organic compounds
1-Allyl-2,3-cyclopentenopyridinium chloride
aUniversity of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 80, 6020 Innsbruck, Austria
*Correspondence e-mail: herwig.schottenberger@uibk.ac.at
The title compound, C11H14N+·Cl−, was obtained by reaction of 2,3-cyclopentenopyridine and allyl chloride. A network of weak C—H⋯Cl hydrogen bonds is observed in the crystal structure.
Keywords: crystal structure; allyl; chloride; hydrogen bond; pyridine.
CCDC reference: 1547806
Structure description
The title compound has been prepared in a continuation of our interest in chloride-based ionic liquids as solvents for cellulose (Bentivoglio et al., 2006; Wang et al., 2012; Liu et al., 2016). The reactions of cycloalkenopyridines have been reviewed by Beschke (1978). Related structures of 2,3-cyclopentenopyridinium salts are rare (Ammon & Jensen, 1966; Albov et al., 2004). A similar 1-allylpyridinium chloride has been reported recently (Bentivoglio et al., 2017).
In the title compound, the allyl group is twisted out of the plane of the heterocyclic ring by 84°.. The cyclopentene ring adopts a typical A are located out of the C1/C2–C5 plane by 0.28 (1) and 0.25 (3) Å, respectively, a with a final occupancy ratio of 0.71 (2):0.29 (2).
The two possible conformations of the envelope are mirrored in the two components of positional disorder. The components C3 and C3In the crystal, weak C—H⋯Cl hydrogen bonds (Fig. 1, Table 1) create a network in which the chloride ions are fivefold coordinated by the pyridinium cations (Fig. 2).
Synthesis and crystallization
A solution of freshly distilled 2,3-cyclopentenopyridine (5.0 g, 42.0 mmol) and allyl chloride (6.4 g, 83.6 mmol) in CH3CN (5 ml) was refluxed for 48 h. The product was precipitated by the addition of Et2O (100 ml), kept in the freezer overnight, then filtered off, washed with Et2O, and dried in vacuo yielding 7.6 g (92%) of a deliquescent powder. A solution of the crude product in CH2Cl2 was treated with to give a grey solid, which was further purified by slow evaporation of a CH2Cl2/EtOAc (2:1) solution. After removal of an initial blackish precipitate, colourless crystals separated from the filtrate, m.p. 427 K.
1H NMR (300 MHz, DMSO-d6): δ 9.12 (dd, J = 6.2, 1.2 Hz, 1H), 8.48 (dd, J = 7.8, 1.2 Hz, 1H), 7.95 (dd, J = 7.8, 6.2 Hz, 1H), 6.11 (ddt, J = 16.4, 10.3, 5.9 Hz, 1H), 5.48–5.24 (m, 4H), 3.40 (t, J = 7.7 Hz, 2H), 3.12 (t, J = 7.6 Hz, 2H), 2.18 (quin, J = 7.8 Hz, 2H) p.p.m. 13C NMR (75 MHz, DMSO-d6): δ 161.1, 144.8, 142.0, 140.9, 130.7, 125.6, 120.7, 59.5, 31.2, 30.5, 22.0 p.p.m. IR (neat): ν 3382, 2965, 2898, 2830, 1617, 1489, 1467, 1430, 1340, 1290, 1207, 1011, 958, 822, 739 cm−1.
Refinement
Crystal data, data collection and structure . The disordered cyclopentene ring was refined using six geometrical restraints (SADI) for chemically equivalent, corresponding 1,2- and 1,3-distances in the two disorder components. The disordered C3 and C3A positions were both refined anisotropically, and their final relative occupancies were 0.71 (2) and 0.29 (2).
details are summarized in Table 2Structural data
CCDC reference: 1547806
https://doi.org/10.1107/S2414314617006691/sj4107sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617006691/sj4107Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314617006691/sj4107Isup3.mol
Supporting information file. DOI: https://doi.org/10.1107/S2414314617006691/sj4107Isup4.cml
Data collection: COLLECT (Hooft, 1998); cell
COLLECT (Hooft, 1998); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2008).C11H14N+·Cl− | F(000) = 416 |
Mr = 195.68 | Dx = 1.197 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 8.1093 (3) Å | Cell parameters from 8675 reflections |
b = 9.1624 (5) Å | θ = 1.0–25.0° |
c = 14.6575 (7) Å | µ = 0.31 mm−1 |
β = 94.241 (3)° | T = 233 K |
V = 1086.08 (9) Å3 | Prism, colourless |
Z = 4 | 0.28 × 0.16 × 0.11 mm |
Nonius KappaCCD diffractometer | Rint = 0.028 |
Detector resolution: 9.6 pixels mm-1 | θmax = 25.0°, θmin = 2.6° |
phi– and ω–scans | h = −9→9 |
6048 measured reflections | k = −10→10 |
1905 independent reflections | l = −17→15 |
1617 reflections with I > 2σ(I) |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.092 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0447P)2 + 0.2786P] where P = (Fo2 + 2Fc2)/3 |
1906 reflections | (Δ/σ)max < 0.001 |
140 parameters | Δρmax = 0.14 e Å−3 |
6 restraints | Δρmin = −0.15 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cl1 | 0.03447 (5) | 0.44823 (5) | 0.28693 (3) | 0.04502 (17) | |
N1 | −0.10204 (15) | 0.79887 (14) | 0.10639 (9) | 0.0386 (3) | |
C1 | 0.02285 (19) | 0.74677 (18) | 0.06053 (11) | 0.0394 (4) | |
C2 | 0.1815 (2) | 0.6849 (2) | 0.10083 (13) | 0.0488 (5) | |
H2A | 0.1623 | 0.6094 | 0.1462 | 0.059* | 0.71 (2) |
H2B | 0.2524 | 0.7611 | 0.1296 | 0.059* | 0.71 (2) |
H2C | 0.153 (8) | 0.584 (8) | 0.129 (5) | 0.059* | 0.29 (2) |
H2D | 0.217 (9) | 0.716 (9) | 0.140 (5) | 0.059* | 0.29 (2) |
C4 | 0.1684 (3) | 0.6863 (3) | −0.06749 (15) | 0.0723 (7) | |
H4A | 0.2347 | 0.7640 | −0.0926 | 0.087* | 0.71 (2) |
H4B | 0.1445 | 0.6120 | −0.1147 | 0.087* | 0.71 (2) |
H4C | 0.196 (11) | 0.700 (10) | −0.116 (6) | 0.087* | 0.29 (2) |
H4D | 0.140 (11) | 0.567 (10) | −0.075 (6) | 0.087* | 0.29 (2) |
C5 | 0.0123 (2) | 0.7463 (2) | −0.03423 (12) | 0.0517 (5) | |
C6 | −0.1289 (3) | 0.7974 (3) | −0.08175 (13) | 0.0665 (6) | |
H6 | −0.1391 | 0.7956 | −0.1460 | 0.080* | |
C7 | −0.2548 (3) | 0.8511 (3) | −0.03341 (14) | 0.0668 (6) | |
H7 | −0.3515 | 0.8873 | −0.0648 | 0.080* | |
C8 | −0.2398 (2) | 0.8519 (2) | 0.05995 (13) | 0.0534 (5) | |
H8 | −0.3259 | 0.8898 | 0.0924 | 0.064* | |
C9 | −0.0906 (2) | 0.80459 (18) | 0.20819 (10) | 0.0407 (4) | |
H9A | −0.0333 | 0.7173 | 0.2327 | 0.049* | |
H9B | −0.2022 | 0.8049 | 0.2297 | 0.049* | |
C10 | 0.0005 (2) | 0.93774 (19) | 0.24313 (12) | 0.0457 (4) | |
H10 | 0.1149 | 0.9443 | 0.2372 | 0.055* | |
C11 | −0.0739 (2) | 1.0444 (2) | 0.28143 (14) | 0.0563 (5) | |
H11A | −0.1883 | 1.0393 | 0.2879 | 0.068* | |
H11B | −0.0135 | 1.1267 | 0.3027 | 0.068* | |
C3 | 0.2577 (9) | 0.6200 (9) | 0.0171 (3) | 0.0669 (18) | 0.71 (2) |
H3A | 0.3759 | 0.6428 | 0.0191 | 0.080* | 0.71 (2) |
H3B | 0.2446 | 0.5136 | 0.0164 | 0.080* | 0.71 (2) |
C3A | 0.2852 (12) | 0.672 (3) | 0.0183 (4) | 0.068 (5) | 0.29 (2) |
H3A1 | 0.3687 | 0.7497 | 0.0200 | 0.082* | 0.29 (2) |
H3A2 | 0.3419 | 0.5777 | 0.0190 | 0.082* | 0.29 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0394 (3) | 0.0451 (3) | 0.0500 (3) | −0.00190 (17) | 0.00033 (18) | 0.00391 (18) |
N1 | 0.0414 (7) | 0.0383 (7) | 0.0366 (7) | −0.0004 (6) | 0.0058 (6) | 0.0037 (6) |
C1 | 0.0391 (8) | 0.0408 (9) | 0.0388 (9) | −0.0073 (7) | 0.0058 (7) | −0.0021 (7) |
C2 | 0.0409 (10) | 0.0592 (13) | 0.0463 (11) | 0.0019 (8) | 0.0032 (8) | −0.0069 (9) |
C4 | 0.0610 (13) | 0.108 (2) | 0.0496 (12) | −0.0036 (13) | 0.0160 (10) | −0.0213 (13) |
C5 | 0.0518 (10) | 0.0659 (12) | 0.0379 (9) | −0.0095 (9) | 0.0068 (8) | −0.0041 (8) |
C6 | 0.0705 (13) | 0.0918 (16) | 0.0364 (10) | −0.0073 (12) | −0.0016 (9) | 0.0086 (10) |
C7 | 0.0595 (12) | 0.0861 (16) | 0.0536 (12) | 0.0114 (11) | −0.0045 (10) | 0.0169 (11) |
C8 | 0.0473 (10) | 0.0590 (12) | 0.0540 (11) | 0.0100 (9) | 0.0049 (8) | 0.0103 (9) |
C9 | 0.0473 (9) | 0.0402 (9) | 0.0354 (9) | 0.0019 (7) | 0.0091 (7) | 0.0028 (7) |
C10 | 0.0371 (9) | 0.0547 (11) | 0.0456 (10) | −0.0013 (8) | 0.0057 (7) | −0.0010 (8) |
C11 | 0.0509 (10) | 0.0498 (11) | 0.0689 (13) | −0.0064 (9) | 0.0092 (9) | −0.0076 (9) |
C3 | 0.062 (3) | 0.074 (4) | 0.067 (3) | 0.009 (2) | 0.0206 (18) | −0.0084 (18) |
C3A | 0.050 (6) | 0.092 (13) | 0.064 (7) | 0.011 (6) | 0.017 (4) | −0.004 (5) |
N1—C1 | 1.344 (2) | C5—C6 | 1.377 (3) |
N1—C8 | 1.355 (2) | C6—C7 | 1.376 (3) |
N1—C9 | 1.489 (2) | C6—H6 | 0.9400 |
C1—C5 | 1.385 (2) | C7—C8 | 1.365 (3) |
C1—C2 | 1.487 (2) | C7—H7 | 0.9400 |
C2—C3A | 1.527 (7) | C8—H8 | 0.9400 |
C2—C3 | 1.534 (4) | C9—C10 | 1.497 (2) |
C2—H2A | 0.9800 | C9—H9A | 0.9800 |
C2—H2B | 0.9800 | C9—H9B | 0.9800 |
C2—H2C | 1.05 (8) | C10—C11 | 1.298 (3) |
C2—H2D | 0.69 (7) | C10—H10 | 0.9400 |
C4—C5 | 1.495 (3) | C11—H11A | 0.9400 |
C4—C3 | 1.516 (5) | C11—H11B | 0.9400 |
C4—C3A | 1.523 (7) | C3—H3A | 0.9800 |
C4—H4A | 0.9800 | C3—H3B | 0.9800 |
C4—H4B | 0.9800 | C3A—H3A1 | 0.9800 |
C4—H4C | 0.78 (9) | C3A—H3A2 | 0.9800 |
C4—H4D | 1.12 (9) | ||
C1—N1—C8 | 120.00 (15) | C7—C6—C5 | 118.78 (18) |
C1—N1—C9 | 121.34 (13) | C7—C6—H6 | 120.6 |
C8—N1—C9 | 118.62 (14) | C5—C6—H6 | 120.6 |
N1—C1—C5 | 120.63 (15) | C8—C7—C6 | 120.28 (19) |
N1—C1—C2 | 126.75 (15) | C8—C7—H7 | 119.9 |
C5—C1—C2 | 112.62 (15) | C6—C7—H7 | 119.9 |
C1—C2—C3A | 103.0 (4) | N1—C8—C7 | 120.71 (17) |
C1—C2—C3 | 102.6 (2) | N1—C8—H8 | 119.6 |
C1—C2—H2A | 111.2 | C7—C8—H8 | 119.6 |
C3—C2—H2A | 111.2 | N1—C9—C10 | 111.36 (13) |
C1—C2—H2B | 111.2 | N1—C9—H9A | 109.4 |
C3—C2—H2B | 111.2 | C10—C9—H9A | 109.4 |
H2A—C2—H2B | 109.2 | N1—C9—H9B | 109.4 |
C1—C2—H2C | 106 (4) | C10—C9—H9B | 109.4 |
C3A—C2—H2C | 113 (4) | H9A—C9—H9B | 108.0 |
C1—C2—H2D | 118 (7) | C11—C10—C9 | 121.86 (16) |
C3A—C2—H2D | 118 (7) | C11—C10—H10 | 119.1 |
H2C—C2—H2D | 97 (7) | C9—C10—H10 | 119.1 |
C5—C4—C3 | 104.2 (2) | C10—C11—H11A | 120.0 |
C5—C4—C3A | 104.6 (4) | C10—C11—H11B | 120.0 |
C5—C4—H4A | 110.9 | H11A—C11—H11B | 120.0 |
C3—C4—H4A | 110.9 | C4—C3—C2 | 107.6 (3) |
C5—C4—H4B | 110.9 | C4—C3—H3A | 110.2 |
C3—C4—H4B | 110.9 | C2—C3—H3A | 110.2 |
H4A—C4—H4B | 108.9 | C4—C3—H3B | 110.2 |
C5—C4—H4C | 123 (7) | C2—C3—H3B | 110.2 |
C3A—C4—H4C | 125 (7) | H3A—C3—H3B | 108.5 |
C5—C4—H4D | 103 (4) | C4—C3A—C2 | 107.6 (6) |
C3A—C4—H4D | 96 (4) | C4—C3A—H3A1 | 110.2 |
H4C—C4—H4D | 98 (8) | C2—C3A—H3A1 | 110.2 |
C6—C5—C1 | 119.57 (18) | C4—C3A—H3A2 | 110.2 |
C6—C5—C4 | 130.74 (18) | C2—C3A—H3A2 | 110.2 |
C1—C5—C4 | 109.68 (17) | H3A1—C3A—H3A2 | 108.5 |
C8—N1—C1—C5 | −0.2 (2) | C3A—C4—C5—C1 | −8.5 (11) |
C9—N1—C1—C5 | −178.01 (15) | C1—C5—C6—C7 | 1.6 (3) |
C8—N1—C1—C2 | −179.96 (18) | C4—C5—C6—C7 | −178.2 (2) |
C9—N1—C1—C2 | 2.2 (2) | C5—C6—C7—C8 | −0.7 (3) |
N1—C1—C2—C3A | −169.5 (11) | C1—N1—C8—C7 | 1.1 (3) |
C5—C1—C2—C3A | 10.7 (11) | C9—N1—C8—C7 | 179.00 (18) |
N1—C1—C2—C3 | 170.1 (4) | C6—C7—C8—N1 | −0.7 (3) |
C5—C1—C2—C3 | −9.7 (4) | C1—N1—C9—C10 | 82.79 (18) |
N1—C1—C5—C6 | −1.2 (3) | C8—N1—C9—C10 | −95.10 (18) |
C2—C1—C5—C6 | 178.66 (18) | N1—C9—C10—C11 | 110.0 (2) |
N1—C1—C5—C4 | 178.66 (17) | C5—C4—C3—C2 | −18.0 (7) |
C2—C1—C5—C4 | −1.5 (2) | C1—C2—C3—C4 | 16.9 (6) |
C3—C4—C5—C6 | −168.0 (4) | C5—C4—C3A—C2 | 14.9 (17) |
C3A—C4—C5—C6 | 171.4 (11) | C1—C2—C3A—C4 | −15.5 (17) |
C3—C4—C5—C1 | 12.2 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2A···Cl1 | 0.98 | 2.80 | 3.748 (2) | 164 |
C9—H9A···Cl1 | 0.98 | 2.64 | 3.584 (2) | 163 |
C2—H2B···Cl1i | 0.98 | 2.67 | 3.643 (2) | 175 |
C7—H7···Cl1ii | 0.94 | 2.75 | 3.545 (2) | 143 |
C8—H8···Cl1iii | 0.94 | 2.59 | 3.510 (2) | 166 |
Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2; (ii) x−1/2, −y+3/2, z−1/2; (iii) −x−1/2, y+1/2, −z+1/2. |
References
Albov, D. V., Rybakov, V. B., Babaev, E. V. & Aslanov, L. A. (2004). Acta Cryst. E60, o2313–o2314. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ammon, H. L. & Jensen, L. H. (1966). J. Am. Chem. Soc. 88, 681–688. CSD CrossRef CAS Web of Science Google Scholar
Bentivoglio, G., Laus, G., Kahlenberg, V., Röder, T. & Schottenberger, H. (2017). IUCrData, 2, x170598. Google Scholar
Bentivoglio, G., Röder, T., Fasching, M., Buchberger, M., Schottenberger, H. & Sixta, H. (2006). Lenzinger Ber. 86, 154–161. CAS Google Scholar
Beschke, H. (1978). Aldrichim. Acta, 11, 13–16. CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Liu, Y.-R., Thomsen, K., Nie, Y., Zhang, S.-J. & Meyer, A. S. (2016). Green Chem. 18, 6246–6254. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Wang, H., Gurau, G. & Rogers, R. D. (2012). Chem. Soc. Rev. 41, 1519–1537. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.