organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-(1H,1H,2H,2H-Perfluoro­oct­yl)-1-vinyl-4-imidazoline-2-thione

CROSSMARK_Color_square_no_text.svg

aUniversity of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 80, 6020 Innsbruck, Austria
*Correspondence e-mail: herwig.schottenberger@uibk.ac.at

Edited by J. Simpson, University of Otago, New Zealand (Received 27 April 2017; accepted 29 April 2017; online 5 May 2017)

The title compound, C13H9F13N2S, was obtained by reaction of sulfur with the corresponding quaternary salt in the presence of K2CO3. The quaternary salt in turn was obtained by alkyl­ation of 1-vinyl­imidazole. The crystal structure contains two independent mol­ecules with disordered fluoro­alkyl chains with occupancy ratios of 0.7:0.3 and 0.57:0.43.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Polyfluorinated compounds are utilized as surfactants and dispersants with numerous applications (Kovalchuk et al., 2014[Kovalchuk, N. M., Trybala, A., Starov, V., Matar, O. & Ivanova, N. (2014). Adv. Colloid Interface Sci. 210, 65-71.]; Krafft & Riess, 2009[Krafft, M. P. & Riess, J. G. (2009). Chem. Rev. 109, 1714-1792.]). Imidazoline-2-thio­nes (Laus et al., 2013[Laus, G., Kahlenberg, V., Wurst, K., Müller, T., Kopacka, H. & Schottenberger, H. (2013). Z. Naturforsch. 68b, 1239-1252.]) are versatile building blocks whose properties have been reviewed (Trzhtsinskaya & Abramova, 1991[Trzhtsinskaya, B. V. & Abramova, N. D. (1991). Sulfur Rep. 10, 389-421.]). The key advantages of these thio­nes are simple synthesis and simple derivatization. The vinyl substituent makes the title mol­ecule polymerizable, thus giving access to functionalized imidazolium-containing polymers (Anderson & Long, 2010[Anderson, E. B. & Long, T. E. (2010). Polymer, 51, 2447-2454.]). It was intended to combine these structural features in order to derive new materials with advantageous properties.

The most striking feature of the title mol­ecule (Fig. 1[link]) is the extensive disorder of the large substituent. The major component of the disordered fluoro­alkyl chain adopts the typical helical conformation (Fournier et al., 2010[Fournier, J. A., Bohn, R. K., Montgomery, J. A. & Onda, M. (2010). J. Phys. Chem. A, 114, 1118-1122.]; Jang et al., 2003[Jang, S. S., Blanco, M., Goddard, W. A., Caldwell, G. & Ross, R. B. (2003). Macromolecules, 36, 5331-5341.]) with an average CCCC twist angle (deviation from 180°) of 11°.

[Figure 1]
Figure 1
Asymmetric unit of the title compound, showing the atom labels and 50% probability displacement ellipsoids for non-H atoms. Minor disorder components are omitted for clarity.

Specific C—F⋯F—C inter­actions have been identified in fluorous mol­ecules (Baker et al., 2012[Baker, R. J., Colavita, P. E., Murphy, D. M., Platts, J. A. & Wallis, J. D. (2012). J. Phys. Chem. A, 116, 1435-1444.]; Omorodion et al., 2015[Omorodion, H., Twamley, B., Platts, J. A. & Baker, R. J. (2015). Cryst. Growth Des. 15, 2835-2841.]). Here, a short F9D⋯F12C contact of 2.797 (6) Å is observed between the two chains (Fig. 2[link]). In addition, C—H⋯S and C—H⋯F hydrogen bonds (Table 1[link]) cross-link the rod-shaped mol­ecules.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯F8Ai 0.95 2.47 3.201 (5) 133
C3′—H3′⋯F8Ci 0.95 2.45 3.233 (4) 140
C6′—H6′1⋯S1i 0.99 2.71 3.616 (3) 152
C4—H4⋯S1 0.95 2.80 3.179 (4) 105
C4′—H4′⋯S1′ 0.95 2.83 3.191 (3) 104
C7′—H7′2⋯F9C 0.99 2.52 2.880 (5) 101
C7—H7B⋯F9A 0.99 2.54 2.875 (5) 100
Symmetry code: (i) x+1, y, z.
[Figure 2]
Figure 2
Crystal packing of the title compound. Minor disorder components are omitted for clarity.

Related structures have been reported recently (Hummel et al., 2017[Hummel, M., Markiewicz, M., Stolte, S., Noisternig, M., Braun, D. E., Gelbrich, T., Griesser, U. J., Partl, G., Naier, B., Wurst, K., Krüger, B., Kopacka, H., Laus, G., Huppertz, H. & Schottenberger, H. (2017). Green Chem. 19. In the press. DOI: 10.1039/c7gc00571g.]), notably a 4-(1H,1H,2H,2H-perfluoro­oct­yl)-1,2,4-triazolium salt (Adamer et al., 2011[Adamer, V., Wurst, K., Laus, G. & Schottenberger, H. (2011). Z. Kristallogr. NCS 226, 233-236.]) and a 1-(1H,1H,2H,2H-perfluoro­oct­yl)-1,2,3-triazole (Omorodion et al., 2015[Omorodion, H., Twamley, B., Platts, J. A. & Baker, R. J. (2015). Cryst. Growth Des. 15, 2835-2841.]) have been described.

Synthesis and crystallization

3-(1H,1H,2H,2H-Perfluoro­oct­yl)-1-vinyl­imidazolium iodide: A mixture of 1-vinyl­imidazole (5.0 g, 53.1 mmol) and 1H,1H,2H,2H-perfluoro­octyl iodide (26.0 g, 54.9 mmol) was stirred at 70°C for 72 h. After cooling, the mixture was dissolved in MeOH (25 ml) and the product precipitated by addition of Et2O (250 ml). The product was filtered off, washed with Et2O and dried in high vacuum overnight, affording 23.0 g (76%) of colourless product; m.p. 434 K. 1H NMR (300 MHz, CD3OD): δ 9.54 (t, J = 1.9 Hz, 1H), 8.07 (t, J = 1.9 Hz, 1H), 7.93 (t, J = 1.9 Hz, 1H), 7.30 (dd, J = 15.6, 8.7 Hz, 1H), 5.98 (dd, J = 15.6, 2.8 Hz, 1H), 5.49 (dd, J = 8.7, 2.8 Hz, 1H), 4.72 (t, J = 7.2 Hz, 2H), 3.06 (tt, J = 18.0, 7.2 Hz, 2H) p.p.m. 13C NMR (75 MHz, CD3OD): δ 137.3, 129.8, 124.7, 124.4–109.0 (m, 6C), 121.1, 110.6, 43.5 (t, J = 5.3 Hz), 31.9 (t, J = 21.4 Hz) p.p.m. IR (neat): ν 3117, 2991, 1652, 1568, 1142, 1119, 1071, 1020, 735, 699, 640, 620, 524 cm−1.

3-(1H,1H,2H,2H-Perfluoro­oct­yl)-1-vinyl­imidazoline-2-thione: A mixture of 3-(1H,1H,2H,2H-perfluoro­oct­yl)-1-vinyl­imidazolium iodide (80.0 g, 141 mmol), elemental sulfur (4.6 g, 144 mmol) and K2CO3 (19.9 g, 144 mmol) in MeOH (240 ml) was refluxed for 3 h. The solvent was evaporated and the residue extracted thrice with Et2O (total 700 ml). The organic phase was treated with charcoal, filtered and the solvent was evaporated. The residue was dried in high vacuum overnight, affording 60.5 g (91%) of the product as an off-white powder; m.p. 359 K. Single crystals suitable for structure determination were fashioned by slow evaporation of a solution in CHCl3. 1H NMR (300 MHz, CDCl3): δ 7.53 (dd, J = 16.1, 9.0 Hz, 1H), 6.99 (d, J = 2.6 Hz, 1H), 6.75 (d, J = 2.6 Hz, 1H), 5.16 (dd, J = 16.1, 1.8 Hz, 1H), 4.96 (dd, J = 9.0, 1.8 Hz, 1H), 4.36 (t, J = 6.9 Hz, 2H), 2.70 (tt, J = 18.6, 6.9 Hz, 2H) p.p.m. 13C NMR (75 MHz, CDCl3): δ 163.4, 130.3, 124–105 (m, 6C), 118.6, 112.8, 101.4, 40.5 (t, J = 5.1 Hz), 29.6 (t, J = 21.5 Hz) p.p.m. IR (neat): ν 3133, 3104, 2995, 1643, 1234, 1182, 1139, 1118, 1077, 1062, 894, 694, 647, 509 cm−1.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The terminal C4F9 units of the fluoro­alkyl chains of both mol­ecules are disordered over two sets of sites, and their disorder components were found to have relative occupancies of approximately 0.7:0.3 and 0.57:0.43 in the two mol­ecules. Occupancies were fixed at these values in the final refinement cycles. The refinement of the disordered fragments was carried out with distance restraints (SAME/SADI) for all chemically equivalent 1,2- and 1,3-distances. All other non-H atoms were refined anisotropically, except for those in the minor disorder component of the first mol­ecule, which were refined isotropically.

Table 2
Experimental details

Crystal data
Chemical formula C13H9F13N2S
Mr 472.28
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 193
a, b, c (Å) 7.425 (1), 9.952 (2), 24.359 (4)
α, β, γ (°) 85.076 (5), 83.431 (5), 88.720 (5)
V3) 1781.4 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.31
Crystal size (mm) 0.22 × 0.18 × 0.04
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON 100
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.449, 0.490
No. of measured, independent and observed [I > 2σ(I)] reflections 44091, 6372, 4851
Rint 0.043
(sin θ/λ)max−1) 0.599
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.176, 0.99
No. of reflections 6372
No. of parameters 679
No. of restraints 1685
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.86, −0.64
Computer programs: APEX2 (Bruker 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXL2014/6 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker 2014); cell refinement: SAINT (Bruker 2014); data reduction: SAINT (Bruker 2014); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: Mercury (Macrae et al., 2008).

3-(1H,1H,2H,2H-Perfluorooctyl)-1-vinyl-4-imidazoline-2-thione top
Crystal data top
C13H9F13N2SZ = 4
Mr = 472.28F(000) = 936
Triclinic, P1Dx = 1.761 Mg m3
a = 7.425 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.952 (2) ÅCell parameters from 9960 reflections
c = 24.359 (4) Åθ = 2.3–25.0°
α = 85.076 (5)°µ = 0.31 mm1
β = 83.431 (5)°T = 193 K
γ = 88.720 (5)°Plate, colourless
V = 1781.4 (5) Å30.22 × 0.18 × 0.04 mm
Data collection top
Bruker D8 QUEST PHOTON 100
diffractometer
6372 independent reflections
Radiation source: Incoatec Microfocus4851 reflections with I > 2σ(I)
Multi layered optics monochromatorRint = 0.043
Detector resolution: 10.4 pixels mm-1θmax = 25.2°, θmin = 2.2°
φ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1111
Tmin = 0.449, Tmax = 0.490l = 2929
44091 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.176H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0762P)2 + 3.9492P]
where P = (Fo2 + 2Fc2)/3
6372 reflections(Δ/σ)max < 0.001
679 parametersΔρmax = 0.86 e Å3
1685 restraintsΔρmin = 0.64 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.40414 (12)0.52354 (9)0.88826 (5)0.0443 (3)
N10.7681 (4)0.5518 (3)0.89347 (12)0.0340 (7)
N20.6520 (4)0.7057 (3)0.83893 (13)0.0370 (7)
C10.6094 (4)0.5939 (3)0.87344 (15)0.0327 (7)
C20.9074 (5)0.6388 (4)0.87116 (17)0.0441 (9)
H21.03050.63230.87830.053*
C30.8345 (5)0.7331 (4)0.83786 (18)0.0462 (10)
H30.89690.80630.81700.055*
C40.7800 (5)0.4409 (4)0.93323 (15)0.0394 (8)
H40.67200.39280.94570.047*
C50.9282 (5)0.3992 (4)0.95423 (17)0.0476 (10)
H5A1.03910.44460.94280.057*
H5B0.92470.32350.98090.057*
C60.5221 (5)0.7852 (4)0.80941 (15)0.0408 (9)
H6A0.57090.87650.79830.049*
H6B0.40820.79480.83430.049*
C70.4820 (5)0.7189 (4)0.75785 (15)0.0453 (9)
H7A0.59610.70960.73310.054*
H7B0.43410.62740.76910.054*
C80.3448 (4)0.8008 (3)0.72632 (13)0.0406 (8)
F8A0.1985 (3)0.8280 (3)0.76251 (10)0.0623 (7)
F8B0.4136 (4)0.9224 (2)0.70743 (11)0.0669 (7)
C90.2799 (5)0.7328 (3)0.67842 (13)0.0449 (9)
F9A0.2100 (5)0.6147 (3)0.69848 (12)0.0874 (10)
F9B0.4259 (4)0.7087 (3)0.64324 (12)0.0849 (10)
C100.1424 (5)0.8101 (4)0.64541 (14)0.0553 (11)
F10A0.0164 (6)0.8699 (5)0.67659 (17)0.0861 (16)0.7
F10B0.2389 (7)0.9168 (4)0.6158 (2)0.0916 (17)0.7
C110.0614 (8)0.7358 (6)0.6021 (2)0.053 (3)0.7
F11A0.1752 (8)0.6416 (6)0.5817 (2)0.0975 (19)0.7
F11B0.0764 (8)0.6655 (5)0.6313 (2)0.111 (2)0.7
C120.0167 (8)0.8189 (5)0.5552 (2)0.070 (2)0.7
F12A0.0968 (7)0.9311 (4)0.57322 (19)0.0761 (14)0.7
F12B0.1245 (7)0.8610 (6)0.51811 (19)0.1042 (17)0.7
C130.1448 (7)0.7494 (6)0.5229 (2)0.056 (3)0.7
F13A0.0747 (10)0.6335 (5)0.5060 (3)0.092 (2)0.7
F13B0.3064 (7)0.7206 (7)0.5497 (2)0.121 (2)0.7
F13C0.1745 (9)0.8273 (5)0.47815 (19)0.1055 (17)0.7
F10E0.1515 (15)0.9404 (7)0.6429 (5)0.075 (3)*0.3
F10F0.0086 (12)0.7804 (11)0.6841 (4)0.077 (3)*0.3
C11A0.0840 (11)0.7482 (11)0.5963 (3)0.061 (9)*0.3
F11E0.2058 (11)0.7957 (8)0.5557 (3)0.061 (2)*0.3
F11F0.1012 (18)0.6148 (10)0.6003 (6)0.071 (4)*0.3
C12A0.1085 (10)0.7732 (12)0.5828 (4)0.059 (4)*0.3
F12E0.170 (2)0.8957 (10)0.5935 (6)0.102 (6)*0.3
F12F0.2213 (18)0.6889 (10)0.6146 (5)0.104 (4)*0.3
C13A0.1427 (17)0.7621 (17)0.5233 (4)0.19 (3)*0.3
F13G0.0388 (17)0.8340 (14)0.4839 (6)0.107 (4)*0.3
F13H0.3131 (15)0.7907 (16)0.5150 (7)0.124 (5)*0.3
F13I0.114 (3)0.6331 (14)0.5142 (13)0.148 (12)*0.3
S1'1.14881 (11)0.08928 (10)0.93033 (4)0.0420 (3)
N1'1.5143 (3)0.0605 (3)0.93303 (11)0.0304 (6)
N2'1.3884 (4)0.1043 (3)0.88608 (12)0.0320 (6)
C1'1.3513 (4)0.0151 (3)0.91672 (14)0.0302 (7)
C2'1.6495 (4)0.0316 (4)0.91273 (15)0.0380 (8)
H2'1.77410.02380.91820.046*
C3'1.5710 (5)0.1328 (4)0.88420 (16)0.0396 (8)
H3'1.62990.21060.86580.048*
C4'1.5358 (4)0.1827 (3)0.96593 (14)0.0338 (8)
H4'1.43670.24300.97170.041*
C5'1.6825 (5)0.2188 (4)0.98903 (16)0.0414 (9)
H5'11.78430.16110.98420.050*
H5'21.68690.30271.01060.050*
C6'1.2529 (5)0.1929 (3)0.86435 (14)0.0365 (8)
H6'11.30280.28480.85620.044*
H6'21.14690.19760.89280.044*
C7'1.1912 (5)0.1455 (3)0.81163 (14)0.0385 (8)
H7'11.29860.13170.78450.046*
H7'21.12950.05790.82050.046*
C8'1.0628 (4)0.2470 (3)0.78577 (12)0.0365 (8)
F8C0.9324 (3)0.2841 (2)0.82534 (9)0.0545 (6)
F8D1.1538 (3)0.3607 (2)0.76671 (10)0.0587 (7)
C9'0.9688 (4)0.1972 (3)0.73893 (12)0.0379 (8)
F9C0.8781 (4)0.0847 (2)0.75896 (11)0.0676 (8)
F9D1.0966 (3)0.1600 (3)0.69965 (10)0.0686 (8)
C10'0.8368 (5)0.2946 (4)0.71214 (14)0.0537 (11)
F10C0.6801 (6)0.2835 (7)0.75193 (19)0.0753 (17)0.57
F10D0.8782 (11)0.4206 (5)0.7110 (4)0.096 (3)0.57
C11'0.7630 (9)0.2554 (8)0.6605 (2)0.044 (3)0.57
F11C0.7459 (16)0.1231 (8)0.6598 (7)0.091 (3)0.57
F11D0.8918 (6)0.2935 (8)0.6201 (2)0.102 (2)0.57
C12'0.5851 (8)0.3183 (7)0.6460 (2)0.053 (2)0.57
F12C0.4525 (7)0.2527 (9)0.6777 (3)0.128 (3)0.57
F12D0.5822 (18)0.4423 (8)0.6606 (6)0.154 (7)0.57
C13'0.5365 (10)0.3114 (10)0.5882 (3)0.120 (6)0.57
F13D0.5385 (15)0.1849 (7)0.5766 (5)0.163 (9)0.57
F13E0.6497 (11)0.3793 (11)0.5506 (3)0.159 (4)0.57
F13F0.3713 (9)0.3592 (9)0.5831 (4)0.105 (2)0.57
F10G0.9634 (10)0.3818 (7)0.6787 (3)0.082 (3)0.43
F10H0.7523 (13)0.3770 (10)0.7450 (4)0.103 (4)0.43
C11B0.7302 (11)0.2438 (9)0.6693 (3)0.056 (5)0.43
F11G0.5858 (10)0.1941 (10)0.7016 (3)0.106 (3)0.43
F11H0.8144 (19)0.1406 (15)0.6462 (8)0.089 (5)0.43
C12B0.6696 (11)0.3427 (9)0.6244 (3)0.068 (4)0.43
F12G0.8066 (11)0.3687 (11)0.5844 (3)0.117 (3)0.43
F12H0.6144 (17)0.4608 (11)0.6416 (6)0.091 (4)0.43
C13B0.5192 (11)0.3016 (10)0.5930 (3)0.074 (6)0.43
F13J0.567 (2)0.1878 (12)0.5705 (6)0.159 (11)0.43
F13K0.4823 (18)0.3900 (11)0.5520 (4)0.126 (4)0.43
F13L0.3649 (11)0.2818 (18)0.6255 (4)0.215 (10)0.43
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0262 (5)0.0372 (5)0.0702 (7)0.0085 (4)0.0110 (4)0.0010 (4)
N10.0251 (14)0.0314 (15)0.0463 (17)0.0011 (11)0.0066 (12)0.0047 (13)
N20.0303 (15)0.0325 (16)0.0481 (18)0.0015 (12)0.0055 (13)0.0010 (13)
C10.0276 (17)0.0286 (17)0.043 (2)0.0019 (13)0.0062 (14)0.0072 (15)
C20.0226 (17)0.046 (2)0.063 (3)0.0060 (15)0.0010 (17)0.0026 (19)
C30.0284 (18)0.044 (2)0.063 (3)0.0086 (16)0.0035 (17)0.0045 (19)
C40.0344 (19)0.038 (2)0.046 (2)0.0018 (15)0.0068 (16)0.0021 (16)
C50.040 (2)0.050 (2)0.053 (2)0.0072 (18)0.0094 (18)0.0008 (19)
C60.041 (2)0.0322 (19)0.050 (2)0.0037 (15)0.0080 (17)0.0012 (16)
C70.047 (2)0.040 (2)0.048 (2)0.0122 (17)0.0056 (18)0.0048 (17)
C80.042 (2)0.0345 (19)0.044 (2)0.0041 (16)0.0007 (17)0.0015 (16)
F8A0.0455 (13)0.0904 (19)0.0524 (14)0.0194 (13)0.0045 (11)0.0209 (13)
F8B0.0813 (18)0.0425 (14)0.0796 (18)0.0141 (12)0.0314 (15)0.0126 (12)
C90.055 (2)0.035 (2)0.043 (2)0.0083 (17)0.0015 (18)0.0031 (16)
F9A0.148 (3)0.0412 (14)0.0799 (19)0.0284 (16)0.053 (2)0.0146 (13)
F9B0.0703 (19)0.120 (3)0.0662 (18)0.0339 (18)0.0012 (15)0.0359 (17)
C100.064 (3)0.047 (2)0.058 (3)0.006 (2)0.016 (2)0.007 (2)
F10A0.099 (3)0.091 (3)0.082 (3)0.064 (3)0.049 (3)0.051 (3)
F10B0.122 (4)0.061 (3)0.096 (4)0.036 (3)0.058 (3)0.037 (2)
C110.079 (6)0.033 (4)0.048 (4)0.007 (3)0.012 (3)0.005 (3)
F11A0.126 (5)0.089 (4)0.091 (4)0.053 (4)0.047 (4)0.054 (3)
F11B0.149 (5)0.107 (4)0.081 (3)0.065 (4)0.041 (3)0.030 (3)
C120.095 (6)0.060 (4)0.059 (4)0.000 (4)0.022 (4)0.001 (3)
F12A0.102 (4)0.059 (2)0.075 (3)0.033 (3)0.041 (3)0.015 (2)
F12B0.102 (4)0.127 (4)0.080 (3)0.033 (3)0.013 (3)0.022 (3)
C130.064 (5)0.063 (5)0.046 (4)0.008 (3)0.025 (3)0.010 (3)
F13A0.116 (5)0.085 (4)0.089 (4)0.007 (3)0.042 (3)0.044 (3)
F13B0.086 (4)0.164 (6)0.112 (5)0.026 (4)0.003 (3)0.006 (4)
F13C0.133 (5)0.100 (4)0.087 (4)0.020 (3)0.039 (3)0.013 (3)
S1'0.0220 (4)0.0404 (5)0.0627 (6)0.0056 (4)0.0066 (4)0.0047 (4)
N1'0.0218 (13)0.0340 (15)0.0357 (16)0.0020 (11)0.0032 (11)0.0049 (12)
N2'0.0275 (14)0.0293 (15)0.0398 (16)0.0032 (11)0.0055 (12)0.0034 (12)
C1'0.0248 (16)0.0299 (17)0.0370 (19)0.0010 (13)0.0055 (14)0.0071 (14)
C2'0.0228 (17)0.042 (2)0.050 (2)0.0082 (15)0.0018 (15)0.0045 (17)
C3'0.0302 (18)0.036 (2)0.052 (2)0.0099 (15)0.0017 (16)0.0023 (17)
C4'0.0279 (17)0.0335 (18)0.040 (2)0.0002 (14)0.0042 (15)0.0028 (15)
C5'0.0353 (19)0.043 (2)0.047 (2)0.0026 (16)0.0072 (16)0.0031 (17)
C6'0.0377 (19)0.0275 (17)0.045 (2)0.0031 (14)0.0091 (16)0.0043 (15)
C7'0.041 (2)0.0318 (19)0.043 (2)0.0041 (15)0.0080 (16)0.0044 (15)
C8'0.0368 (19)0.0301 (18)0.041 (2)0.0023 (15)0.0009 (16)0.0010 (15)
F8C0.0446 (13)0.0722 (16)0.0489 (13)0.0176 (11)0.0077 (10)0.0196 (12)
F8D0.0648 (15)0.0399 (13)0.0732 (17)0.0168 (11)0.0268 (13)0.0135 (11)
C9'0.0382 (19)0.0344 (19)0.040 (2)0.0004 (15)0.0008 (16)0.0021 (15)
F9C0.0842 (19)0.0488 (14)0.0737 (17)0.0302 (13)0.0348 (15)0.0141 (12)
F9D0.0536 (15)0.100 (2)0.0551 (15)0.0205 (14)0.0059 (12)0.0324 (14)
C10'0.061 (3)0.043 (2)0.060 (3)0.009 (2)0.021 (2)0.009 (2)
F10C0.054 (3)0.131 (5)0.041 (3)0.040 (3)0.006 (2)0.023 (3)
F10D0.142 (8)0.035 (3)0.129 (8)0.021 (4)0.090 (6)0.018 (4)
C11'0.042 (5)0.056 (7)0.035 (5)0.005 (5)0.006 (4)0.005 (5)
F11C0.111 (9)0.048 (4)0.131 (9)0.019 (4)0.072 (7)0.029 (4)
F11D0.048 (3)0.211 (8)0.040 (3)0.001 (4)0.001 (2)0.013 (4)
C12'0.041 (5)0.067 (6)0.053 (5)0.016 (4)0.009 (4)0.010 (4)
F12C0.036 (3)0.262 (10)0.082 (4)0.001 (4)0.007 (3)0.013 (5)
F12D0.239 (13)0.113 (9)0.140 (11)0.128 (9)0.136 (9)0.063 (8)
C13'0.109 (11)0.181 (13)0.078 (10)0.030 (10)0.070 (8)0.023 (10)
F13D0.202 (15)0.092 (7)0.238 (17)0.035 (7)0.185 (14)0.050 (8)
F13E0.143 (7)0.262 (11)0.070 (4)0.013 (7)0.046 (5)0.043 (5)
F13F0.086 (5)0.141 (6)0.101 (6)0.042 (5)0.057 (4)0.028 (5)
F10G0.100 (6)0.035 (4)0.121 (7)0.027 (4)0.074 (5)0.030 (4)
F10H0.124 (9)0.089 (8)0.116 (9)0.070 (7)0.075 (7)0.064 (7)
C11B0.055 (8)0.055 (11)0.060 (9)0.004 (7)0.012 (7)0.002 (7)
F11G0.075 (5)0.158 (8)0.085 (5)0.063 (5)0.026 (4)0.041 (5)
F11H0.087 (9)0.098 (9)0.102 (9)0.048 (7)0.058 (7)0.070 (8)
C12B0.064 (9)0.082 (10)0.055 (8)0.005 (7)0.004 (7)0.000 (7)
F12G0.090 (6)0.179 (9)0.076 (5)0.022 (6)0.016 (5)0.034 (6)
F12H0.132 (8)0.054 (5)0.102 (9)0.018 (6)0.085 (6)0.007 (5)
C13B0.065 (11)0.070 (10)0.090 (15)0.007 (9)0.012 (10)0.027 (9)
F13J0.137 (14)0.26 (3)0.102 (11)0.050 (14)0.040 (9)0.115 (14)
F13K0.130 (10)0.136 (9)0.117 (9)0.001 (8)0.071 (8)0.036 (7)
F13L0.062 (6)0.44 (3)0.131 (10)0.063 (10)0.036 (6)0.087 (14)
Geometric parameters (Å, º) top
S1—C11.679 (3)S1'—C1'1.676 (3)
N1—C11.370 (4)N1'—C1'1.372 (4)
N1—C21.395 (4)N1'—C2'1.393 (4)
N1—C41.412 (5)N1'—C4'1.415 (4)
N2—C11.357 (4)N2'—C1'1.363 (4)
N2—C31.385 (5)N2'—C3'1.386 (4)
N2—C61.449 (4)N2'—C6'1.440 (4)
C2—C31.333 (6)C2'—C3'1.335 (5)
C2—H20.9500C2'—H2'0.9500
C3—H30.9500C3'—H3'0.9500
C4—C51.310 (5)C4'—C5'1.311 (5)
C4—H40.9500C4'—H4'0.9500
C5—H5A0.9500C5'—H5'10.9500
C5—H5B0.9500C5'—H5'20.9500
C6—C71.529 (4)C6'—C7'1.526 (4)
C6—H6A0.9900C6'—H6'10.9900
C6—H6B0.9900C6'—H6'20.9900
C7—C81.525 (4)C7'—C8'1.521 (4)
C7—H7A0.9900C7'—H7'10.9900
C7—H7B0.9900C7'—H7'20.9900
C8—F8B1.348 (4)C8'—F8D1.350 (3)
C8—F8A1.356 (4)C8'—F8C1.354 (4)
C8—C91.527 (4)C8'—C9'1.526 (4)
C9—F9A1.327 (4)C9'—F9D1.338 (4)
C9—F9B1.333 (4)C9'—F9C1.346 (4)
C9—C101.525 (4)C9'—C10'1.523 (4)
C10—F10E1.296 (6)C10'—F10D1.295 (5)
C10—F10A1.302 (4)C10'—F10H1.297 (6)
C10—F10B1.394 (5)C10'—F10C1.426 (5)
C10—F10F1.400 (6)C10'—F10G1.429 (6)
C10—C11A1.502 (6)C10'—C11B1.506 (6)
C10—C111.524 (5)C10'—C11'1.512 (6)
C11—F11A1.337 (5)C11'—F11D1.327 (7)
C11—F11B1.350 (6)C11'—F11C1.328 (6)
C11—C121.514 (5)C11'—C12'1.514 (6)
C12—F12A1.337 (5)C12'—F12D1.313 (6)
C12—F12B1.352 (6)C12'—F12C1.328 (6)
C12—C131.515 (6)C12'—C13'1.500 (6)
C13—F13C1.320 (5)C13'—F13D1.313 (7)
C13—F13B1.324 (5)C13'—F13F1.321 (6)
C13—F13A1.333 (5)C13'—F13E1.321 (7)
C11A—F11E1.325 (7)C11B—F11H1.324 (7)
C11A—F11F1.327 (7)C11B—F11G1.333 (7)
C11A—C12A1.514 (7)C11B—C12B1.508 (6)
C12A—F12E1.328 (7)C12B—F12H1.322 (7)
C12A—F12F1.333 (7)C12B—F12G1.339 (7)
C12A—C13A1.514 (7)C12B—C13B1.507 (6)
C13A—F13H1.324 (7)C13B—F13K1.322 (6)
C13A—F13G1.329 (7)C13B—F13J1.323 (7)
C13A—F13I1.330 (7)C13B—F13L1.324 (7)
C1—N1—C2109.7 (3)C1'—N1'—C2'109.8 (3)
C1—N1—C4123.3 (3)C1'—N1'—C4'123.5 (3)
C2—N1—C4126.9 (3)C2'—N1'—C4'126.7 (3)
C1—N2—C3109.8 (3)C1'—N2'—C3'109.9 (3)
C1—N2—C6124.1 (3)C1'—N2'—C6'124.2 (3)
C3—N2—C6126.1 (3)C3'—N2'—C6'125.6 (3)
N2—C1—N1105.5 (3)N2'—C1'—N1'105.2 (3)
N2—C1—S1126.7 (3)N2'—C1'—S1'126.7 (2)
N1—C1—S1127.8 (3)N1'—C1'—S1'128.1 (3)
C3—C2—N1106.8 (3)C3'—C2'—N1'107.1 (3)
C3—C2—H2126.6C3'—C2'—H2'126.4
N1—C2—H2126.6N1'—C2'—H2'126.4
C2—C3—N2108.2 (3)C2'—C3'—N2'108.0 (3)
C2—C3—H3125.9C2'—C3'—H3'126.0
N2—C3—H3125.9N2'—C3'—H3'126.0
C5—C4—N1125.2 (4)C5'—C4'—N1'124.8 (3)
C5—C4—H4117.4C5'—C4'—H4'117.6
N1—C4—H4117.4N1'—C4'—H4'117.6
C4—C5—H5A120.0C4'—C5'—H5'1120.0
C4—C5—H5B120.0C4'—C5'—H5'2120.0
H5A—C5—H5B120.0H5'1—C5'—H5'2120.0
N2—C6—C7111.1 (3)N2'—C6'—C7'112.1 (3)
N2—C6—H6A109.4N2'—C6'—H6'1109.2
C7—C6—H6A109.4C7'—C6'—H6'1109.2
N2—C6—H6B109.4N2'—C6'—H6'2109.2
C7—C6—H6B109.4C7'—C6'—H6'2109.2
H6A—C6—H6B108.0H6'1—C6'—H6'2107.9
C8—C7—C6111.9 (3)C8'—C7'—C6'111.6 (3)
C8—C7—H7A109.2C8'—C7'—H7'1109.3
C6—C7—H7A109.2C6'—C7'—H7'1109.3
C8—C7—H7B109.2C8'—C7'—H7'2109.3
C6—C7—H7B109.2C6'—C7'—H7'2109.3
H7A—C7—H7B107.9H7'1—C7'—H7'2108.0
F8B—C8—F8A104.9 (3)F8D—C8'—F8C105.8 (3)
F8B—C8—C7109.9 (3)F8D—C8'—C7'109.4 (3)
F8A—C8—C7108.6 (3)F8C—C8'—C7'109.5 (3)
F8B—C8—C9109.5 (3)F8D—C8'—C9'109.0 (2)
F8A—C8—C9108.5 (3)F8C—C8'—C9'107.7 (2)
C7—C8—C9115.0 (3)C7'—C8'—C9'115.0 (3)
F9A—C9—F9B107.7 (3)F9D—C9'—F9C106.3 (3)
F9A—C9—C10108.6 (3)F9D—C9'—C10'108.9 (3)
F9B—C9—C10107.7 (3)F9C—C9'—C10'108.0 (3)
F9A—C9—C8108.1 (3)F9D—C9'—C8'108.2 (2)
F9B—C9—C8107.2 (3)F9C—C9'—C8'107.9 (2)
C10—C9—C8117.3 (3)C10'—C9'—C8'117.0 (3)
F10A—C10—F10B103.6 (4)F10D—C10'—F10C102.9 (5)
F10E—C10—F10F103.6 (5)F10H—C10'—F10G101.8 (5)
F10E—C10—C11A117.7 (7)F10H—C10'—C11B116.3 (6)
F10F—C10—C11A99.7 (6)F10G—C10'—C11B101.8 (5)
F10A—C10—C11111.0 (4)F10D—C10'—C11'114.7 (5)
F10B—C10—C11105.5 (4)F10C—C10'—C11'101.8 (4)
F10E—C10—C9115.7 (6)F10D—C10'—C9'114.5 (4)
F10A—C10—C9113.1 (3)F10H—C10'—C9'114.9 (4)
F10B—C10—C9105.0 (3)F10C—C10'—C9'101.8 (3)
F10F—C10—C996.0 (5)F10G—C10'—C9'99.4 (4)
C11A—C10—C9118.1 (4)C11B—C10'—C9'118.0 (4)
C11—C10—C9117.1 (3)C11'—C10'—C9'117.9 (4)
F11A—C11—F11B104.6 (5)F11D—C11'—F11C106.8 (6)
F11A—C11—C12110.0 (5)F11D—C11'—C10'103.5 (5)
F11B—C11—C12107.1 (5)F11C—C11'—C10'112.9 (9)
F11A—C11—C10111.7 (4)F11D—C11'—C12'108.3 (5)
F11B—C11—C10104.1 (4)F11C—C11'—C12'106.4 (8)
C12—C11—C10118.1 (4)C10'—C11'—C12'118.3 (5)
F12A—C12—F12B105.7 (5)F12D—C12'—F12C107.2 (6)
F12A—C12—C11110.6 (4)F12D—C12'—C13'112.4 (9)
F12B—C12—C11107.1 (5)F12C—C12'—C13'104.0 (6)
F12A—C12—C13109.1 (5)F12D—C12'—C11'106.6 (7)
F12B—C12—C13106.2 (4)F12C—C12'—C11'107.6 (6)
C11—C12—C13117.4 (4)C13'—C12'—C11'118.4 (5)
F13C—C13—F13B106.1 (4)F13D—C13'—F13F107.0 (6)
F13C—C13—F13A107.2 (5)F13D—C13'—F13E108.4 (7)
F13B—C13—F13A106.3 (5)F13F—C13'—F13E107.8 (6)
F13C—C13—C12109.5 (5)F13D—C13'—C12'109.4 (8)
F13B—C13—C12115.6 (5)F13F—C13'—C12'111.6 (7)
F13A—C13—C12111.6 (5)F13E—C13'—C12'112.5 (7)
F11E—C11A—F11F107.3 (7)F11H—C11B—F11G106.7 (7)
F11E—C11A—C10102.0 (7)F11H—C11B—C10'111.1 (10)
F11F—C11A—C10112.6 (9)F11G—C11B—C10'100.5 (6)
F11E—C11A—C12A112.4 (7)F11H—C11B—C12B109.1 (11)
F11F—C11A—C12A103.9 (10)F11G—C11B—C12B109.6 (7)
C10—C11A—C12A118.4 (7)C10'—C11B—C12B118.9 (7)
F12E—C12A—F12F105.0 (7)F12H—C12B—F12G106.1 (7)
F12E—C12A—C11A112.6 (10)F12H—C12B—C13B103.9 (9)
F12F—C12A—C11A110.3 (10)F12G—C12B—C13B103.1 (7)
F12E—C12A—C13A104.1 (12)F12H—C12B—C11B114.2 (10)
F12F—C12A—C13A107.2 (10)F12G—C12B—C11B110.2 (7)
C11A—C12A—C13A116.8 (7)C13B—C12B—C11B118.1 (6)
F13H—C13A—F13G106.8 (7)F13K—C13B—F13J106.7 (6)
F13H—C13A—F13I106.8 (7)F13K—C13B—F13L106.2 (6)
F13G—C13A—F13I106.8 (8)F13J—C13B—F13L108.4 (7)
F13H—C13A—C12A112.5 (12)F13K—C13B—C12B114.3 (8)
F13G—C13A—C12A117.5 (12)F13J—C13B—C12B108.8 (10)
F13I—C13A—C12A105.7 (18)F13L—C13B—C12B112.2 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···F8Ai0.952.473.201 (5)133
C3—H3···F8Ci0.952.453.233 (4)140
C6—H61···S1i0.992.713.616 (3)152
C4—H4···S10.952.803.179 (4)105
C4—H4···S10.952.833.191 (3)104
C7—H72···F9C0.992.522.880 (5)101
C7—H7B···F9A0.992.542.875 (5)100
Symmetry code: (i) x+1, y, z.
 

References

First citationAdamer, V., Wurst, K., Laus, G. & Schottenberger, H. (2011). Z. Kristallogr. NCS 226, 233–236.  CAS Google Scholar
First citationAnderson, E. B. & Long, T. E. (2010). Polymer, 51, 2447–2454.  Web of Science CrossRef CAS Google Scholar
First citationBaker, R. J., Colavita, P. E., Murphy, D. M., Platts, J. A. & Wallis, J. D. (2012). J. Phys. Chem. A, 116, 1435–1444.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFournier, J. A., Bohn, R. K., Montgomery, J. A. & Onda, M. (2010). J. Phys. Chem. A, 114, 1118–1122.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHummel, M., Markiewicz, M., Stolte, S., Noisternig, M., Braun, D. E., Gelbrich, T., Griesser, U. J., Partl, G., Naier, B., Wurst, K., Krüger, B., Kopacka, H., Laus, G., Huppertz, H. & Schottenberger, H. (2017). Green Chem. 19. In the press. DOI: 10.1039/c7gc00571g.  Google Scholar
First citationJang, S. S., Blanco, M., Goddard, W. A., Caldwell, G. & Ross, R. B. (2003). Macromolecules, 36, 5331–5341.  Web of Science CrossRef CAS Google Scholar
First citationKovalchuk, N. M., Trybala, A., Starov, V., Matar, O. & Ivanova, N. (2014). Adv. Colloid Interface Sci. 210, 65–71.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKrafft, M. P. & Riess, J. G. (2009). Chem. Rev. 109, 1714–1792.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLaus, G., Kahlenberg, V., Wurst, K., Müller, T., Kopacka, H. & Schottenberger, H. (2013). Z. Naturforsch. 68b, 1239–1252.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOmorodion, H., Twamley, B., Platts, J. A. & Baker, R. J. (2015). Cryst. Growth Des. 15, 2835–2841.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTrzhtsinskaya, B. V. & Abramova, N. D. (1991). Sulfur Rep. 10, 389–421.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds