.376 (4)C15—C161.390 (3)
C4—H40.9300C15—H150.9300
C5—C61.389 (3)C16—H160.9300
C5—H50.9300C17—C221.383 (3)
C6—C71.468 (3)C17—C181.383 (3)
C7—O11.160 (3)C18—C191.385 (3)
C7—C81.567 (3)C18—H180.9300
C8—O21.458 (2)C19—C201.369 (4)
C8—C91.539 (3)C19—H190.9300
C8—S11.812 (2)C20—C211.375 (4)
C9—C101.515 (3)C20—H200.9300
C9—C171.521 (3)C21—C221.386 (3)
C9—H90.9800C21—H210.9300
C10—N11.282 (3)C22—H220.9300
C10—C111.467 (3)N1—O21.424 (2)
C11—C161.383 (3)
C6—C1—C2120.2 (2)C12—C11—C10120.59 (19)
C6—C1—S1115.48 (16)C13—C12—C11121.1 (2)
C2—C1—S1124.3 (2)C13—C12—H12119.4
C3—C2—C1117.8 (3)C11—C12—H12119.4
C3—C2—H2121.1C14—C13—C12119.2 (2)
C1—C2—H2121.1C14—C13—H13120.4
C4—C3—C2122.0 (2)C12—C13—H13120.4
C4—C3—H3119.0C13—C14—C15121.2 (2)
C2—C3—H3119.0C13—C14—Cl1119.41 (19)
C3—C4—C5120.4 (3)C15—C14—Cl1119.37 (19)
C3—C4—H4119.8C14—C15—C16119.3 (2)
C5—C4—H4119.8C14—C15—H15120.4
C4—C5—C6118.5 (3)C16—C15—H15120.4
C4—C5—H5120.7C11—C16—C15120.6 (2)
C6—C5—H5120.7C11—C16—H16119.7
C1—C6—C5121.1 (2)C15—C16—H16119.7
C1—C6—C7113.57 (19)C22—C17—C18119.1 (2)
C5—C6—C7125.3 (2)C22—C17—C9120.16 (19)
O1—C7—C6128.1 (2)C18—C17—C9120.67 (18)
O1—C7—C8121.42 (19)C17—C18—C19120.3 (2)
C6—C7—C8110.47 (18)C17—C18—H18119.8
O2—C8—C9104.00 (15)C19—C18—H18119.8
O2—C8—C7106.23 (15)C20—C19—C18120.3 (3)
C9—C8—C7112.77 (16)C20—C19—H19119.8
O2—C8—S1108.40 (13)C18—C19—H19119.8
C9—C8—S1116.78 (13)C19—C20—C21119.8 (2)
C7—C8—S1108.03 (13)C19—C20—H20120.1
C10—C9—C17111.45 (15)C21—C20—H20120.1
C10—C9—C898.91 (15)C20—C21—C22120.3 (2)
C17—C9—C8114.68 (16)C20—C21—H21119.9
C10—C9—H9110.4C22—C21—H21119.9
C17—C9—H9110.4C17—C22—C21120.2 (2)
C8—C9—H9110.4C17—C22—H22119.9
N1—C10—C11120.17 (18)C21—C22—H22119.9
N1—C10—C9113.95 (17)C10—N1—O2109.00 (16)
C11—C10—C9125.69 (17)N1—O2—C8108.18 (14)
C16—C11—C12118.6 (2)C1—S1—C892.23 (10)
C16—C11—C10120.84 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O2i0.982.663.574 (2)155
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAl Houari, G., Kerbal, A., Bennani, B., Baba, M. F., Daoudi, M. & Ben Hadda, T. (2008). ARKIVOC, xii, 42–50.  Google Scholar
First citationBakhouch, M., Al Houari, G., El Yazidi, M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o587.  CSD CrossRef IUCr Journals Google Scholar
First citationBode, J. W. & Carreira, E. M. (2001). Org. Lett. 3, 1587–1590.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBoughaleb, A., Zouihri, H., Gmouh, S., Kerbal, A. & El yazidi, M. (2011). Acta Cryst. E67, o1850.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHwang, I. T., Kim, H. R., Jeon, D. J., Hong, K. S., Song, J. H. & Cho, K. Y. (2005). J. Agric. Food Chem. 53, 8639–8643.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTang, S., He, J., Sun, Y., He, L. & She, X. (2010). J. Org. Chem. 75, 1961–1966.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds