organic compounds
1-(Prop-2-en-1-yl)-3-[(prop-2-en-1-yl)oxy]quinoxalin-2(1H)-one
aLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Mohammed V University, Rabat, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: elbourakadi25@gmail.com
In the title compound, C14H14N2O2, the dihydroquinoxaline moiety deviates slightly from planarity. In the crystal, zigzag chains are formed by inversion-related C—H⋯O hydrogen bonds. Adjacent chains are associated through pairwise C—H⋯π(ring) and π-stacking interactions.
Keywords: crystal structure; dihydroquinoxalinone; hydrogen bonds; π-stacking.
CCDC reference: 1547344
Structure description
Nitrogen-containing a), antitubercular and antimicrobial activities (Ramalingam et al., 2010; Ghadage & Shirote, 2011b). They are also used as NMDA receptor antagonists (Lin, 1996). These compounds also have applications in organic synthesis and as ligands in new coordination complexes (Nassar et al., 2013; Attia et al., 2013).
are indispensable structural units for medicinal chemists. Among the various quinoxaline derivatives display important biological activities including anticonvulsant (Ghadage & Shirote, 2011In the title compound (Fig. 1), the C1–C6 ring is planar to within 0.0094 (9) Å (r.m.s. deviation = 0.0065) while the C1/C6/N1/C7/C8/N2 ring deviates by 0.0192 (8) Å from planarity (r.m.s. deviation = 0.0125 Å). The dihedral angle between the mean planes of the two rings is 1.36 (6)°. The N1/C9–C11 unit is planar with an r.m.s. deviation of 0.0041 and subtends an angle of 84.77 (6)° to the dihydroquinoxalinone ring system. The propenyloxy substituent is far from planar, as indicated by the O2—C12—C13—C14 torsion angle of −128.4 (1)°. The plane of the C12–C14 segment subtends an angle of 51.00 (9)° to the dihydroquinoxalinone ring system.
In the crystal, atom O1 acts as a bifurcated acceptor, forming inversion-related C10—H10⋯O1i and C13—H13⋯O1ii hydrogen bonds that enclose R22(12) and R22(14) rings respectively. These contacts link the molecules into zigzag chains parallel to (10) (Table 1 and Fig. 2). Inversion-related C12—H12B⋯Cg2iii interactions (Table 1 and Fig. 2) bind two neighboring chains together and these paired chains are further associated through offset π-stacking interactions between head-to-tail pairs of dihydroquinoxaline units [Cg1⋯Cg2 = 3.8484 (8) Å, dihedral angle = 1.38 (6)°; Cg1 and Cg2 are the centroids of the N1/N2/C1/C6–C8 and C1–C6 rings respectively] (Fig. 2).
Synthesis and crystallization
A mixture of quinoxain-2,3-dione (1 g; 6,17 mmol),K2CO3 (1,7 g; 12,33 mmol), allylbromide (1,6 ml; 18,60 mmol) and tetra-n-butylammonium bromide as a catalyst in N,N-dimethylformamide (60 ml) was stirred at room temperature for 48 h. Solvent was removed under reduced pressure and the residue chromatographed on a silica-gel column using hexane and ethyl acetate (80/20) as Recrystallization of the solid product from ethanol afforded the title compound as colourless crystals.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 1547344
https://doi.org/10.1107/S2414314617006563/sj4106sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617006563/sj4106Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314617006563/sj4106Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2414314617006563/sj4106Isup4.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C14H14N2O2 | Z = 2 |
Mr = 242.27 | F(000) = 256 |
Triclinic, P1 | Dx = 1.308 Mg m−3 |
a = 8.4015 (6) Å | Cu Kα radiation, λ = 1.54178 Å |
b = 9.0041 (6) Å | Cell parameters from 4058 reflections |
c = 9.1465 (7) Å | θ = 5.4–74.5° |
α = 114.214 (3)° | µ = 0.72 mm−1 |
β = 101.275 (4)° | T = 150 K |
γ = 90.978 (3)° | Plate, colourless |
V = 615.19 (8) Å3 | 0.19 × 0.17 × 0.05 mm |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 2344 independent reflections |
Radiation source: INCOATEC IµS micro-focus source | 2090 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.024 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 74.5°, θmin = 5.4° |
ω scans | h = −10→10 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | k = −11→10 |
Tmin = 0.84, Tmax = 0.97 | l = −10→10 |
4854 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.112 | All H-atom parameters refined |
S = 1.06 | w = 1/[σ2(Fo2) + (0.058P)2 + 0.1639P] where P = (Fo2 + 2Fc2)/3 |
2344 reflections | (Δ/σ)max < 0.001 |
219 parameters | Δρmax = 0.20 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.17021 (12) | 0.09718 (10) | 0.33041 (12) | 0.0308 (2) | |
O2 | 0.38667 (11) | 0.24075 (10) | 0.61136 (11) | 0.0257 (2) | |
N1 | 0.11292 (12) | 0.34249 (12) | 0.32610 (13) | 0.0215 (2) | |
N2 | 0.35558 (12) | 0.49626 (12) | 0.61668 (13) | 0.0227 (2) | |
C1 | 0.27145 (15) | 0.58701 (14) | 0.54019 (15) | 0.0221 (3) | |
C2 | 0.31123 (16) | 0.75694 (15) | 0.61000 (16) | 0.0265 (3) | |
H2 | 0.397 (2) | 0.804 (2) | 0.709 (2) | 0.036 (4)* | |
C3 | 0.22833 (18) | 0.85253 (16) | 0.54246 (17) | 0.0297 (3) | |
H3 | 0.260 (2) | 0.971 (2) | 0.592 (2) | 0.033 (4)* | |
C4 | 0.10465 (17) | 0.77887 (16) | 0.40083 (17) | 0.0282 (3) | |
H4 | 0.047 (2) | 0.844 (2) | 0.355 (2) | 0.045 (5)* | |
C5 | 0.06517 (16) | 0.61093 (16) | 0.32696 (16) | 0.0261 (3) | |
H5 | −0.015 (2) | 0.561 (2) | 0.225 (2) | 0.036 (4)* | |
C6 | 0.14787 (14) | 0.51286 (14) | 0.39596 (15) | 0.0215 (3) | |
C7 | 0.19495 (15) | 0.24637 (15) | 0.39248 (15) | 0.0225 (3) | |
C8 | 0.31766 (14) | 0.34077 (15) | 0.54840 (15) | 0.0218 (3) | |
C9 | −0.01289 (15) | 0.25660 (15) | 0.17450 (15) | 0.0238 (3) | |
H9A | −0.106 (2) | 0.3235 (19) | 0.1812 (19) | 0.028 (4)* | |
H9B | −0.0541 (19) | 0.1501 (19) | 0.1772 (19) | 0.028 (4)* | |
C10 | 0.04657 (16) | 0.22011 (17) | 0.02069 (16) | 0.0303 (3) | |
H10 | −0.037 (2) | 0.162 (2) | −0.079 (2) | 0.046 (5)* | |
C11 | 0.19630 (19) | 0.2551 (2) | 0.01212 (19) | 0.0403 (4) | |
H11A | 0.284 (2) | 0.313 (2) | 0.111 (2) | 0.043 (5)* | |
H11B | 0.227 (3) | 0.227 (2) | −0.096 (3) | 0.055 (5)* | |
C12 | 0.51603 (15) | 0.31527 (15) | 0.75823 (16) | 0.0263 (3) | |
H12A | 0.4707 (19) | 0.3934 (19) | 0.8475 (19) | 0.026 (4)* | |
H12B | 0.601 (2) | 0.376 (2) | 0.737 (2) | 0.032 (4)* | |
C13 | 0.58081 (15) | 0.17844 (16) | 0.79496 (17) | 0.0267 (3) | |
H13 | 0.613 (2) | 0.092 (2) | 0.704 (2) | 0.036 (4)* | |
C14 | 0.59740 (16) | 0.17503 (19) | 0.93963 (19) | 0.0333 (3) | |
H14A | 0.566 (2) | 0.265 (2) | 1.034 (2) | 0.038 (4)* | |
H14B | 0.641 (2) | 0.083 (2) | 0.958 (2) | 0.037 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0343 (5) | 0.0177 (4) | 0.0329 (5) | 0.0004 (4) | −0.0022 (4) | 0.0078 (4) |
O2 | 0.0274 (5) | 0.0214 (4) | 0.0261 (5) | 0.0008 (3) | −0.0026 (4) | 0.0117 (4) |
N1 | 0.0213 (5) | 0.0202 (5) | 0.0216 (5) | 0.0008 (4) | 0.0027 (4) | 0.0085 (4) |
N2 | 0.0251 (5) | 0.0212 (5) | 0.0221 (5) | 0.0004 (4) | 0.0041 (4) | 0.0100 (4) |
C1 | 0.0255 (6) | 0.0226 (6) | 0.0214 (6) | 0.0021 (5) | 0.0076 (5) | 0.0113 (5) |
C2 | 0.0323 (7) | 0.0219 (6) | 0.0241 (6) | −0.0002 (5) | 0.0063 (5) | 0.0085 (5) |
C3 | 0.0398 (7) | 0.0202 (6) | 0.0316 (7) | 0.0028 (5) | 0.0119 (6) | 0.0117 (5) |
C4 | 0.0340 (7) | 0.0266 (7) | 0.0321 (7) | 0.0082 (5) | 0.0112 (5) | 0.0185 (5) |
C5 | 0.0264 (6) | 0.0271 (7) | 0.0272 (7) | 0.0046 (5) | 0.0061 (5) | 0.0139 (5) |
C6 | 0.0224 (6) | 0.0208 (6) | 0.0230 (6) | 0.0021 (4) | 0.0079 (5) | 0.0097 (5) |
C7 | 0.0232 (6) | 0.0208 (6) | 0.0231 (6) | 0.0022 (4) | 0.0042 (5) | 0.0093 (5) |
C8 | 0.0228 (6) | 0.0207 (6) | 0.0228 (6) | 0.0026 (4) | 0.0045 (5) | 0.0103 (5) |
C9 | 0.0205 (6) | 0.0243 (6) | 0.0240 (6) | −0.0012 (5) | 0.0010 (5) | 0.0096 (5) |
C10 | 0.0292 (7) | 0.0329 (7) | 0.0234 (7) | 0.0007 (5) | 0.0019 (5) | 0.0084 (5) |
C11 | 0.0344 (8) | 0.0514 (9) | 0.0291 (8) | −0.0005 (7) | 0.0104 (6) | 0.0097 (7) |
C12 | 0.0251 (6) | 0.0252 (6) | 0.0248 (7) | −0.0007 (5) | −0.0008 (5) | 0.0098 (5) |
C13 | 0.0216 (6) | 0.0284 (6) | 0.0295 (7) | 0.0022 (5) | 0.0020 (5) | 0.0132 (5) |
C14 | 0.0260 (6) | 0.0405 (8) | 0.0363 (8) | 0.0031 (6) | 0.0000 (5) | 0.0221 (7) |
O1—C7 | 1.2202 (15) | C5—H5 | 0.962 (18) |
O2—C8 | 1.3385 (15) | C7—C8 | 1.4900 (17) |
O2—C12 | 1.4494 (15) | C9—C10 | 1.4960 (19) |
N1—C7 | 1.3713 (16) | C9—H9A | 0.993 (16) |
N1—C6 | 1.3982 (15) | C9—H9B | 1.026 (16) |
N1—C9 | 1.4688 (15) | C10—C11 | 1.317 (2) |
N2—C8 | 1.2812 (16) | C10—H10 | 0.97 (2) |
N2—C1 | 1.3971 (16) | C11—H11A | 0.986 (19) |
C1—C2 | 1.3993 (17) | C11—H11B | 1.00 (2) |
C1—C6 | 1.4080 (17) | C12—C13 | 1.4892 (17) |
C2—C3 | 1.3769 (19) | C12—H12A | 0.983 (16) |
C2—H2 | 0.970 (18) | C12—H12B | 0.984 (17) |
C3—C4 | 1.394 (2) | C13—C14 | 1.316 (2) |
C3—H3 | 0.981 (17) | C13—H13 | 0.967 (18) |
C4—C5 | 1.3821 (18) | C14—H14A | 1.000 (18) |
C4—H4 | 0.943 (19) | C14—H14B | 0.972 (18) |
C5—C6 | 1.4026 (17) | ||
C8—O2—C12 | 116.73 (9) | N2—C8—C7 | 126.24 (11) |
C7—N1—C6 | 122.40 (10) | O2—C8—C7 | 110.83 (10) |
C7—N1—C9 | 116.37 (10) | N1—C9—C10 | 113.87 (10) |
C6—N1—C9 | 121.22 (10) | N1—C9—H9A | 107.6 (9) |
C8—N2—C1 | 117.14 (10) | C10—C9—H9A | 111.8 (9) |
N2—C1—C2 | 118.74 (11) | N1—C9—H9B | 106.4 (9) |
N2—C1—C6 | 122.05 (11) | C10—C9—H9B | 110.4 (9) |
C2—C1—C6 | 119.20 (11) | H9A—C9—H9B | 106.4 (13) |
C3—C2—C1 | 121.01 (12) | C11—C10—C9 | 126.25 (13) |
C3—C2—H2 | 121.9 (10) | C11—C10—H10 | 120.2 (11) |
C1—C2—H2 | 117.0 (10) | C9—C10—H10 | 113.5 (11) |
C2—C3—C4 | 119.59 (12) | C10—C11—H11A | 122.6 (11) |
C2—C3—H3 | 119.8 (10) | C10—C11—H11B | 121.9 (12) |
C4—C3—H3 | 120.5 (10) | H11A—C11—H11B | 115.5 (16) |
C5—C4—C3 | 120.71 (12) | O2—C12—C13 | 106.27 (10) |
C5—C4—H4 | 119.4 (12) | O2—C12—H12A | 108.9 (9) |
C3—C4—H4 | 119.9 (12) | C13—C12—H12A | 112.5 (9) |
C4—C5—C6 | 120.05 (12) | O2—C12—H12B | 109.2 (10) |
C4—C5—H5 | 119.7 (10) | C13—C12—H12B | 111.7 (10) |
C6—C5—H5 | 120.2 (10) | H12A—C12—H12B | 108.2 (14) |
N1—C6—C5 | 122.36 (11) | C14—C13—C12 | 123.59 (13) |
N1—C6—C1 | 118.22 (11) | C14—C13—H13 | 121.8 (10) |
C5—C6—C1 | 119.41 (11) | C12—C13—H13 | 114.6 (10) |
O1—C7—N1 | 123.43 (11) | C13—C14—H14A | 122.2 (10) |
O1—C7—C8 | 122.73 (11) | C13—C14—H14B | 120.4 (10) |
N1—C7—C8 | 113.85 (10) | H14A—C14—H14B | 117.4 (14) |
N2—C8—O2 | 122.93 (11) | ||
C8—N2—C1—C2 | −179.10 (11) | C6—N1—C7—O1 | −177.41 (11) |
C8—N2—C1—C6 | 1.18 (18) | C9—N1—C7—O1 | 1.48 (18) |
N2—C1—C2—C3 | −177.86 (11) | C6—N1—C7—C8 | 2.70 (17) |
C6—C1—C2—C3 | 1.87 (19) | C9—N1—C7—C8 | −178.41 (10) |
C1—C2—C3—C4 | −1.1 (2) | C1—N2—C8—O2 | −178.49 (10) |
C2—C3—C4—C5 | −0.4 (2) | C1—N2—C8—C7 | 1.61 (19) |
C3—C4—C5—C6 | 1.1 (2) | C12—O2—C8—N2 | −3.60 (18) |
C7—N1—C6—C5 | 179.27 (11) | C12—O2—C8—C7 | 176.30 (10) |
C9—N1—C6—C5 | 0.43 (18) | O1—C7—C8—N2 | 176.57 (12) |
C7—N1—C6—C1 | −0.35 (18) | N1—C7—C8—N2 | −3.54 (19) |
C9—N1—C6—C1 | −179.18 (10) | O1—C7—C8—O2 | −3.33 (18) |
C4—C5—C6—N1 | −179.89 (11) | N1—C7—C8—O2 | 176.56 (10) |
C4—C5—C6—C1 | −0.28 (19) | C7—N1—C9—C10 | −94.54 (13) |
N2—C1—C6—N1 | −1.83 (18) | C6—N1—C9—C10 | 84.37 (14) |
C2—C1—C6—N1 | 178.45 (11) | N1—C9—C10—C11 | 1.2 (2) |
N2—C1—C6—C5 | 178.54 (11) | C8—O2—C12—C13 | −175.46 (10) |
C2—C1—C6—C5 | −1.18 (18) | O2—C12—C13—C14 | −128.35 (13) |
Cg2 is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10···O1i | 0.97 (2) | 2.54 (2) | 3.4353 (16) | 152.4 (15) |
C12—H12B···Cg2ii | 0.984 (17) | 2.74 (2) | 3.544 (1) | 139 (1) |
C13—H13···O1iii | 0.967 (18) | 2.491 (18) | 3.2604 (16) | 136.4 (14) |
Symmetry codes: (i) −x, −y, −z; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y, −z+1. |
Acknowledgements
The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.
References
Attia, S. A., Abdel Aziz, K. A., Alfallous, K. A. & El-Shahat, M. F. (2013). Polyhedron, 51, 243–254. Web of Science CrossRef CAS Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Ghadage, R. V. & Shirote, P. J. (2011a). J. Chem. Pharm. Res. 3, 260–266. CAS Google Scholar
Ghadage, R. V. & Shirote, P. J. (2011b). Banglad. J. Pharmacol. 6, 92–99. Web of Science CrossRef Google Scholar
Lin, S. K. (1996). Molecules, 1, 37–40. CrossRef CAS Google Scholar
Nassar, M. Y., Attia, S. A., Alfallous, K. A. & El-Shahat, M. F. (2013). Inorg. Chim. Acta, 405, 362–367. Web of Science CrossRef CAS Google Scholar
Ramalingam, P., Ganapaty, S. & Rao, C. B. (2010). Bioorg. Med. Chem. Lett. 20, 406–408. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.