organic compounds
3′-(4-Chlorophenyl)-4′-phenyl-3H,4′H-spiro[benzo[b]thiophene-2,5′-isoxazol]-3-one
aLaboratoire de Chimie Organique, Faculté des Sciences Dhar EL Mahraz, Université Sidi Mohamed Ben Abdellah, BP 1796, 30000, Fès, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: m.bakhouch@yahoo.fr
The molecule of the title compound, C22H14ClNO2S, is built up from an isoxazole ring linked to a benzothiophene ring system with additional phenyl and 4-chlorophenyl substituents. The benzothiophene system is virtually planar with the largest deviation from the mean plane being 0.041 (2) Å, while the isoxazole ring adopts an The plane of the benzothiophene ring system is almost perpendicular to those of the phenyl and the 4-chlorophenyl rings, with dihedral angles of 64.76 (10) and 82.81 (10)°, respectively, between them. The phenyl ring is inclined by 85.76 (12)° to the plane of the 4-chlorophenyl ring, which in turn lies close to the plane of the isoxazole ring. In the crystal, molecules are linked by weak C—H⋯O hydrogen bonds and offset π–π interactions between the aromatic rings of adjacent benzothiophene ring systems. These combine to form a three-dimensional network structure.
Keywords: crystal structure; 4-chlorophenyl; benzothiophene; isoxazol; hydrogen bonds; π–π stacking.
CCDC reference: 1548081
Structure description
Spiro-isoxazolines exhibit a wide range of applications in many fields (Al Houari et al., 2008; Hwang et al., 2005). Furthermore, they act as suitable precursors to a number of molecules with biological activities (Bode & Carreira, 2001; Tang et al., 2010). The 1,3-dipolar cycloaddition reaction of to is an efficient synthetic route to these heterocyclic systems in a one-pot reaction. In an extension of work in this area by our group (Bakhouch et al., 2014; Boughaleb et al., 2011), we have investigated the 1,3-dipolar cycloaddition reaction of with thioaurones as the dipolarophile with an exocyclic double bond in order to determine if there were selectivity problems with cycloaddition reaction. We report herein the 1,3-dipolar cycloaddition reaction between p-chlorobenzonitriloxide and (Z)-2-benzylidenebenzo[b]thiophen-3-one. The reaction is regiospecific and leads only to a single regioisomer as a racemic adduct. This regiospecifity was established by spectroscopic analysis IR, 1H NMR and 13C NMR and confirmed by the X-ray study.
In the title compound, the fused five- and six-membered benzothiophene ring system is almost planar with the maximum deviation from the mean plane being 0.041 (2) Å at C8. The plane of this ring system makes dihedral angles of 64.76 (10) and 82.81 (10)°, respectively, with the planes through the phenyl and the 4-chlorophenyl rings (Fig. 1). The isoxazole ring (N1/O2/C8–C10) adopts an with atom C8 as the flap, as indicated by the total puckering amplitude Q2 = 0.2377 (19) Å, and spherical polar angle φ2 = 316.8 (5)°. The dihedral angle between the mean plane of the phenyl ring and that of the 4-chlorophenyl group is 85.76 (12)°.
In the crystal, molecules are linked by weak C9—H9⋯O2 hydrogen bonds (Table 1) and π–π interactions between the C1–C6 benzene rings of the benzothiophene ring system [intercentroid distance 3.697 (2) Å], forming a three-dimensional network as shown in Fig. 2.
Synthesis and crystallization
In a 100 ml flask, 2 mmol of (Z)-2-benzylidenebenzo[b]thiophen-3-one and 2.2 mmol of p-chlorobenzonitriloxide were dissolved in 20 ml of chloroform. The mixture was cooled to 273 K under magnetic stirring in an ice bath. Then 15 ml of bleach (NaOCl, 24° Chl) was added dropwise without exceeding a temperature of 278 K. The mixture was left under magnetic stirring for 4 h at room temperature, washed with water until neutral pH and dried over sodium sulfate (Na2SO4). The solvent was then removed under reduced pressure and the resulting residue was crystallized by slow evaporation from ethanol solution (yield: 85%; m.p.: 475 K) giving colourless block-like.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1548081
https://doi.org/10.1107/S2414314617006770/sj4110sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617006770/sj4110Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314617006770/sj4110Isup3.cml
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).C22H14ClNO2S | Dx = 1.410 Mg m−3 |
Mr = 391.85 | Melting point: 475 K |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
a = 9.2518 (2) Å | Cell parameters from 4400 reflections |
b = 10.3432 (2) Å | θ = 3.0–27.9° |
c = 38.5674 (7) Å | µ = 0.34 mm−1 |
V = 3690.64 (13) Å3 | T = 296 K |
Z = 8 | Block, colourless |
F(000) = 1616 | 0.36 × 0.28 × 0.25 mm |
Bruker X8 APEX diffractometer | 4400 independent reflections |
Radiation source: fine-focus sealed tube | 3106 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.074 |
φ and ω scans | θmax = 27.9°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −12→12 |
Tmin = 0.639, Tmax = 0.747 | k = −13→13 |
70305 measured reflections | l = −50→49 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.047 | H-atom parameters constrained |
wR(F2) = 0.128 | w = 1/[σ2(Fo2) + (0.0527P)2 + 2.1391P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.002 |
4400 reflections | Δρmax = 0.28 e Å−3 |
244 parameters | Δρmin = −0.36 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.2379 (2) | 0.5465 (2) | 0.51932 (5) | 0.0419 (5) | |
C2 | 0.2730 (3) | 0.5365 (3) | 0.48431 (6) | 0.0593 (7) | |
H2 | 0.3507 | 0.4865 | 0.4770 | 0.071* | |
C3 | 0.1886 (4) | 0.6036 (3) | 0.46081 (7) | 0.0736 (9) | |
H3 | 0.2114 | 0.5992 | 0.4374 | 0.088* | |
C4 | 0.0723 (4) | 0.6764 (3) | 0.47105 (7) | 0.0706 (8) | |
H4 | 0.0175 | 0.7199 | 0.4546 | 0.085* | |
C5 | 0.0364 (3) | 0.6854 (2) | 0.50560 (6) | 0.0531 (6) | |
H5 | −0.0428 | 0.7341 | 0.5127 | 0.064* | |
C6 | 0.1210 (2) | 0.6202 (2) | 0.52966 (5) | 0.0381 (5) | |
C7 | 0.0987 (2) | 0.6213 (2) | 0.56734 (5) | 0.0374 (4) | |
C8 | 0.2113 (2) | 0.53115 (19) | 0.58570 (5) | 0.0343 (4) | |
C9 | 0.27888 (19) | 0.59366 (19) | 0.61807 (5) | 0.0316 (4) | |
H9 | 0.2734 | 0.6881 | 0.6165 | 0.038* | |
C10 | 0.17414 (19) | 0.54358 (19) | 0.64512 (5) | 0.0324 (4) | |
C11 | 0.1640 (2) | 0.58866 (19) | 0.68110 (5) | 0.0345 (4) | |
C12 | 0.0650 (2) | 0.5337 (2) | 0.70385 (6) | 0.0498 (6) | |
H12 | 0.0018 | 0.4705 | 0.6958 | 0.060* | |
C13 | 0.0587 (3) | 0.5714 (3) | 0.73808 (6) | 0.0565 (6) | |
H13 | −0.0069 | 0.5330 | 0.7532 | 0.068* | |
C14 | 0.1505 (2) | 0.6663 (2) | 0.74963 (6) | 0.0478 (5) | |
C15 | 0.2466 (3) | 0.7254 (3) | 0.72761 (6) | 0.0513 (6) | |
H15 | 0.3063 | 0.7913 | 0.7356 | 0.062* | |
C16 | 0.2536 (2) | 0.6858 (2) | 0.69323 (6) | 0.0437 (5) | |
H16 | 0.3190 | 0.7249 | 0.6782 | 0.052* | |
C17 | 0.4330 (2) | 0.5510 (2) | 0.62577 (5) | 0.0345 (4) | |
C18 | 0.4601 (2) | 0.4323 (2) | 0.64096 (7) | 0.0483 (6) | |
H18 | 0.3835 | 0.3799 | 0.6477 | 0.058* | |
C19 | 0.6009 (3) | 0.3912 (3) | 0.64614 (8) | 0.0638 (7) | |
H19 | 0.6184 | 0.3114 | 0.6565 | 0.077* | |
C20 | 0.7146 (3) | 0.4674 (3) | 0.63614 (7) | 0.0644 (8) | |
H20 | 0.8090 | 0.4391 | 0.6395 | 0.077* | |
C21 | 0.6887 (2) | 0.5858 (3) | 0.62118 (7) | 0.0594 (7) | |
H21 | 0.7658 | 0.6376 | 0.6144 | 0.071* | |
C22 | 0.5481 (2) | 0.6283 (2) | 0.61618 (6) | 0.0452 (5) | |
H22 | 0.5313 | 0.7091 | 0.6064 | 0.054* | |
N1 | 0.09749 (19) | 0.44767 (17) | 0.63487 (4) | 0.0400 (4) | |
O1 | 0.01108 (18) | 0.67623 (17) | 0.58298 (4) | 0.0557 (4) | |
O2 | 0.12943 (16) | 0.42202 (14) | 0.59942 (4) | 0.0427 (4) | |
Cl1 | 0.14661 (9) | 0.71124 (9) | 0.79305 (2) | 0.0767 (3) | |
S1 | 0.33513 (7) | 0.47121 (7) | 0.55304 (2) | 0.05245 (18) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0456 (11) | 0.0433 (12) | 0.0368 (10) | −0.0099 (10) | 0.0034 (9) | −0.0048 (9) |
C2 | 0.0639 (16) | 0.0671 (17) | 0.0468 (14) | −0.0162 (14) | 0.0149 (12) | −0.0139 (13) |
C3 | 0.112 (3) | 0.078 (2) | 0.0310 (12) | −0.0293 (19) | 0.0042 (15) | −0.0040 (13) |
C4 | 0.110 (2) | 0.0641 (17) | 0.0381 (13) | −0.0108 (18) | −0.0218 (15) | 0.0061 (13) |
C5 | 0.0694 (16) | 0.0451 (13) | 0.0450 (13) | 0.0001 (12) | −0.0160 (12) | 0.0007 (11) |
C6 | 0.0469 (11) | 0.0354 (10) | 0.0320 (10) | −0.0044 (9) | −0.0028 (9) | −0.0005 (8) |
C7 | 0.0396 (10) | 0.0391 (11) | 0.0336 (10) | −0.0051 (9) | −0.0048 (9) | 0.0020 (9) |
C8 | 0.0345 (10) | 0.0349 (10) | 0.0334 (10) | 0.0016 (8) | 0.0001 (8) | 0.0010 (8) |
C9 | 0.0326 (9) | 0.0295 (10) | 0.0327 (9) | −0.0009 (8) | 0.0000 (8) | 0.0007 (8) |
C10 | 0.0277 (9) | 0.0352 (10) | 0.0344 (10) | −0.0007 (8) | −0.0010 (7) | 0.0027 (8) |
C11 | 0.0317 (9) | 0.0364 (10) | 0.0353 (10) | 0.0025 (8) | 0.0000 (8) | 0.0027 (8) |
C12 | 0.0462 (12) | 0.0541 (14) | 0.0492 (13) | −0.0101 (11) | 0.0104 (10) | −0.0043 (11) |
C13 | 0.0591 (14) | 0.0650 (16) | 0.0454 (13) | −0.0045 (13) | 0.0185 (11) | −0.0004 (12) |
C14 | 0.0493 (12) | 0.0584 (14) | 0.0358 (11) | 0.0122 (11) | 0.0014 (10) | −0.0027 (11) |
C15 | 0.0522 (13) | 0.0583 (15) | 0.0434 (12) | −0.0070 (11) | −0.0060 (11) | −0.0059 (11) |
C16 | 0.0416 (11) | 0.0502 (13) | 0.0394 (11) | −0.0067 (10) | 0.0014 (10) | 0.0010 (10) |
C17 | 0.0304 (9) | 0.0387 (11) | 0.0343 (10) | −0.0017 (8) | 0.0005 (8) | −0.0050 (8) |
C18 | 0.0380 (11) | 0.0448 (13) | 0.0620 (15) | 0.0028 (10) | −0.0055 (10) | 0.0048 (11) |
C19 | 0.0500 (14) | 0.0637 (17) | 0.0775 (19) | 0.0191 (13) | −0.0159 (13) | −0.0027 (14) |
C20 | 0.0346 (12) | 0.093 (2) | 0.0660 (17) | 0.0149 (14) | −0.0103 (11) | −0.0278 (16) |
C21 | 0.0344 (11) | 0.088 (2) | 0.0561 (15) | −0.0131 (12) | 0.0079 (10) | −0.0206 (14) |
C22 | 0.0400 (11) | 0.0548 (14) | 0.0409 (12) | −0.0076 (10) | 0.0048 (9) | −0.0033 (10) |
N1 | 0.0397 (9) | 0.0443 (10) | 0.0359 (9) | −0.0052 (8) | −0.0012 (7) | 0.0032 (8) |
O1 | 0.0493 (9) | 0.0667 (11) | 0.0510 (10) | 0.0194 (8) | −0.0012 (8) | 0.0049 (8) |
O2 | 0.0510 (9) | 0.0388 (8) | 0.0383 (8) | −0.0096 (7) | −0.0036 (7) | −0.0007 (6) |
Cl1 | 0.0799 (5) | 0.1115 (7) | 0.0388 (3) | 0.0083 (4) | 0.0024 (3) | −0.0163 (4) |
S1 | 0.0477 (3) | 0.0635 (4) | 0.0462 (3) | 0.0151 (3) | 0.0033 (3) | −0.0106 (3) |
C1—C6 | 1.382 (3) | C11—C12 | 1.390 (3) |
C1—C2 | 1.393 (3) | C12—C13 | 1.378 (3) |
C1—S1 | 1.763 (2) | C12—H12 | 0.9300 |
C2—C3 | 1.383 (4) | C13—C14 | 1.372 (4) |
C2—H2 | 0.9300 | C13—H13 | 0.9300 |
C3—C4 | 1.371 (5) | C14—C15 | 1.373 (3) |
C3—H3 | 0.9300 | C14—Cl1 | 1.738 (2) |
C4—C5 | 1.376 (4) | C15—C16 | 1.390 (3) |
C4—H4 | 0.9300 | C15—H15 | 0.9300 |
C5—C6 | 1.389 (3) | C16—H16 | 0.9300 |
C5—H5 | 0.9300 | C17—C22 | 1.383 (3) |
C6—C7 | 1.468 (3) | C17—C18 | 1.383 (3) |
C7—O1 | 1.160 (3) | C18—C19 | 1.385 (3) |
C7—C8 | 1.567 (3) | C18—H18 | 0.9300 |
C8—O2 | 1.458 (2) | C19—C20 | 1.369 (4) |
C8—C9 | 1.539 (3) | C19—H19 | 0.9300 |
C8—S1 | 1.812 (2) | C20—C21 | 1.375 (4) |
C9—C10 | 1.515 (3) | C20—H20 | 0.9300 |
C9—C17 | 1.521 (3) | C21—C22 | 1.386 (3) |
C9—H9 | 0.9800 | C21—H21 | 0.9300 |
C10—N1 | 1.282 (3) | C22—H22 | 0.9300 |
C10—C11 | 1.467 (3) | N1—O2 | 1.424 (2) |
C11—C16 | 1.383 (3) | ||
C6—C1—C2 | 120.2 (2) | C12—C11—C10 | 120.59 (19) |
C6—C1—S1 | 115.48 (16) | C13—C12—C11 | 121.1 (2) |
C2—C1—S1 | 124.3 (2) | C13—C12—H12 | 119.4 |
C3—C2—C1 | 117.8 (3) | C11—C12—H12 | 119.4 |
C3—C2—H2 | 121.1 | C14—C13—C12 | 119.2 (2) |
C1—C2—H2 | 121.1 | C14—C13—H13 | 120.4 |
C4—C3—C2 | 122.0 (2) | C12—C13—H13 | 120.4 |
C4—C3—H3 | 119.0 | C13—C14—C15 | 121.2 (2) |
C2—C3—H3 | 119.0 | C13—C14—Cl1 | 119.41 (19) |
C3—C4—C5 | 120.4 (3) | C15—C14—Cl1 | 119.37 (19) |
C3—C4—H4 | 119.8 | C14—C15—C16 | 119.3 (2) |
C5—C4—H4 | 119.8 | C14—C15—H15 | 120.4 |
C4—C5—C6 | 118.5 (3) | C16—C15—H15 | 120.4 |
C4—C5—H5 | 120.7 | C11—C16—C15 | 120.6 (2) |
C6—C5—H5 | 120.7 | C11—C16—H16 | 119.7 |
C1—C6—C5 | 121.1 (2) | C15—C16—H16 | 119.7 |
C1—C6—C7 | 113.57 (19) | C22—C17—C18 | 119.1 (2) |
C5—C6—C7 | 125.3 (2) | C22—C17—C9 | 120.16 (19) |
O1—C7—C6 | 128.1 (2) | C18—C17—C9 | 120.67 (18) |
O1—C7—C8 | 121.42 (19) | C17—C18—C19 | 120.3 (2) |
C6—C7—C8 | 110.47 (18) | C17—C18—H18 | 119.8 |
O2—C8—C9 | 104.00 (15) | C19—C18—H18 | 119.8 |
O2—C8—C7 | 106.23 (15) | C20—C19—C18 | 120.3 (3) |
C9—C8—C7 | 112.77 (16) | C20—C19—H19 | 119.8 |
O2—C8—S1 | 108.40 (13) | C18—C19—H19 | 119.8 |
C9—C8—S1 | 116.78 (13) | C19—C20—C21 | 119.8 (2) |
C7—C8—S1 | 108.03 (13) | C19—C20—H20 | 120.1 |
C10—C9—C17 | 111.45 (15) | C21—C20—H20 | 120.1 |
C10—C9—C8 | 98.91 (15) | C20—C21—C22 | 120.3 (2) |
C17—C9—C8 | 114.68 (16) | C20—C21—H21 | 119.9 |
C10—C9—H9 | 110.4 | C22—C21—H21 | 119.9 |
C17—C9—H9 | 110.4 | C17—C22—C21 | 120.2 (2) |
C8—C9—H9 | 110.4 | C17—C22—H22 | 119.9 |
N1—C10—C11 | 120.17 (18) | C21—C22—H22 | 119.9 |
N1—C10—C9 | 113.95 (17) | C10—N1—O2 | 109.00 (16) |
C11—C10—C9 | 125.69 (17) | N1—O2—C8 | 108.18 (14) |
C16—C11—C12 | 118.6 (2) | C1—S1—C8 | 92.23 (10) |
C16—C11—C10 | 120.84 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9···O2i | 0.98 | 2.66 | 3.574 (2) | 155 |
Symmetry code: (i) −x+1/2, y+1/2, z. |
Acknowledgements
The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.
References
Al Houari, G., Kerbal, A., Bennani, B., Baba, M. F., Daoudi, M. & Ben Hadda, T. (2008). ARKIVOC, xii, 42–50. Google Scholar
Bakhouch, M., Al Houari, G., El Yazidi, M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o587. CSD CrossRef IUCr Journals Google Scholar
Bode, J. W. & Carreira, E. M. (2001). Org. Lett. 3, 1587–1590. Web of Science CrossRef PubMed CAS Google Scholar
Boughaleb, A., Zouihri, H., Gmouh, S., Kerbal, A. & El yazidi, M. (2011). Acta Cryst. E67, o1850. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hwang, I. T., Kim, H. R., Jeon, D. J., Hong, K. S., Song, J. H. & Cho, K. Y. (2005). J. Agric. Food Chem. 53, 8639–8643. Web of Science CrossRef PubMed CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tang, S., He, J., Sun, Y., He, L. & She, X. (2010). J. Org. Chem. 75, 1961–1966. Web of Science CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.