organic compounds
2,6-Dichloro-4-nitrotoluene
aLaboratoire de Cristallographie, Département de Physique, Université Mentouri-Constantine, 25000 Constantine, Algeria, and bUMR 6226 CNRS–Université Rennes 1 `Sciences Chimiques de Rennes', Equipe `Matière Condensée et Systèmes Electroactifs', Bâtiment 10C, Campus de Beaulieu, 263 Avenue du Général Leclerc, F-35042 Rennes, France
*Correspondence e-mail: mlmedj@gmail.com
The title compound, C7H5Cl2NO2 [systematic name: 1,3-dichloro-2-methyl-5-nitrobenzene], crystallizes in the P212121 with a of −0.03 (5). The methyl C atom, the Cl atoms and the N atom of the nitro substituent all lie extremely close to the plane of the benzene ring; the deviations are 0.028 (3) Å for the methyl C atom, −0.016 (1) and 0.007 (1) Å for the two Cl atoms, and −0.017 (3) Å for the nitro N atom. Hence, no significant of the methyl group by the ortho halogen atoms is observed. The nitro group is inclined to the benzene ring by 9.8 (3)°. In the crystal, molecules are linked by weak C—H⋯O and C—H⋯Cl hydrogen bonds, forming layers parallel to the ab plane.
Keywords: crystal structure; dichloronitrotoluene; hydrogen bonding.
CCDC reference: 1547823
Structure description
Our group is interested in understanding the methyl radical behaviour of benzene molecules substituted by halogen and methyl substituents. Studies first focused on various mesityl halogens (Boudjada et al., 2001; Tazi et al., 1995; Hernandez et al., 2003) to be extended thereafter to other products. In order to better identify the behaviour of the methyl group, a study of dihalogen-nitrotoluene molecules has been undertaken. The of the dibromo analogue (DBNT) of the title compound (DCNT) was reported on recently by our group (Medjroubi et al., 2016).
The molecular structure of the title compound is shown in Fig. 1. In the of DBNT, there are two independent molecules per and the methyl group H atoms are positionally disordered. For the title compound, DCNT, there is only one molecule per and no disorder is observed for the methyl group H atoms. The dibromo analogue crystallizes in the centrosymmetric triclinic P, while the title dichloro analogue crystallizes in the chiral orthorhombic P212121 [Flack parameter of −0.03 (5)].
In the DCNT molecule, the methyl C atom, the Cl atoms and the N atom of the nitro substituent all lie extremely close to the plane of the benzene ring: deviations are 0.028 (3) Å for C7, −0.016 (1) Å for Cl21, 0.007 (1) Å for Cl61 and −0.017 (3) Å for N4. Hence, no significant ortho halogen atoms is observed. The nitro group N4/O41/O42 is inclined to the benzene ring by 9.8 (3)°, compared with 2.5 (5) and 5.9 (4) ° in DBNT.
of the methyl group by theIn the crystal, molecules are linked by weak C—H⋯O and C—H⋯Cl hydrogen bonds forming layers parallel to the ab plane (Table 1 and Fig. 2).
Synthesis and crystallization
The commercially available title compound (DCNT; Sigma–Aldrich) was recrystallized from an ethanol solution. Colourless needle-shaped single crystals several mm in length and having a section of a few hundredths of a mm2 were obtained. Examination of the crystals using polarized light and X-ray diffraction revealed that they are generally twinned and consequently it was necessary to examine a large number of crystals to find a suitable single-crystal for the present X-ray diffraction study.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1547823
https://doi.org/10.1107/S2414314617006721/lh4019sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617006721/lh4019Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314617006721/lh4019Isup3.cml
Data collection: APEX2 (Bruker, 2006); cell
SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR2003 (Burla et al., 2005); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: CAMERON (Watkin et al., 1996) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).C7H5Cl2NO2 | Dx = 1.647 Mg m−3 |
Mr = 206.02 | Mo Kα radiation, λ = 0.7107 Å |
Orthorhombic, P212121 | Cell parameters from 2377 reflections |
a = 3.8145 (3) Å | θ = 2.9–27.3° |
b = 12.4829 (10) Å | µ = 0.73 mm−1 |
c = 17.4438 (15) Å | T = 150 K |
V = 830.60 (12) Å3 | Needle, colourless |
Z = 4 | 0.26 × 0.15 × 0.05 mm |
F(000) = 416 |
Bruker APEXII diffractometer | 1756 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
CCD rotation images, thin slices scans | θmax = 27.6°, θmin = 2.9° |
Absorption correction: multi-scan | h = −3→4 |
Tmin = 0.876, Tmax = 0.964 | k = −16→15 |
4472 measured reflections | l = −19→22 |
1879 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.030 | H-atom parameters constrained |
wR(F2) = 0.066 | w = 1/[σ2(Fo2) + (0.0243P)2 + 0.1882P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.001 |
1879 reflections | Δρmax = 0.23 e Å−3 |
110 parameters | Δρmin = −0.20 e Å−3 |
0 restraints | Absolute structure: Flack x determined using 640 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.03 (5) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement. _reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences. |
x | y | z | Uiso*/Ueq | ||
Cl21 | 0.9157 (2) | 0.39246 (5) | 0.72626 (4) | 0.0367 (2) | |
Cl61 | 0.36788 (19) | 0.75690 (4) | 0.60731 (4) | 0.03019 (17) | |
O41 | 0.3055 (7) | 0.4621 (2) | 0.40010 (12) | 0.0573 (7) | |
O42 | 0.6101 (8) | 0.32613 (16) | 0.43872 (12) | 0.0550 (7) | |
N4 | 0.4803 (7) | 0.41449 (19) | 0.44804 (14) | 0.0377 (6) | |
C1 | 0.6402 (7) | 0.57082 (18) | 0.66257 (13) | 0.0192 (5) | |
C2 | 0.7342 (7) | 0.46378 (18) | 0.65064 (14) | 0.0225 (5) | |
C3 | 0.6879 (7) | 0.41103 (18) | 0.58177 (15) | 0.0256 (6) | |
H3 | 0.7561 | 0.3384 | 0.5755 | 0.031* | |
C4 | 0.5384 (7) | 0.4682 (2) | 0.52239 (14) | 0.0248 (6) | |
C5 | 0.4406 (7) | 0.57402 (19) | 0.52939 (14) | 0.0226 (5) | |
H5 | 0.3402 | 0.6119 | 0.4875 | 0.027* | |
C6 | 0.4937 (6) | 0.62324 (17) | 0.59953 (14) | 0.0195 (5) | |
C7 | 0.6911 (7) | 0.6243 (2) | 0.73951 (14) | 0.0285 (6) | |
H7A | 0.6030 | 0.6980 | 0.7371 | 0.043* | |
H7B | 0.9411 | 0.6252 | 0.7524 | 0.043* | |
H7C | 0.5621 | 0.5845 | 0.7789 | 0.043* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl21 | 0.0325 (4) | 0.0369 (3) | 0.0408 (4) | 0.0052 (3) | −0.0004 (3) | 0.0215 (3) |
Cl61 | 0.0322 (4) | 0.0211 (3) | 0.0372 (3) | 0.0057 (3) | 0.0049 (3) | 0.0043 (2) |
O41 | 0.0589 (17) | 0.0823 (17) | 0.0307 (11) | −0.0038 (15) | −0.0097 (12) | −0.0140 (11) |
O42 | 0.0769 (18) | 0.0380 (11) | 0.0502 (13) | −0.0141 (14) | 0.0164 (15) | −0.0218 (10) |
N4 | 0.0402 (16) | 0.0421 (14) | 0.0308 (13) | −0.0149 (12) | 0.0094 (12) | −0.0116 (11) |
C1 | 0.0140 (12) | 0.0228 (10) | 0.0208 (10) | −0.0033 (10) | 0.0023 (11) | 0.0020 (8) |
C2 | 0.0174 (13) | 0.0235 (11) | 0.0264 (12) | −0.0010 (10) | 0.0024 (11) | 0.0093 (10) |
C3 | 0.0220 (14) | 0.0182 (11) | 0.0366 (13) | −0.0021 (11) | 0.0089 (12) | 0.0016 (10) |
C4 | 0.0237 (14) | 0.0278 (12) | 0.0229 (12) | −0.0085 (11) | 0.0066 (11) | −0.0043 (10) |
C5 | 0.0173 (13) | 0.0305 (12) | 0.0200 (11) | −0.0027 (11) | 0.0010 (11) | 0.0061 (9) |
C6 | 0.0154 (12) | 0.0170 (10) | 0.0261 (12) | −0.0013 (9) | 0.0065 (10) | 0.0030 (9) |
C7 | 0.0252 (14) | 0.0370 (14) | 0.0232 (12) | −0.0024 (12) | 0.0000 (11) | 0.0001 (10) |
Cl21—C2 | 1.735 (2) | C3—C4 | 1.381 (4) |
Cl61—C6 | 1.741 (2) | C3—H3 | 0.9500 |
O41—N4 | 1.224 (3) | C4—C5 | 1.378 (3) |
O42—N4 | 1.220 (3) | C5—C6 | 1.384 (3) |
N4—C4 | 1.477 (3) | C5—H5 | 0.9500 |
C1—C6 | 1.396 (3) | C7—H7A | 0.9800 |
C1—C2 | 1.399 (3) | C7—H7B | 0.9800 |
C1—C7 | 1.512 (3) | C7—H7C | 0.9800 |
C2—C3 | 1.381 (3) | ||
O42—N4—O41 | 124.7 (2) | C3—C4—N4 | 119.0 (2) |
O42—N4—C4 | 117.8 (3) | C4—C5—C6 | 117.7 (2) |
O41—N4—C4 | 117.5 (2) | C4—C5—H5 | 121.2 |
C6—C1—C2 | 115.7 (2) | C6—C5—H5 | 121.2 |
C6—C1—C7 | 122.9 (2) | C5—C6—C1 | 123.1 (2) |
C2—C1—C7 | 121.4 (2) | C5—C6—Cl61 | 116.99 (18) |
C3—C2—C1 | 123.5 (2) | C1—C6—Cl61 | 119.87 (18) |
C3—C2—Cl21 | 117.87 (18) | C1—C7—H7A | 109.5 |
C1—C2—Cl21 | 118.63 (19) | C1—C7—H7B | 109.5 |
C2—C3—C4 | 117.3 (2) | H7A—C7—H7B | 109.5 |
C2—C3—H3 | 121.4 | C1—C7—H7C | 109.5 |
C4—C3—H3 | 121.4 | H7A—C7—H7C | 109.5 |
C5—C4—C3 | 122.7 (2) | H7B—C7—H7C | 109.5 |
C5—C4—N4 | 118.2 (2) | ||
C6—C1—C2—C3 | −0.1 (4) | O42—N4—C4—C3 | −9.8 (4) |
C7—C1—C2—C3 | 179.0 (3) | O41—N4—C4—C3 | 170.3 (3) |
C6—C1—C2—Cl21 | −179.59 (19) | C3—C4—C5—C6 | −0.6 (4) |
C7—C1—C2—Cl21 | −0.5 (3) | N4—C4—C5—C6 | 179.5 (2) |
C1—C2—C3—C4 | −0.4 (4) | C4—C5—C6—C1 | 0.0 (4) |
Cl21—C2—C3—C4 | 179.05 (19) | C4—C5—C6—Cl61 | −179.92 (19) |
C2—C3—C4—C5 | 0.8 (4) | C2—C1—C6—C5 | 0.3 (4) |
C2—C3—C4—N4 | −179.3 (2) | C7—C1—C6—C5 | −178.8 (2) |
O42—N4—C4—C5 | 170.1 (3) | C2—C1—C6—Cl61 | −179.73 (18) |
O41—N4—C4—C5 | −9.8 (4) | C7—C1—C6—Cl61 | 1.2 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O42i | 0.95 | 2.47 | 3.389 (3) | 163 |
C5—H5···Cl61ii | 0.95 | 2.94 | 3.862 (3) | 163 |
Symmetry codes: (i) x+1/2, −y+1/2, −z+1; (ii) x−1/2, −y+3/2, −z+1. |
Acknowledgements
We would like to thank the Centre de diffractométrie de l'Université de Rennes 1 for the opportunity to collect the X-ray diffraction data.
References
Boudjada, A., Hernandez, O., Meinnel, J., Mani, M. & Paulus, W. (2001). Acta Cryst. C57, 1106–1108. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hernandez, O., Cousson, A., Plazanet, M., Nierlich, M. & Meinnel, J. (2003). Acta Cryst. C59, o445–o450. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Medjroubi, M. L., Jeannin, O., Fourmigué, M., Boudjada, A. & Meinnel, J. (2016). IUCrData, 1, x160621. Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tazi, M., Meinnel, J., Sanquer, M., Nusimovici, M., Tonnard, F. & Carrie, R. (1995). Acta Cryst. B51, 838–847. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.