organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-(Prop-2-en-1-yl)-3-[(prop-2-en-1-yl)­­oxy]quin­oxalin-2(1H)-one

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Mohammed V University, Rabat, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: elbourakadi25@gmail.com

Edited by J. Simpson, University of Otago, New Zealand (Received 25 April 2017; accepted 2 May 2017; online 16 May 2017)

In the title compound, C14H14N2O2, the di­hydro­quinoxaline moiety deviates slightly from planarity. In the crystal, zigzag chains are formed by inversion-related C—H⋯O hydrogen bonds. Adjacent chains are associated through pairwise C—H⋯π(ring) and π-stacking inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Nitro­gen-containing heterocyclic compounds are indispensable structural units for medicinal chemists. Among the various heterocyclic compounds, quinoxaline derivatives display important biological activities including anti­convulsant (Ghadage & Shirote, 2011a[Ghadage, R. V. & Shirote, P. J. (2011a). J. Chem. Pharm. Res. 3, 260-266.]), anti­tubercular and anti­microbial activities (Ramalingam et al., 2010[Ramalingam, P., Ganapaty, S. & Rao, C. B. (2010). Bioorg. Med. Chem. Lett. 20, 406-408.]; Ghadage & Shirote, 2011b[Ghadage, R. V. & Shirote, P. J. (2011b). Banglad. J. Pharmacol. 6, 92-99.]). They are also used as NMDA receptor antagonists (Lin, 1996[Lin, S. K. (1996). Molecules, 1, 37-40.]). These compounds also have applications in organic synthesis and as ligands in new coordination complexes (Nassar et al., 2013[Nassar, M. Y., Attia, S. A., Alfallous, K. A. & El-Shahat, M. F. (2013). Inorg. Chim. Acta, 405, 362-367.]; Attia et al., 2013[Attia, S. A., Abdel Aziz, K. A., Alfallous, K. A. & El-Shahat, M. F. (2013). Polyhedron, 51, 243-254.]).

In the title compound (Fig. 1[link]), the C1–C6 ring is planar to within 0.0094 (9) Å (r.m.s. deviation = 0.0065) while the C1/C6/N1/C7/C8/N2 ring deviates by 0.0192 (8) Å from planarity (r.m.s. deviation = 0.0125 Å). The dihedral angle between the mean planes of the two rings is 1.36 (6)°. The N1/C9–C11 unit is planar with an r.m.s. deviation of 0.0041 and subtends an angle of 84.77 (6)° to the di­hydro­quinoxalinone ring system. The propen­yloxy substituent is far from planar, as indicated by the O2—C12—C13—C14 torsion angle of −128.4 (1)°. The plane of the C12–C14 segment subtends an angle of 51.00 (9)° to the di­hydro­quinoxalinone ring system.

[Figure 1]
Figure 1
The structure of title mol­ecule, showing the atom-labelling scheme, with ellipsoids drawn at the 50% probability level.

In the crystal, atom O1 acts as a bifurcated acceptor, forming inversion-related C10—H10⋯O1i and C13—H13⋯O1ii hydrogen bonds that enclose R22(12) and R22(14) rings respectively. These contacts link the mol­ecules into zigzag chains parallel to (10[\overline{1}]) (Table 1[link] and Fig. 2[link]). Inversion-related C12—H12BCg2iii inter­actions (Table 1[link] and Fig. 2[link]) bind two neighboring chains together and these paired chains are further associated through offset π-stacking inter­actions between head-to-tail pairs of di­hydro­quinoxaline units [Cg1⋯Cg2 = 3.8484 (8) Å, dihedral angle = 1.38 (6)°; Cg1 and Cg2 are the centroids of the N1/N2/C1/C6–C8 and C1–C6 rings respectively] (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O1i 0.97 (2) 2.54 (2) 3.4353 (16) 152.4 (15)
C12—H12BCg2ii 0.984 (17) 2.74 (2) 3.544 (1) 139 (1)
C13—H13⋯O1iii 0.967 (18) 2.491 (18) 3.2604 (16) 136.4 (14)
Symmetry codes: (i) -x, -y, -z; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y, -z+1.
[Figure 2]
Figure 2
The packing viewed along the c-axis direction. C—H⋯O hydrogen bonds are shown as black dashed lines, while C—H⋯π(ring) inter­actions are shown as purple dashed lines. The π-stacking inter­actions are shown as orange dashed lines. Cg1 and Cg2 are the centroids of the C1–C6 and C1/C6/N1/C7/C8/N2 rings, respectively. [Symmetry codes (i), (ii) and (iii) are defined in Table 1[link], while (iv) is −x, −y + 1, −z + 1.]

Synthesis and crystallization

A mixture of quinoxain-2,3-dione (1 g; 6,17 mmol),K2CO3 (1,7 g; 12,33 mmol), allyl­bromide (1,6 ml; 18,60 mmol) and tetra-n-butyl­ammonium bromide as a catalyst in N,N-di­methyl­formamide (60 ml) was stirred at room temperature for 48 h. Solvent was removed under reduced pressure and the residue chromatographed on a silica-gel column using hexane and ethyl acetate (80/20) as eluent. Recrystallization of the solid product from ethanol afforded the title compound as colourless crystals.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C14H14N2O2
Mr 242.27
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 8.4015 (6), 9.0041 (6), 9.1465 (7)
α, β, γ (°) 114.214 (3), 101.275 (4), 90.978 (3)
V3) 615.19 (8)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.72
Crystal size (mm) 0.19 × 0.17 × 0.05
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.84, 0.97
No. of measured, independent and observed [I > 2σ(I)] reflections 4854, 2344, 2090
Rint 0.024
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.112, 1.06
No. of reflections 2344
No. of parameters 219
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.20, −0.27
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

1-(Prop-2-en-1-yl)-3-[(prop-2-en-1-yl)oxy]quinoxalin-2(1H)-one top
Crystal data top
C14H14N2O2Z = 2
Mr = 242.27F(000) = 256
Triclinic, P1Dx = 1.308 Mg m3
a = 8.4015 (6) ÅCu Kα radiation, λ = 1.54178 Å
b = 9.0041 (6) ÅCell parameters from 4058 reflections
c = 9.1465 (7) Åθ = 5.4–74.5°
α = 114.214 (3)°µ = 0.72 mm1
β = 101.275 (4)°T = 150 K
γ = 90.978 (3)°Plate, colourless
V = 615.19 (8) Å30.19 × 0.17 × 0.05 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2344 independent reflections
Radiation source: INCOATEC IµS micro-focus source2090 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.024
Detector resolution: 10.4167 pixels mm-1θmax = 74.5°, θmin = 5.4°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1110
Tmin = 0.84, Tmax = 0.97l = 1010
4854 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: difference Fourier map
wR(F2) = 0.112All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.058P)2 + 0.1639P]
where P = (Fo2 + 2Fc2)/3
2344 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.17021 (12)0.09718 (10)0.33041 (12)0.0308 (2)
O20.38667 (11)0.24075 (10)0.61136 (11)0.0257 (2)
N10.11292 (12)0.34249 (12)0.32610 (13)0.0215 (2)
N20.35558 (12)0.49626 (12)0.61668 (13)0.0227 (2)
C10.27145 (15)0.58701 (14)0.54019 (15)0.0221 (3)
C20.31123 (16)0.75694 (15)0.61000 (16)0.0265 (3)
H20.397 (2)0.804 (2)0.709 (2)0.036 (4)*
C30.22833 (18)0.85253 (16)0.54246 (17)0.0297 (3)
H30.260 (2)0.971 (2)0.592 (2)0.033 (4)*
C40.10465 (17)0.77887 (16)0.40083 (17)0.0282 (3)
H40.047 (2)0.844 (2)0.355 (2)0.045 (5)*
C50.06517 (16)0.61093 (16)0.32696 (16)0.0261 (3)
H50.015 (2)0.561 (2)0.225 (2)0.036 (4)*
C60.14787 (14)0.51286 (14)0.39596 (15)0.0215 (3)
C70.19495 (15)0.24637 (15)0.39248 (15)0.0225 (3)
C80.31766 (14)0.34077 (15)0.54840 (15)0.0218 (3)
C90.01289 (15)0.25660 (15)0.17450 (15)0.0238 (3)
H9A0.106 (2)0.3235 (19)0.1812 (19)0.028 (4)*
H9B0.0541 (19)0.1501 (19)0.1772 (19)0.028 (4)*
C100.04657 (16)0.22011 (17)0.02069 (16)0.0303 (3)
H100.037 (2)0.162 (2)0.079 (2)0.046 (5)*
C110.19630 (19)0.2551 (2)0.01212 (19)0.0403 (4)
H11A0.284 (2)0.313 (2)0.111 (2)0.043 (5)*
H11B0.227 (3)0.227 (2)0.096 (3)0.055 (5)*
C120.51603 (15)0.31527 (15)0.75823 (16)0.0263 (3)
H12A0.4707 (19)0.3934 (19)0.8475 (19)0.026 (4)*
H12B0.601 (2)0.376 (2)0.737 (2)0.032 (4)*
C130.58081 (15)0.17844 (16)0.79496 (17)0.0267 (3)
H130.613 (2)0.092 (2)0.704 (2)0.036 (4)*
C140.59740 (16)0.17503 (19)0.93963 (19)0.0333 (3)
H14A0.566 (2)0.265 (2)1.034 (2)0.038 (4)*
H14B0.641 (2)0.083 (2)0.958 (2)0.037 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0343 (5)0.0177 (4)0.0329 (5)0.0004 (4)0.0022 (4)0.0078 (4)
O20.0274 (5)0.0214 (4)0.0261 (5)0.0008 (3)0.0026 (4)0.0117 (4)
N10.0213 (5)0.0202 (5)0.0216 (5)0.0008 (4)0.0027 (4)0.0085 (4)
N20.0251 (5)0.0212 (5)0.0221 (5)0.0004 (4)0.0041 (4)0.0100 (4)
C10.0255 (6)0.0226 (6)0.0214 (6)0.0021 (5)0.0076 (5)0.0113 (5)
C20.0323 (7)0.0219 (6)0.0241 (6)0.0002 (5)0.0063 (5)0.0085 (5)
C30.0398 (7)0.0202 (6)0.0316 (7)0.0028 (5)0.0119 (6)0.0117 (5)
C40.0340 (7)0.0266 (7)0.0321 (7)0.0082 (5)0.0112 (5)0.0185 (5)
C50.0264 (6)0.0271 (7)0.0272 (7)0.0046 (5)0.0061 (5)0.0139 (5)
C60.0224 (6)0.0208 (6)0.0230 (6)0.0021 (4)0.0079 (5)0.0097 (5)
C70.0232 (6)0.0208 (6)0.0231 (6)0.0022 (4)0.0042 (5)0.0093 (5)
C80.0228 (6)0.0207 (6)0.0228 (6)0.0026 (4)0.0045 (5)0.0103 (5)
C90.0205 (6)0.0243 (6)0.0240 (6)0.0012 (5)0.0010 (5)0.0096 (5)
C100.0292 (7)0.0329 (7)0.0234 (7)0.0007 (5)0.0019 (5)0.0084 (5)
C110.0344 (8)0.0514 (9)0.0291 (8)0.0005 (7)0.0104 (6)0.0097 (7)
C120.0251 (6)0.0252 (6)0.0248 (7)0.0007 (5)0.0008 (5)0.0098 (5)
C130.0216 (6)0.0284 (6)0.0295 (7)0.0022 (5)0.0020 (5)0.0132 (5)
C140.0260 (6)0.0405 (8)0.0363 (8)0.0031 (6)0.0000 (5)0.0221 (7)
Geometric parameters (Å, º) top
O1—C71.2202 (15)C5—H50.962 (18)
O2—C81.3385 (15)C7—C81.4900 (17)
O2—C121.4494 (15)C9—C101.4960 (19)
N1—C71.3713 (16)C9—H9A0.993 (16)
N1—C61.3982 (15)C9—H9B1.026 (16)
N1—C91.4688 (15)C10—C111.317 (2)
N2—C81.2812 (16)C10—H100.97 (2)
N2—C11.3971 (16)C11—H11A0.986 (19)
C1—C21.3993 (17)C11—H11B1.00 (2)
C1—C61.4080 (17)C12—C131.4892 (17)
C2—C31.3769 (19)C12—H12A0.983 (16)
C2—H20.970 (18)C12—H12B0.984 (17)
C3—C41.394 (2)C13—C141.316 (2)
C3—H30.981 (17)C13—H130.967 (18)
C4—C51.3821 (18)C14—H14A1.000 (18)
C4—H40.943 (19)C14—H14B0.972 (18)
C5—C61.4026 (17)
C8—O2—C12116.73 (9)N2—C8—C7126.24 (11)
C7—N1—C6122.40 (10)O2—C8—C7110.83 (10)
C7—N1—C9116.37 (10)N1—C9—C10113.87 (10)
C6—N1—C9121.22 (10)N1—C9—H9A107.6 (9)
C8—N2—C1117.14 (10)C10—C9—H9A111.8 (9)
N2—C1—C2118.74 (11)N1—C9—H9B106.4 (9)
N2—C1—C6122.05 (11)C10—C9—H9B110.4 (9)
C2—C1—C6119.20 (11)H9A—C9—H9B106.4 (13)
C3—C2—C1121.01 (12)C11—C10—C9126.25 (13)
C3—C2—H2121.9 (10)C11—C10—H10120.2 (11)
C1—C2—H2117.0 (10)C9—C10—H10113.5 (11)
C2—C3—C4119.59 (12)C10—C11—H11A122.6 (11)
C2—C3—H3119.8 (10)C10—C11—H11B121.9 (12)
C4—C3—H3120.5 (10)H11A—C11—H11B115.5 (16)
C5—C4—C3120.71 (12)O2—C12—C13106.27 (10)
C5—C4—H4119.4 (12)O2—C12—H12A108.9 (9)
C3—C4—H4119.9 (12)C13—C12—H12A112.5 (9)
C4—C5—C6120.05 (12)O2—C12—H12B109.2 (10)
C4—C5—H5119.7 (10)C13—C12—H12B111.7 (10)
C6—C5—H5120.2 (10)H12A—C12—H12B108.2 (14)
N1—C6—C5122.36 (11)C14—C13—C12123.59 (13)
N1—C6—C1118.22 (11)C14—C13—H13121.8 (10)
C5—C6—C1119.41 (11)C12—C13—H13114.6 (10)
O1—C7—N1123.43 (11)C13—C14—H14A122.2 (10)
O1—C7—C8122.73 (11)C13—C14—H14B120.4 (10)
N1—C7—C8113.85 (10)H14A—C14—H14B117.4 (14)
N2—C8—O2122.93 (11)
C8—N2—C1—C2179.10 (11)C6—N1—C7—O1177.41 (11)
C8—N2—C1—C61.18 (18)C9—N1—C7—O11.48 (18)
N2—C1—C2—C3177.86 (11)C6—N1—C7—C82.70 (17)
C6—C1—C2—C31.87 (19)C9—N1—C7—C8178.41 (10)
C1—C2—C3—C41.1 (2)C1—N2—C8—O2178.49 (10)
C2—C3—C4—C50.4 (2)C1—N2—C8—C71.61 (19)
C3—C4—C5—C61.1 (2)C12—O2—C8—N23.60 (18)
C7—N1—C6—C5179.27 (11)C12—O2—C8—C7176.30 (10)
C9—N1—C6—C50.43 (18)O1—C7—C8—N2176.57 (12)
C7—N1—C6—C10.35 (18)N1—C7—C8—N23.54 (19)
C9—N1—C6—C1179.18 (10)O1—C7—C8—O23.33 (18)
C4—C5—C6—N1179.89 (11)N1—C7—C8—O2176.56 (10)
C4—C5—C6—C10.28 (19)C7—N1—C9—C1094.54 (13)
N2—C1—C6—N11.83 (18)C6—N1—C9—C1084.37 (14)
C2—C1—C6—N1178.45 (11)N1—C9—C10—C111.2 (2)
N2—C1—C6—C5178.54 (11)C8—O2—C12—C13175.46 (10)
C2—C1—C6—C51.18 (18)O2—C12—C13—C14128.35 (13)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C10—H10···O1i0.97 (2)2.54 (2)3.4353 (16)152.4 (15)
C12—H12B···Cg2ii0.984 (17)2.74 (2)3.544 (1)139 (1)
C13—H13···O1iii0.967 (18)2.491 (18)3.2604 (16)136.4 (14)
Symmetry codes: (i) x, y, z; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1.
 

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationAttia, S. A., Abdel Aziz, K. A., Alfallous, K. A. & El-Shahat, M. F. (2013). Polyhedron, 51, 243–254.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGhadage, R. V. & Shirote, P. J. (2011a). J. Chem. Pharm. Res. 3, 260–266.  CAS Google Scholar
First citationGhadage, R. V. & Shirote, P. J. (2011b). Banglad. J. Pharmacol. 6, 92–99.  Web of Science CrossRef Google Scholar
First citationLin, S. K. (1996). Molecules, 1, 37–40.  CrossRef CAS Google Scholar
First citationNassar, M. Y., Attia, S. A., Alfallous, K. A. & El-Shahat, M. F. (2013). Inorg. Chim. Acta, 405, 362–367.  Web of Science CrossRef CAS Google Scholar
First citationRamalingam, P., Ganapaty, S. & Rao, C. B. (2010). Bioorg. Med. Chem. Lett. 20, 406–408.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds