organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5′-Benzyl­­idene-1′′-methyl-4′′-phenyl­tri­spiro­[1,3-dioxolane-2,1′-cyclo­hexane-3′,3′′-pyrrolidine-2′′,3′′′-indole]-4′,2′′′-dione

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, S. D. N. B. Vaishnav College for Women, Chromepet, Chennai 600 004, India, bSchool of Basic Sciences, Vels University, Pallavaram, Chennai, India, and cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: lakssdnbvc@gmail.com

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 14 April 2017; accepted 28 April 2017; online 9 May 2017)

In the title compound, C32H30N2O4, two spiro links connect the methyl-substituted pyrrolidine ring to the oxindole and cyclo­hexa­none rings. The cyclo­hexa­none ring is further connected to the dioxalane ring by a third spiro junction. Both the pyrrolidine and dioxalane rings adopt a twist conformation. The indole ring is nearly planar, with a maximum deviation of 0.0296 (7) Å, and the cyclo­hexa­none ring adopts a distorted boat conformation. In the crystal, C—H⋯O and N—H⋯N hydrogen-bonding inter­actions connect mol­ecules into chains running parallel to the b axis, which are further linked into layers parallel to the ab plane by C—H⋯O hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Spiro compounds are present in many natural products (James et al., 1991[James, D. M., Kunze, H. B. & Faulkner, D. J. (1991). J. Nat. Prod. 54, 1137-1140.]) and possess anti­cancer (Chin et al., 2008[Chin, Y.-W., Salim, A. A., Su, B.-N., Mi, Q., Chai, H.-B., Riswan, S., Kardono, L. B. S., Ruskandi, A., Farnsworth, N. R., Swanson, S. M. & Kinghorn, A. D. (2008). J. Nat. Prod. 71, 390-395.]), anti­bacterial (Sar et al., 2006[Sar, S. A. van der, Blunt, J. W. & Munro, M. H. G. (2006). Org. Lett. 8, 2059-2061.]), anti­oxidant (Sarma et al., 2010[Sarma, B. K., Manna, D., Minoura, M. & Mugesh, G. (2010). J. Am. Chem. Soc. 132, 5364-5374.]) and anti­convulsant activities (Obniska & Kamiński, 2006[Obniska, O. & Kamiński, K. (2006). Acta Pol. Pharm. 63, 101-108.]). Some spiro compounds act as pain-relief agents (Frank et al., 2008[Frank, R., Reich, M., Jostock, R., Bahrenberg, G., Schick, H., Henkel, B. & Sonnenschein, H. (2008). US Patent No. 2008269271.]) and pesticides (Wei et al., 2009[Wei, R., Liu, Y. & Liang, Y. (2009). Chin. J. Org. Chem. 29, 476-487.]). Spiro pyrrolidine derivatives exhibit anti­microbial and neurotoxic properties (Obniska et al., 2006[Obniska, J., Kamiński, K. & Tatarczyńska, E. (2006). Pharmacol. Rep. 58, 207-214.]). Oxindole derivatives are found to have anti­microbial (Karki et al., 2011[Karki, S. S., Hazare, R., Kumar, S., Saxena, A. & Katiyar, A. (2011). Turk J Pharm Sci, 8(2), 169-178.]) and anti­oxidant (Rindhe et al., 2011[Rindhe, S. S., Karale, B. K., Gupta, R. C. & Rode, M. A. (2011). Indian J. Pharm. Sci. 73, 292-296.]) properties. Spiro­oxindole derivatives act as inhibitors of human NK-1 receptor. Alkaloids containing a spiro­indole­pyrrolidine nucleus are found to be useful in cancer chemotherapy (Fischer et al., 2000[Fischer, C., Meyers, C. & Carreira, E. M. (2000). Helv. Chim. Acta, 83, 1175-1181.]). Spiro­pyrrolidine compounds containing oxindole and cyclo­hexa­none ring systems are found to have anti­microbial and anti­fungal activities (Raj et al., 2003[Raj, A. A., Raghunathan, R., SrideviKumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407-419.]). Dioxalane moieties play a significant role in stabilizing mutant HIV-1 RT and nucleoside triphosphate and act as nucleoside reverse transcriptase inhibitors (NRTIs) (Liang et al., 2006[Liang, Y., Narayanasamy, J., Schinazi, R. F. & Chu, C. K. (2006). Bioorg. Med. Chem. 14, 2178-2189.]).

In the title compound (Fig. 1[link]) the methyl-substituted pyrrolidine ring (N1/C10/C16/C17/C8) and the dioxalane ring (O3/O2/C12/C14/C15) both adopt a twist conformation with puckering parameters q2 = 0.480 (8) Å, φ2 = 313.34 (6)° and q2 = 0.221 (9) Å, φ2 = 350.46 (3)°, respectively. The six-membered cyclo­hexa­none ring (C8–C13) adopts a distorted boat conformation [QT = 0.666 (2) Å, θ = 99.42 (16)°, φ = 71.38 (7)°]. The pyrrolidine ring mean plane forms dihedral angles of 58.10 (1) and 87.45 (9)°, respectively, with the mean planes of the benzene ring and the mean plane of the cyclo­hexa­none rings The cyclo­hexa­none ring makes a dihedral angle of 84.14 (1)° with the mean plane of the dioxalane ring. The indole ring (C21–C26/N2/C19/C20) is nearly planar with a maximum deviation of 0.0296 (7) Å for atom C23. An intra­molecular C—H⋯O hydrogen bond occurs. The geometrical parameters of the title compound are in good agreement with those previously reported for tris­piropyrrolidine compounds (Chandralekha et al., 2015[Chandralekha, K., Gavaskar, D., Sureshbabu, A. R. & Lakshmi, S. (2015). Acta Cryst. E71, o814-o815.], 2016[Chandralekha, K., Gavaskar, D., Sureshbabu, A. R. & Lakshmi, S. (2016). Acta Cryst. E72, 387-390.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

In the crystal, mol­ecules are linked by weak C—H⋯O and N—H⋯O inter­actions (Table 1[link]), forming chains extending along the b-axis direction (Fig. 2[link]). The chains are further linked into layers parallel to the ab plane by C—H⋯O hydrogen bonds.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H34⋯N1i 0.90 (2) 2.36 (2) 3.251 (2) 174.3 (18)
C4—H4⋯O1ii 0.93 2.49 3.340 (2) 152
C11—H11B⋯O4 0.97 2.27 3.045 (2) 137
C22—H22⋯O4i 0.93 2.43 3.302 (2) 157
C32—H32⋯O4iii 0.93 2.59 3.504 (3) 167
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Partial crystal packing of the title compound showing the C—H⋯O and N—H⋯N hydrogen bonds (dashed lines), forming chains parallel to the b axis. H atoms not involved in hydrogen bonding are omitted for clarity.

Synthesis and crystallization

An equimolar mixture of 7,9-bis­[(E)-benzyl­idine)]-1,4-dioxo­spiro­[4,5]decane-8-one (1 mmol), isatin (1 mmol) and sarcosine (1 mmol) in methanol (25–30 ml) was refluxed for 3 h. After the completion of the reaction as indicated by TLC, the crude product was purified by column chromatography using a mixture of petroleum ether and ethyl­acetate (8:2 v/v). Crystals of the title compound were obtained by the slow evaporation of a methanol solution at room temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C32H30N2O4
Mr 506.58
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 13.9601 (2), 11.1172 (2), 16.7313 (3)
β (°) 96.019 (1)
V3) 2582.34 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.23 × 0.15 × 0.11
 
Data collection
Diffractometer Bruker SMART APEXII area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.744, 0.859
No. of measured, independent and observed [I > 2σ(I)] reflections 24317, 6395, 3887
Rint 0.029
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.130, 1.04
No. of reflections 6395
No. of parameters 349
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.18, −0.19
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

5'-Benzylidene-1''-methyl-4''-phenyltrispiro[1,3-dioxolane-2,1'-cyclohexane- 3',3''-pyrrolidine-2'',3'''-indole]-4',2'''-dione top
Crystal data top
C32H30N2O4F(000) = 1072
Mr = 506.58Dx = 1.303 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.9601 (2) ÅCell parameters from 6394 reflections
b = 11.1172 (2) Åθ = 1.8–28.4°
c = 16.7313 (3) ŵ = 0.09 mm1
β = 96.019 (1)°T = 296 K
V = 2582.34 (8) Å3Block, colorless
Z = 40.23 × 0.15 × 0.11 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3887 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
ω and φ scansθmax = 28.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1814
Tmin = 0.744, Tmax = 0.859k = 1414
24317 measured reflectionsl = 2222
6395 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.0534P)2 + 0.3939P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.130(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.18 e Å3
6395 reflectionsΔρmin = 0.19 e Å3
349 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0017 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The N-bound indole H atom was located in a difference Fourier map and refined freely. All other H atoms were placed geometrically and refined using a riding atom approximation, with C–H = 0.93–0.97 \%A, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. A rotating model was used for the methyl group.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H340.2804 (14)0.0171 (18)0.2545 (12)0.075 (6)*
O10.55773 (8)0.20767 (10)0.13693 (6)0.0542 (3)
O20.60579 (9)0.38736 (11)0.31054 (7)0.0640 (3)
O30.50902 (10)0.40585 (12)0.41115 (7)0.0714 (4)
O40.27663 (10)0.19821 (11)0.30938 (8)0.0711 (4)
N10.26684 (9)0.33561 (12)0.15637 (9)0.0563 (4)
N20.30089 (10)0.04319 (13)0.22479 (9)0.0539 (3)
C10.56550 (15)0.05286 (18)0.39691 (13)0.0785 (6)
H10.51300.00360.40330.094*
C20.5949 (2)0.1353 (2)0.45585 (15)0.1011 (8)
H20.56170.14140.50100.121*
C30.67203 (17)0.2077 (2)0.44884 (15)0.0856 (6)
H30.69330.26070.48990.103*
C40.71750 (14)0.20157 (17)0.38123 (15)0.0763 (6)
H40.76900.25260.37510.092*
C50.68774 (13)0.12001 (16)0.32126 (12)0.0647 (5)
H50.71910.11760.27490.078*
C60.61193 (11)0.04194 (14)0.32915 (10)0.0529 (4)
C70.58309 (11)0.04513 (14)0.26516 (10)0.0510 (4)
H70.59440.02230.21350.061*
C80.54258 (11)0.15314 (13)0.27172 (9)0.0462 (4)
C90.51663 (10)0.22333 (13)0.19660 (9)0.0431 (3)
C100.43116 (11)0.31046 (13)0.19660 (9)0.0439 (3)
C110.43230 (12)0.37857 (14)0.27751 (9)0.0499 (4)
H11A0.43310.46440.26710.060*
H11B0.37350.36030.30120.060*
C120.51770 (12)0.34690 (15)0.33712 (9)0.0537 (4)
C130.52437 (13)0.21313 (14)0.34906 (10)0.0560 (4)
H13A0.57630.19450.39030.067*
H13B0.46480.18320.36660.067*
C140.62840 (17)0.4986 (2)0.34848 (13)0.0810 (6)
H14A0.60550.56500.31400.097*
H14B0.69740.50680.36190.097*
C150.5784 (2)0.4959 (3)0.42173 (17)0.1216 (11)
H15A0.62370.47870.46830.146*
H15B0.54830.57300.42980.146*
C160.42296 (11)0.39768 (13)0.12265 (9)0.0477 (4)
H160.44260.35130.07730.057*
C170.31406 (12)0.41924 (16)0.10477 (11)0.0585 (4)
H17A0.29820.50180.11690.070*
H17B0.29330.40360.04860.070*
C180.17083 (14)0.2983 (2)0.12196 (15)0.0858 (6)
H18A0.17560.25730.07200.129*
H18B0.13050.36780.11260.129*
H18C0.14340.24510.15870.129*
C190.33456 (11)0.23636 (14)0.17605 (9)0.0478 (4)
C200.30084 (11)0.16007 (15)0.24632 (10)0.0527 (4)
C210.32460 (11)0.02762 (14)0.14589 (9)0.0478 (4)
C220.33136 (13)0.07893 (15)0.10525 (11)0.0602 (4)
H220.31840.15210.12880.072*
C230.35801 (13)0.07359 (16)0.02831 (11)0.0633 (5)
H230.36510.14440.00000.076*
C240.37418 (13)0.03456 (17)0.00690 (10)0.0619 (5)
H240.39110.03630.05920.074*
C250.36575 (13)0.14113 (16)0.03418 (10)0.0578 (4)
H250.37570.21420.00930.069*
C260.34236 (11)0.13880 (14)0.11277 (9)0.0472 (4)
C270.48698 (12)0.50767 (14)0.13050 (9)0.0513 (4)
C280.57991 (13)0.49828 (17)0.10901 (11)0.0620 (5)
H280.59990.42640.08770.074*
C290.64358 (15)0.5941 (2)0.11874 (12)0.0752 (6)
H290.70590.58560.10470.090*
C300.61510 (18)0.70108 (19)0.14885 (13)0.0801 (6)
H300.65790.76520.15570.096*
C310.52327 (18)0.71291 (18)0.16884 (13)0.0813 (6)
H310.50350.78580.18880.098*
C320.45946 (15)0.61805 (16)0.15977 (12)0.0674 (5)
H320.39710.62800.17340.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0603 (7)0.0571 (7)0.0482 (6)0.0074 (5)0.0201 (5)0.0006 (5)
O20.0668 (8)0.0686 (8)0.0587 (7)0.0144 (6)0.0169 (6)0.0134 (6)
O30.0961 (10)0.0747 (8)0.0465 (7)0.0110 (7)0.0218 (6)0.0175 (6)
O40.0849 (9)0.0665 (8)0.0694 (8)0.0102 (6)0.0441 (7)0.0104 (6)
N10.0473 (8)0.0520 (8)0.0710 (9)0.0041 (6)0.0122 (7)0.0024 (7)
N20.0617 (8)0.0473 (8)0.0562 (8)0.0055 (6)0.0232 (7)0.0015 (6)
C10.0779 (13)0.0704 (12)0.0926 (15)0.0236 (10)0.0340 (11)0.0289 (11)
C20.125 (2)0.0888 (16)0.0965 (17)0.0344 (15)0.0462 (15)0.0448 (13)
C30.0870 (15)0.0738 (14)0.0952 (16)0.0150 (11)0.0054 (13)0.0334 (12)
C40.0584 (11)0.0577 (11)0.1112 (17)0.0115 (9)0.0019 (11)0.0116 (11)
C50.0608 (11)0.0547 (10)0.0798 (13)0.0059 (8)0.0131 (9)0.0003 (9)
C60.0486 (9)0.0457 (9)0.0642 (10)0.0006 (7)0.0048 (8)0.0056 (7)
C70.0488 (9)0.0500 (9)0.0546 (9)0.0010 (7)0.0076 (7)0.0013 (7)
C80.0473 (8)0.0463 (9)0.0459 (8)0.0016 (7)0.0097 (7)0.0028 (7)
C90.0476 (8)0.0397 (8)0.0435 (8)0.0018 (6)0.0113 (7)0.0023 (6)
C100.0500 (8)0.0405 (8)0.0432 (8)0.0011 (6)0.0139 (7)0.0009 (6)
C110.0624 (10)0.0414 (8)0.0488 (9)0.0006 (7)0.0191 (7)0.0027 (7)
C120.0666 (10)0.0566 (10)0.0404 (8)0.0044 (8)0.0173 (7)0.0059 (7)
C130.0693 (11)0.0558 (10)0.0441 (9)0.0043 (8)0.0119 (8)0.0047 (7)
C140.0905 (15)0.0779 (13)0.0751 (13)0.0227 (11)0.0114 (11)0.0172 (11)
C150.156 (3)0.120 (2)0.0979 (19)0.0632 (19)0.0531 (18)0.0549 (16)
C160.0562 (9)0.0433 (8)0.0450 (8)0.0043 (7)0.0120 (7)0.0023 (6)
C170.0593 (10)0.0574 (10)0.0589 (10)0.0069 (8)0.0072 (8)0.0074 (8)
C180.0533 (11)0.0822 (14)0.1205 (19)0.0042 (10)0.0019 (11)0.0063 (13)
C190.0497 (9)0.0455 (8)0.0504 (9)0.0013 (7)0.0155 (7)0.0006 (7)
C200.0496 (9)0.0541 (10)0.0577 (10)0.0018 (7)0.0213 (8)0.0009 (8)
C210.0452 (8)0.0493 (9)0.0503 (9)0.0027 (7)0.0117 (7)0.0012 (7)
C220.0674 (11)0.0469 (9)0.0683 (11)0.0082 (8)0.0175 (9)0.0052 (8)
C230.0685 (11)0.0583 (11)0.0646 (11)0.0092 (9)0.0143 (9)0.0183 (9)
C240.0699 (11)0.0695 (12)0.0473 (9)0.0115 (9)0.0113 (8)0.0110 (8)
C250.0724 (11)0.0552 (10)0.0464 (9)0.0079 (8)0.0082 (8)0.0003 (8)
C260.0468 (8)0.0480 (9)0.0476 (9)0.0030 (7)0.0086 (7)0.0020 (7)
C270.0604 (10)0.0468 (9)0.0477 (9)0.0020 (7)0.0112 (7)0.0121 (7)
C280.0660 (11)0.0575 (10)0.0648 (11)0.0005 (9)0.0172 (9)0.0160 (8)
C290.0698 (12)0.0789 (14)0.0778 (13)0.0103 (10)0.0122 (10)0.0303 (11)
C300.0956 (17)0.0639 (13)0.0779 (14)0.0256 (12)0.0035 (12)0.0208 (11)
C310.1030 (17)0.0495 (11)0.0910 (15)0.0065 (11)0.0088 (13)0.0022 (10)
C320.0745 (12)0.0492 (10)0.0798 (13)0.0032 (9)0.0150 (10)0.0040 (9)
Geometric parameters (Å, º) top
O1—C91.2149 (16)C13—H13B0.9700
O2—C141.411 (2)C14—C151.473 (3)
O2—C121.424 (2)C14—H14A0.9700
O3—C151.391 (3)C14—H14B0.9700
O3—C121.4176 (18)C15—H15A0.9700
O4—C201.2174 (19)C15—H15B0.9700
N1—C181.462 (2)C16—C271.512 (2)
N1—C191.468 (2)C16—C171.537 (2)
N1—C171.471 (2)C16—H160.9800
N2—C201.348 (2)C17—H17A0.9700
N2—C211.405 (2)C17—H17B0.9700
N2—H340.90 (2)C18—H18A0.9600
C1—C61.369 (2)C18—H18B0.9600
C1—C21.377 (3)C18—H18C0.9600
C1—H10.9300C19—C261.528 (2)
C2—C31.359 (3)C19—C201.562 (2)
C2—H20.9300C21—C221.374 (2)
C3—C41.356 (3)C21—C261.388 (2)
C3—H30.9300C22—C231.378 (2)
C4—C51.384 (3)C22—H220.9300
C4—H40.9300C23—C241.368 (2)
C5—C61.386 (2)C23—H230.9300
C5—H50.9300C24—C251.381 (2)
C6—C71.468 (2)C24—H240.9300
C7—C81.337 (2)C25—C261.388 (2)
C7—H70.9300C25—H250.9300
C8—C91.491 (2)C27—C281.386 (2)
C8—C131.501 (2)C27—C321.390 (2)
C9—C101.537 (2)C28—C291.386 (3)
C10—C111.550 (2)C28—H280.9300
C10—C161.567 (2)C29—C301.367 (3)
C10—C191.587 (2)C29—H290.9300
C11—C121.514 (2)C30—C311.365 (3)
C11—H11A0.9700C30—H300.9300
C11—H11B0.9700C31—C321.379 (3)
C12—C131.502 (2)C31—H310.9300
C13—H13A0.9700C32—H320.9300
C14—O2—C12107.23 (13)C14—C15—H15A110.3
C15—O3—C12108.77 (14)O3—C15—H15B110.3
C18—N1—C19114.64 (14)C14—C15—H15B110.3
C18—N1—C17113.39 (15)H15A—C15—H15B108.6
C19—N1—C17106.80 (12)C27—C16—C17117.02 (13)
C20—N2—C21112.12 (14)C27—C16—C10116.00 (13)
C20—N2—H34124.1 (12)C17—C16—C10103.83 (12)
C21—N2—H34123.3 (12)C27—C16—H16106.4
C6—C1—C2121.37 (19)C17—C16—H16106.4
C6—C1—H1119.3C10—C16—H16106.4
C2—C1—H1119.3N1—C17—C16106.39 (13)
C3—C2—C1120.8 (2)N1—C17—H17A110.5
C3—C2—H2119.6C16—C17—H17A110.5
C1—C2—H2119.6N1—C17—H17B110.5
C4—C3—C2119.13 (19)C16—C17—H17B110.5
C4—C3—H3120.4H17A—C17—H17B108.6
C2—C3—H3120.4N1—C18—H18A109.5
C3—C4—C5120.44 (18)N1—C18—H18B109.5
C3—C4—H4119.8H18A—C18—H18B109.5
C5—C4—H4119.8N1—C18—H18C109.5
C4—C5—C6121.04 (18)H18A—C18—H18C109.5
C4—C5—H5119.5H18B—C18—H18C109.5
C6—C5—H5119.5N1—C19—C26117.99 (13)
C1—C6—C5117.13 (16)N1—C19—C20109.83 (12)
C1—C6—C7123.03 (15)C26—C19—C20100.67 (12)
C5—C6—C7119.82 (16)N1—C19—C1099.85 (11)
C8—C7—C6128.21 (16)C26—C19—C10113.46 (12)
C8—C7—H7115.9C20—C19—C10115.80 (13)
C6—C7—H7115.9O4—C20—N2125.11 (15)
C7—C8—C9117.92 (14)O4—C20—C19126.60 (15)
C7—C8—C13125.54 (14)N2—C20—C19108.28 (13)
C9—C8—C13116.48 (13)C22—C21—C26123.09 (15)
O1—C9—C8121.57 (13)C22—C21—N2127.33 (15)
O1—C9—C10121.59 (13)C26—C21—N2109.57 (13)
C8—C9—C10116.73 (12)C21—C22—C23117.67 (16)
C9—C10—C11111.79 (12)C21—C22—H22121.2
C9—C10—C16112.48 (12)C23—C22—H22121.2
C11—C10—C16112.37 (12)C24—C23—C22120.86 (16)
C9—C10—C19108.36 (11)C24—C23—H23119.6
C11—C10—C19111.94 (12)C22—C23—H23119.6
C16—C10—C1999.22 (12)C23—C24—C25120.88 (16)
C12—C11—C10113.41 (12)C23—C24—H24119.6
C12—C11—H11A108.9C25—C24—H24119.6
C10—C11—H11A108.9C24—C25—C26119.76 (16)
C12—C11—H11B108.9C24—C25—H25120.1
C10—C11—H11B108.9C26—C25—H25120.1
H11A—C11—H11B107.7C21—C26—C25117.68 (14)
O3—C12—O2106.42 (13)C21—C26—C19109.09 (13)
O3—C12—C13110.57 (13)C25—C26—C19133.19 (14)
O2—C12—C13108.10 (14)C28—C27—C32117.30 (16)
O3—C12—C11109.55 (13)C28—C27—C16118.51 (15)
O2—C12—C11111.54 (13)C32—C27—C16124.17 (15)
C13—C12—C11110.58 (14)C27—C28—C29121.18 (18)
C8—C13—C12109.82 (13)C27—C28—H28119.4
C8—C13—H13A109.7C29—C28—H28119.4
C12—C13—H13A109.7C30—C29—C28120.28 (19)
C8—C13—H13B109.7C30—C29—H29119.9
C12—C13—H13B109.7C28—C29—H29119.9
H13A—C13—H13B108.2C31—C30—C29119.42 (19)
O2—C14—C15104.66 (17)C31—C30—H30120.3
O2—C14—H14A110.8C29—C30—H30120.3
C15—C14—H14A110.8C30—C31—C32120.8 (2)
O2—C14—H14B110.8C30—C31—H31119.6
C15—C14—H14B110.8C32—C31—H31119.6
H14A—C14—H14B108.9C31—C32—C27120.97 (19)
O3—C15—C14107.05 (17)C31—C32—H32119.5
O3—C15—H15A110.3C27—C32—H32119.5
C6—C1—C2—C30.7 (4)C17—N1—C19—C2678.91 (16)
C1—C2—C3—C42.8 (4)C18—N1—C19—C2066.90 (19)
C2—C3—C4—C52.0 (4)C17—N1—C19—C20166.60 (13)
C3—C4—C5—C60.8 (3)C18—N1—C19—C10170.95 (15)
C2—C1—C6—C52.1 (3)C17—N1—C19—C1044.45 (15)
C2—C1—C6—C7179.7 (2)C9—C10—C19—N1164.64 (11)
C4—C5—C6—C12.8 (3)C11—C10—C19—N171.64 (14)
C4—C5—C6—C7178.88 (16)C16—C10—C19—N147.12 (13)
C1—C6—C7—C830.7 (3)C9—C10—C19—C2638.16 (16)
C5—C6—C7—C8151.10 (17)C11—C10—C19—C26161.88 (12)
C6—C7—C8—C9177.82 (15)C16—C10—C19—C2679.36 (14)
C6—C7—C8—C134.9 (3)C9—C10—C19—C2077.57 (15)
C7—C8—C9—O125.1 (2)C11—C10—C19—C2046.16 (17)
C13—C8—C9—O1152.40 (15)C16—C10—C19—C20164.92 (12)
C7—C8—C9—C10151.08 (14)C21—N2—C20—O4174.93 (16)
C13—C8—C9—C1031.41 (19)C21—N2—C20—C193.78 (18)
O1—C9—C10—C11142.89 (14)N1—C19—C20—O448.5 (2)
C8—C9—C10—C1140.92 (17)C26—C19—C20—O4173.63 (17)
O1—C9—C10—C1615.4 (2)C10—C19—C20—O463.6 (2)
C8—C9—C10—C16168.44 (12)N1—C19—C20—N2130.20 (14)
O1—C9—C10—C1993.29 (16)C26—C19—C20—N25.05 (16)
C8—C9—C10—C1982.90 (15)C10—C19—C20—N2117.70 (15)
C9—C10—C11—C121.45 (17)C20—N2—C21—C22179.89 (16)
C16—C10—C11—C12126.14 (14)C20—N2—C21—C260.63 (19)
C19—C10—C11—C12123.22 (14)C26—C21—C22—C230.6 (3)
C15—O3—C12—O211.2 (2)N2—C21—C22—C23178.53 (16)
C15—O3—C12—C13128.3 (2)C21—C22—C23—C242.0 (3)
C15—O3—C12—C11109.5 (2)C22—C23—C24—C251.1 (3)
C14—O2—C12—O322.49 (19)C23—C24—C25—C261.2 (3)
C14—O2—C12—C13141.28 (16)C22—C21—C26—C251.6 (2)
C14—O2—C12—C1196.94 (16)N2—C21—C26—C25179.14 (14)
C10—C11—C12—O3175.50 (12)C22—C21—C26—C19176.40 (15)
C10—C11—C12—O266.95 (17)N2—C21—C26—C192.89 (17)
C10—C11—C12—C1353.39 (17)C24—C25—C26—C212.5 (2)
C7—C8—C13—C12156.55 (16)C24—C25—C26—C19174.90 (16)
C9—C8—C13—C1220.8 (2)N1—C19—C26—C21124.11 (14)
O3—C12—C13—C8174.84 (13)C20—C19—C26—C214.70 (16)
O2—C12—C13—C858.72 (17)C10—C19—C26—C21119.67 (14)
C11—C12—C13—C863.64 (17)N1—C19—C26—C2558.4 (2)
C12—O2—C14—C1524.4 (2)C20—C19—C26—C25177.77 (17)
C12—O3—C15—C143.9 (3)C10—C19—C26—C2557.9 (2)
O2—C14—C15—O317.5 (3)C17—C16—C27—C28150.01 (15)
C9—C10—C16—C2782.41 (16)C10—C16—C27—C2886.82 (18)
C11—C10—C16—C2744.81 (17)C17—C16—C27—C3231.5 (2)
C19—C10—C16—C27163.24 (12)C10—C16—C27—C3291.68 (19)
C9—C10—C16—C17147.76 (13)C32—C27—C28—C292.0 (3)
C11—C10—C16—C1785.03 (15)C16—C27—C28—C29176.65 (16)
C19—C10—C16—C1733.40 (14)C27—C28—C29—C301.0 (3)
C18—N1—C17—C16150.61 (15)C28—C29—C30—C310.4 (3)
C19—N1—C17—C1623.37 (17)C29—C30—C31—C320.7 (3)
C27—C16—C17—N1137.40 (14)C30—C31—C32—C270.4 (3)
C10—C16—C17—N18.18 (17)C28—C27—C32—C311.7 (3)
C18—N1—C19—C2647.6 (2)C16—C27—C32—C31176.86 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H34···N1i0.90 (2)2.36 (2)3.251 (2)174.3 (18)
C4—H4···O1ii0.932.493.340 (2)152
C11—H11B···O40.972.273.045 (2)137
C22—H22···O4i0.932.433.302 (2)157
C32—H32···O4iii0.932.593.504 (3)167
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandralekha, K., Gavaskar, D., Sureshbabu, A. R. & Lakshmi, S. (2015). Acta Cryst. E71, o814–o815.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChandralekha, K., Gavaskar, D., Sureshbabu, A. R. & Lakshmi, S. (2016). Acta Cryst. E72, 387–390.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChin, Y.-W., Salim, A. A., Su, B.-N., Mi, Q., Chai, H.-B., Riswan, S., Kardono, L. B. S., Ruskandi, A., Farnsworth, N. R., Swanson, S. M. & Kinghorn, A. D. (2008). J. Nat. Prod. 71, 390–395.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFischer, C., Meyers, C. & Carreira, E. M. (2000). Helv. Chim. Acta, 83, 1175–1181.  CrossRef CAS Google Scholar
First citationFrank, R., Reich, M., Jostock, R., Bahrenberg, G., Schick, H., Henkel, B. & Sonnenschein, H. (2008). US Patent No. 2008269271.  Google Scholar
First citationJames, D. M., Kunze, H. B. & Faulkner, D. J. (1991). J. Nat. Prod. 54, 1137–1140.  CrossRef PubMed CAS Web of Science Google Scholar
First citationKarki, S. S., Hazare, R., Kumar, S., Saxena, A. & Katiyar, A. (2011). Turk J Pharm Sci, 8(2), 169–178.  Google Scholar
First citationLiang, Y., Narayanasamy, J., Schinazi, R. F. & Chu, C. K. (2006). Bioorg. Med. Chem. 14, 2178–2189.  Web of Science CrossRef PubMed CAS Google Scholar
First citationObniska, O. & Kamiński, K. (2006). Acta Pol. Pharm. 63, 101–108.  PubMed CAS Google Scholar
First citationObniska, J., Kamiński, K. & Tatarczyńska, E. (2006). Pharmacol. Rep. 58, 207–214.  Web of Science PubMed CAS Google Scholar
First citationRaj, A. A., Raghunathan, R., SrideviKumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407–419.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRindhe, S. S., Karale, B. K., Gupta, R. C. & Rode, M. A. (2011). Indian J. Pharm. Sci. 73, 292–296.  Web of Science CAS PubMed Google Scholar
First citationSar, S. A. van der, Blunt, J. W. & Munro, M. H. G. (2006). Org. Lett. 8, 2059–2061.  Web of Science PubMed Google Scholar
First citationSarma, B. K., Manna, D., Minoura, M. & Mugesh, G. (2010). J. Am. Chem. Soc. 132, 5364–5374.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, R., Liu, Y. & Liang, Y. (2009). Chin. J. Org. Chem. 29, 476–487.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds