organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-Chloro-3-(6-nitro-1H-indazol-1-yl)propan-2-ol

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Mohammed V University, Rabat, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: mmohamedabdelahi@gmail.com

Edited by J. Simpson, University of Otago, New Zealand (Received 20 April 2017; accepted 27 April 2017; online 5 May 2017)

In the title compound, C10H10ClN3O3, the side chain is oriented nearly perpendicular to the mean plane of the indazole ring system. In the crystal, complementary sets of O—H⋯N and C—H⋯O hydrogen bonds form chains of mol­ecules stacked along the a-axis direction

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Indazoles and their derivatives have gained considerable importance in medicinal chemistry in view of their promising pharmacological properties (Caron & Vazquez, 1999[Caron, S. & Vazquez, E. (1999). Synthesis, pp. 588-592.]; Yeu et al., 2001[Yeu, J.-P., Yeh, J.-T., Chen, T.-Y. & Uang, B. (2001). Synthesis, pp. 1775-1777.]). Substituted indazoles are especially important sub-structures and these compounds are present in numerous pharmacophores including anti­tumor, anti­platelet, anti-viral and anti-microbial agents (Abbassi et al., 2014[Abbassi, N., Rakib, E. M., Chicha, H., Bouissane, L., Hannioui, A., Aiello, C., Gangemi, R., Castagnola, P., Rosano, C. & Viale, M. (2014). Arch. Pharm. Chem. Life Sci. 347, 423-431.]).

In the title compound (Fig. 1[link]), the indazole moiety is planar with an r.m.s. deviation of 0.0046 Å. The C1—N1—C8—C9 torsion angle of −81.0 (2)° indicates that the side chain is close to perpendicular to the indazole plane. In the crystal, inversion-related O3—H3⋯N2i hydrogen bonds form dimers enclosing R22(12) rings (Table 1[link] and Fig. 2[link]). Non-classical C2—H2⋯Oii hydrogen bonds also form inversion dimers and R22(10) rings. These contacts combine to link mol­ecules in a head-to-tail fashion into chains along the c-axis direction. Additional C10—H10A⋯O3iii hydrogen bonds link adjacent chains, stacking mol­ecules along the a-axis direction (Table 1[link] and Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N2i 1.00 1.88 2.871 (2) 169
C2—H2⋯O1ii 0.93 2.59 3.492 (3) 163
C10—H10A⋯O3iii 0.97 2.49 3.268 (3) 137
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y+1, -z+1; (iii) x-1, y, z.
[Figure 1]
Figure 1
The title mol­ecule with labeling scheme and 30% probability ellipsoids.
[Figure 2]
Figure 2
Chains of mol­ecules formed along c by O—H⋯N and C—H⋯O hydrogen bonds shown as red and black dotted lines, respectively.
[Figure 3]
Figure 3
Mol­ecules stacked along the a-axis direction by O—H⋯N and C—H⋯O hydrogen bonds shown as red and black dashed lines, respectively.

Synthesis and crystallization

To a solution of 6-nitro­indazole (0.01 mol, 0.5 g) in tetra­hydro­furan (40 ml), was added potassium bicarbonate (0.02 mol, 2.76 g), 2-(chloro­meth­yl)oxirane (0.02 mol, 1.2 ml) and tetra n-butyl­ammonium bromide (0.001 mol, 0.16 g). The reaction mixture was stirred at room temperature for 48 h. The solution was filtered and the the solvent removed under reduced pressure. The residue obtained was chromatographed on a silica-gel column using hexane and ethyl acetate (80/20) as eluents to afford the title compound as yellow plate-like crystals.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C10H10ClN3O3
Mr 255.66
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 298
a, b, c (Å) 4.3949 (4), 9.9144 (8), 13.1376 (11)
α, β, γ (°) 98.481 (1), 90.755 (1), 97.377 (1)
V3) 561.19 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.34
Crystal size (mm) 0.45 × 0.20 × 0.11
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.87, 0.96
No. of measured, independent and observed [I > 2σ(I)] reflections 10444, 2790, 1874
Rint 0.023
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.151, 1.06
No. of reflections 2790
No. of parameters 156
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.43, −0.19
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

1-Chloro-3-(6-nitro-1H-indazol-1-yl)propan-2-ol top
Crystal data top
C10H10ClN3O3Z = 2
Mr = 255.66F(000) = 264
Triclinic, P1Dx = 1.513 Mg m3
a = 4.3949 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.9144 (8) ÅCell parameters from 3584 reflections
c = 13.1376 (11) Åθ = 2.4–27.0°
α = 98.481 (1)°µ = 0.34 mm1
β = 90.755 (1)°T = 298 K
γ = 97.377 (1)°Plate, pale yellow
V = 561.19 (8) Å30.45 × 0.20 × 0.11 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2790 independent reflections
Radiation source: fine-focus sealed tube1874 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 8.3333 pixels mm-1θmax = 28.4°, θmin = 1.6°
φ and ω scansh = 55
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1313
Tmin = 0.87, Tmax = 0.96l = 1717
10444 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0916P)2]
where P = (Fo2 + 2Fc2)/3
2790 reflections(Δ/σ)max < 0.001
156 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.19 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 20 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while that attached to oxygen was placed in a location derived from a difference map and its coordinates adjusted to give O—H = 1.00 %A. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.46205 (13)0.09914 (5)0.12647 (5)0.0763 (2)
O10.8217 (5)0.6041 (2)0.57705 (12)0.0975 (6)
O21.1879 (6)0.7675 (3)0.61324 (14)0.1311 (9)
O30.7011 (3)0.38489 (14)0.07195 (10)0.0562 (4)
H30.5620.3620.00910.084*
N10.5788 (3)0.63286 (15)0.19817 (10)0.0462 (4)
N20.6434 (4)0.70386 (16)0.11859 (11)0.0544 (4)
N30.9933 (5)0.6999 (2)0.55419 (13)0.0732 (5)
C10.7535 (4)0.69161 (17)0.28323 (12)0.0428 (4)
C20.7652 (4)0.65277 (18)0.38148 (13)0.0480 (4)
H20.64410.57580.39850.058*
C30.9679 (5)0.7365 (2)0.45025 (13)0.0530 (5)
C41.1529 (5)0.8533 (2)0.42777 (15)0.0617 (5)
H41.28510.90640.47840.074*
C51.1401 (5)0.8896 (2)0.33168 (15)0.0590 (5)
H51.26330.96660.31570.071*
C60.9353 (4)0.80712 (18)0.25730 (13)0.0479 (4)
C70.8535 (5)0.80725 (19)0.15292 (14)0.0573 (5)
H70.93810.87240.11360.069*
C80.3623 (4)0.50762 (18)0.18429 (13)0.0472 (4)
H8A0.21810.51000.12830.057*
H8B0.24720.50250.24640.057*
C90.5248 (4)0.37983 (17)0.16051 (12)0.0454 (4)
H90.66510.37830.21880.054*
C100.2891 (4)0.25374 (19)0.15235 (15)0.0558 (5)
H10A0.14030.25590.09760.067*
H10B0.18100.25450.21630.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0755 (4)0.0445 (3)0.1061 (5)0.0009 (2)0.0158 (3)0.0074 (3)
O10.1276 (16)0.1079 (15)0.0554 (9)0.0111 (12)0.0029 (9)0.0302 (9)
O20.155 (2)0.160 (2)0.0647 (11)0.0362 (17)0.0454 (12)0.0256 (12)
O30.0470 (7)0.0696 (9)0.0496 (7)0.0046 (6)0.0041 (6)0.0116 (6)
N10.0480 (8)0.0474 (8)0.0427 (7)0.0006 (6)0.0045 (6)0.0104 (6)
N20.0634 (10)0.0521 (9)0.0482 (8)0.0007 (7)0.0047 (7)0.0170 (7)
N30.0903 (14)0.0835 (14)0.0437 (9)0.0053 (11)0.0071 (9)0.0086 (9)
C10.0427 (9)0.0418 (8)0.0436 (9)0.0066 (7)0.0001 (7)0.0048 (7)
C20.0517 (10)0.0478 (9)0.0445 (9)0.0037 (8)0.0037 (7)0.0088 (7)
C30.0599 (11)0.0582 (11)0.0402 (9)0.0097 (9)0.0023 (8)0.0034 (8)
C40.0656 (13)0.0588 (12)0.0537 (11)0.0032 (9)0.0113 (9)0.0031 (9)
C50.0633 (12)0.0480 (10)0.0610 (11)0.0078 (9)0.0014 (9)0.0060 (9)
C60.0517 (10)0.0420 (9)0.0497 (9)0.0027 (7)0.0008 (8)0.0090 (7)
C70.0695 (13)0.0491 (10)0.0534 (10)0.0038 (9)0.0020 (9)0.0176 (8)
C80.0400 (9)0.0514 (10)0.0482 (9)0.0030 (7)0.0009 (7)0.0090 (7)
C90.0427 (9)0.0503 (9)0.0421 (8)0.0029 (7)0.0003 (7)0.0115 (7)
C100.0515 (11)0.0519 (10)0.0613 (11)0.0042 (8)0.0070 (9)0.0092 (8)
Geometric parameters (Å, º) top
Cl1—C101.787 (2)C3—C41.398 (3)
O1—N31.211 (3)C4—C51.365 (3)
O2—N31.210 (3)C4—H40.9300
O3—C91.4098 (19)C5—C61.409 (3)
O3—H31.0000C5—H50.9300
N1—N21.357 (2)C6—C71.413 (2)
N1—C11.360 (2)C7—H70.9300
N1—C81.451 (2)C8—C91.528 (3)
N2—C71.310 (2)C8—H8A0.9700
N3—C31.470 (3)C8—H8B0.9700
C1—C61.398 (2)C9—C101.507 (2)
C1—C21.403 (2)C9—H90.9800
C2—C31.366 (3)C10—H10A0.9700
C2—H20.9300C10—H10B0.9700
C9—O3—H3109.5C1—C6—C7104.02 (15)
N2—N1—C1110.65 (14)C5—C6—C7136.27 (17)
N2—N1—C8120.76 (13)N2—C7—C6111.41 (15)
C1—N1—C8128.49 (14)N2—C7—H7124.3
C7—N2—N1106.79 (14)C6—C7—H7124.3
O2—N3—O1122.9 (2)N1—C8—C9111.61 (14)
O2—N3—C3117.9 (2)N1—C8—H8A109.3
O1—N3—C3119.21 (19)C9—C8—H8A109.3
N1—C1—C6107.13 (14)N1—C8—H8B109.3
N1—C1—C2130.19 (16)C9—C8—H8B109.3
C6—C1—C2122.68 (16)H8A—C8—H8B108.0
C3—C2—C1114.95 (17)O3—C9—C10113.23 (14)
C3—C2—H2122.5O3—C9—C8111.05 (13)
C1—C2—H2122.5C10—C9—C8108.81 (15)
C2—C3—C4124.27 (17)O3—C9—H9107.9
C2—C3—N3117.44 (18)C10—C9—H9107.9
C4—C3—N3118.29 (17)C8—C9—H9107.9
C5—C4—C3120.15 (17)C9—C10—Cl1111.62 (14)
C5—C4—H4119.9C9—C10—H10A109.3
C3—C4—H4119.9Cl1—C10—H10A109.3
C4—C5—C6118.24 (18)C9—C10—H10B109.3
C4—C5—H5120.9Cl1—C10—H10B109.3
C6—C5—H5120.9H10A—C10—H10B108.0
C1—C6—C5119.71 (16)
C1—N1—N2—C70.7 (2)C3—C4—C5—C60.5 (3)
C8—N1—N2—C7177.30 (17)N1—C1—C6—C5179.55 (16)
N2—N1—C1—C61.0 (2)C2—C1—C6—C50.1 (3)
C8—N1—C1—C6177.20 (16)N1—C1—C6—C70.8 (2)
N2—N1—C1—C2179.43 (17)C2—C1—C6—C7179.58 (16)
C8—N1—C1—C23.2 (3)C4—C5—C6—C10.2 (3)
N1—C1—C2—C3179.49 (18)C4—C5—C6—C7179.7 (2)
C6—C1—C2—C30.0 (3)N1—N2—C7—C60.2 (2)
C1—C2—C3—C40.3 (3)C1—C6—C7—N20.4 (2)
C1—C2—C3—N3179.21 (16)C5—C6—C7—N2179.9 (2)
O2—N3—C3—C2174.7 (2)N2—N1—C8—C994.92 (18)
O1—N3—C3—C25.0 (3)C1—N1—C8—C981.0 (2)
O2—N3—C3—C44.8 (3)N1—C8—C9—O357.54 (17)
O1—N3—C3—C4175.5 (2)N1—C8—C9—C10177.18 (13)
C2—C3—C4—C50.6 (3)O3—C9—C10—Cl156.88 (18)
N3—C3—C4—C5178.9 (2)C8—C9—C10—Cl1179.12 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N2i1.001.882.871 (2)169
C2—H2···O1ii0.932.593.492 (3)163
C10—H10A···O3iii0.972.493.268 (3)137
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1; (iii) x1, y, z.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationAbbassi, N., Rakib, E. M., Chicha, H., Bouissane, L., Hannioui, A., Aiello, C., Gangemi, R., Castagnola, P., Rosano, C. & Viale, M. (2014). Arch. Pharm. Chem. Life Sci. 347, 423–431.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaron, S. & Vazquez, E. (1999). Synthesis, pp. 588–592.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYeu, J.-P., Yeh, J.-T., Chen, T.-Y. & Uang, B. (2001). Synthesis, pp. 1775–1777.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds