organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2,6-Di­chloro-4-nitro­toluene

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Cristallographie, Département de Physique, Université Mentouri-Constantine, 25000 Constantine, Algeria, and bUMR 6226 CNRS–Université Rennes 1 `Sciences Chimiques de Rennes', Equipe `Matière Condensée et Systèmes Electroactifs', Bâtiment 10C, Campus de Beaulieu, 263 Avenue du Général Leclerc, F-35042 Rennes, France
*Correspondence e-mail: mlmedj@gmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 4 April 2017; accepted 4 May 2017; online 9 May 2017)

The title compound, C7H5Cl2NO2 [systematic name: 1,3-di­chloro-2-methyl-5-nitro­benzene], crystallizes in the chiral space group P212121 with a Flack parameter of −0.03 (5). The methyl C atom, the Cl atoms and the N atom of the nitro substituent all lie extremely close to the plane of the benzene ring; the deviations are 0.028 (3) Å for the methyl C atom, −0.016 (1) and 0.007 (1) Å for the two Cl atoms, and −0.017 (3) Å for the nitro N atom. Hence, no significant steric hindrance of the methyl group by the ortho halogen atoms is observed. The nitro group is inclined to the benzene ring by 9.8 (3)°. In the crystal, mol­ecules are linked by weak C—H⋯O and C—H⋯Cl hydrogen bonds, forming layers parallel to the ab plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Our group is inter­ested in understanding the methyl radical behaviour of benzene mol­ecules substituted by halogen and methyl substituents. Studies first focused on various mesityl halogens (Boudjada et al., 2001[Boudjada, A., Hernandez, O., Meinnel, J., Mani, M. & Paulus, W. (2001). Acta Cryst. C57, 1106-1108.]; Tazi et al., 1995[Tazi, M., Meinnel, J., Sanquer, M., Nusimovici, M., Tonnard, F. & Carrie, R. (1995). Acta Cryst. B51, 838-847.]; Hernandez et al., 2003[Hernandez, O., Cousson, A., Plazanet, M., Nierlich, M. & Meinnel, J. (2003). Acta Cryst. C59, o445-o450.]) to be extended thereafter to other products. In order to better identify the behaviour of the methyl group, a study of dihalogen-nitro­toluene mol­ecules has been undertaken. The crystal structure of the di­bromo analogue (DBNT) of the title compound (DCNT) was reported on recently by our group (Medjroubi et al., 2016[Medjroubi, M. L., Jeannin, O., Fourmigué, M., Boudjada, A. & Meinnel, J. (2016). IUCrData, 1, x160621.]).

The mol­ecular structure of the title compound is shown in Fig. 1[link]. In the crystal structure of DBNT, there are two independent mol­ecules per asymmetric unit and the methyl group H atoms are positionally disordered. For the title compound, DCNT, there is only one mol­ecule per asymmetric unit and no disorder is observed for the methyl group H atoms. The di­bromo analogue crystallizes in the centrosymmetric triclinic space group P[\overline{1}], while the title di­chloro analogue crystallizes in the chiral ortho­rhom­bic space group P212121 [Flack parameter of −0.03 (5)].

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling and displacement ellipsoids drawn at the 50% probability level.

In the DCNT mol­ecule, the methyl C atom, the Cl atoms and the N atom of the nitro substituent all lie extremely close to the plane of the benzene ring: deviations are 0.028 (3) Å for C7, −0.016 (1) Å for Cl21, 0.007 (1) Å for Cl61 and −0.017 (3) Å for N4. Hence, no significant steric hindrance of the methyl group by the ortho halogen atoms is observed. The nitro group N4/O41/O42 is inclined to the benzene ring by 9.8 (3)°, compared with 2.5 (5) and 5.9 (4) ° in DBNT.

In the crystal, mol­ecules are linked by weak C—H⋯O and C—H⋯Cl hydrogen bonds forming layers parallel to the ab plane (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O42i 0.95 2.47 3.389 (3) 163
C5—H5⋯Cl61ii 0.95 2.94 3.862 (3) 163
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].
[Figure 2]
Figure 2
A view along the c axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1[link]) and the two H atoms involved in hydrogen bonding are shown as grey balls.

Synthesis and crystallization

The commercially available title compound (DCNT; Sigma–Aldrich) was recrystallized from an ethanol solution. Colourless needle-shaped single crystals several mm in length and having a section of a few hundredths of a mm2 were obtained. Examination of the crystals using polarized light and X-ray diffraction revealed that they are generally twinned and consequently it was necessary to examine a large number of crystals to find a suitable single-crystal for the present X-ray diffraction study.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C7H5Cl2NO2
Mr 206.02
Crystal system, space group Orthorhombic, P212121
Temperature (K) 150
a, b, c (Å) 3.8145 (3), 12.4829 (10), 17.4438 (15)
V3) 830.60 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.73
Crystal size (mm) 0.26 × 0.15 × 0.05
 
Data collection
Diffractometer Bruker APEXII
Absorption correction Multi-scan
Tmin, Tmax 0.876, 0.964
No. of measured, independent and observed [I > 2σ(I)] reflections 4472, 1879, 1756
Rint 0.028
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.066, 1.07
No. of reflections 1879
No. of parameters 110
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.20
Absolute structure Flack x determined using 640 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.03 (5)
Computer programs: APEX2 and SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR2003 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]). Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR2003 (Burla et al., 2005); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: CAMERON (Watkin et al., 1996) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

1,3-Dichloro-2-methyl-5-nitrobenzene top
Crystal data top
C7H5Cl2NO2Dx = 1.647 Mg m3
Mr = 206.02Mo Kα radiation, λ = 0.7107 Å
Orthorhombic, P212121Cell parameters from 2377 reflections
a = 3.8145 (3) Åθ = 2.9–27.3°
b = 12.4829 (10) ŵ = 0.73 mm1
c = 17.4438 (15) ÅT = 150 K
V = 830.60 (12) Å3Needle, colourless
Z = 40.26 × 0.15 × 0.05 mm
F(000) = 416
Data collection top
Bruker APEXII
diffractometer
1756 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
CCD rotation images, thin slices scansθmax = 27.6°, θmin = 2.9°
Absorption correction: multi-scanh = 34
Tmin = 0.876, Tmax = 0.964k = 1615
4472 measured reflectionsl = 1922
1879 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0243P)2 + 0.1882P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
1879 reflectionsΔρmax = 0.23 e Å3
110 parametersΔρmin = 0.20 e Å3
0 restraintsAbsolute structure: Flack x determined using 640 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement.

_reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl210.9157 (2)0.39246 (5)0.72626 (4)0.0367 (2)
Cl610.36788 (19)0.75690 (4)0.60731 (4)0.03019 (17)
O410.3055 (7)0.4621 (2)0.40010 (12)0.0573 (7)
O420.6101 (8)0.32613 (16)0.43872 (12)0.0550 (7)
N40.4803 (7)0.41449 (19)0.44804 (14)0.0377 (6)
C10.6402 (7)0.57082 (18)0.66257 (13)0.0192 (5)
C20.7342 (7)0.46378 (18)0.65064 (14)0.0225 (5)
C30.6879 (7)0.41103 (18)0.58177 (15)0.0256 (6)
H30.75610.33840.57550.031*
C40.5384 (7)0.4682 (2)0.52239 (14)0.0248 (6)
C50.4406 (7)0.57402 (19)0.52939 (14)0.0226 (5)
H50.34020.61190.48750.027*
C60.4937 (6)0.62324 (17)0.59953 (14)0.0195 (5)
C70.6911 (7)0.6243 (2)0.73951 (14)0.0285 (6)
H7A0.60300.69800.73710.043*
H7B0.94110.62520.75240.043*
H7C0.56210.58450.77890.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl210.0325 (4)0.0369 (3)0.0408 (4)0.0052 (3)0.0004 (3)0.0215 (3)
Cl610.0322 (4)0.0211 (3)0.0372 (3)0.0057 (3)0.0049 (3)0.0043 (2)
O410.0589 (17)0.0823 (17)0.0307 (11)0.0038 (15)0.0097 (12)0.0140 (11)
O420.0769 (18)0.0380 (11)0.0502 (13)0.0141 (14)0.0164 (15)0.0218 (10)
N40.0402 (16)0.0421 (14)0.0308 (13)0.0149 (12)0.0094 (12)0.0116 (11)
C10.0140 (12)0.0228 (10)0.0208 (10)0.0033 (10)0.0023 (11)0.0020 (8)
C20.0174 (13)0.0235 (11)0.0264 (12)0.0010 (10)0.0024 (11)0.0093 (10)
C30.0220 (14)0.0182 (11)0.0366 (13)0.0021 (11)0.0089 (12)0.0016 (10)
C40.0237 (14)0.0278 (12)0.0229 (12)0.0085 (11)0.0066 (11)0.0043 (10)
C50.0173 (13)0.0305 (12)0.0200 (11)0.0027 (11)0.0010 (11)0.0061 (9)
C60.0154 (12)0.0170 (10)0.0261 (12)0.0013 (9)0.0065 (10)0.0030 (9)
C70.0252 (14)0.0370 (14)0.0232 (12)0.0024 (12)0.0000 (11)0.0001 (10)
Geometric parameters (Å, º) top
Cl21—C21.735 (2)C3—C41.381 (4)
Cl61—C61.741 (2)C3—H30.9500
O41—N41.224 (3)C4—C51.378 (3)
O42—N41.220 (3)C5—C61.384 (3)
N4—C41.477 (3)C5—H50.9500
C1—C61.396 (3)C7—H7A0.9800
C1—C21.399 (3)C7—H7B0.9800
C1—C71.512 (3)C7—H7C0.9800
C2—C31.381 (3)
O42—N4—O41124.7 (2)C3—C4—N4119.0 (2)
O42—N4—C4117.8 (3)C4—C5—C6117.7 (2)
O41—N4—C4117.5 (2)C4—C5—H5121.2
C6—C1—C2115.7 (2)C6—C5—H5121.2
C6—C1—C7122.9 (2)C5—C6—C1123.1 (2)
C2—C1—C7121.4 (2)C5—C6—Cl61116.99 (18)
C3—C2—C1123.5 (2)C1—C6—Cl61119.87 (18)
C3—C2—Cl21117.87 (18)C1—C7—H7A109.5
C1—C2—Cl21118.63 (19)C1—C7—H7B109.5
C2—C3—C4117.3 (2)H7A—C7—H7B109.5
C2—C3—H3121.4C1—C7—H7C109.5
C4—C3—H3121.4H7A—C7—H7C109.5
C5—C4—C3122.7 (2)H7B—C7—H7C109.5
C5—C4—N4118.2 (2)
C6—C1—C2—C30.1 (4)O42—N4—C4—C39.8 (4)
C7—C1—C2—C3179.0 (3)O41—N4—C4—C3170.3 (3)
C6—C1—C2—Cl21179.59 (19)C3—C4—C5—C60.6 (4)
C7—C1—C2—Cl210.5 (3)N4—C4—C5—C6179.5 (2)
C1—C2—C3—C40.4 (4)C4—C5—C6—C10.0 (4)
Cl21—C2—C3—C4179.05 (19)C4—C5—C6—Cl61179.92 (19)
C2—C3—C4—C50.8 (4)C2—C1—C6—C50.3 (4)
C2—C3—C4—N4179.3 (2)C7—C1—C6—C5178.8 (2)
O42—N4—C4—C5170.1 (3)C2—C1—C6—Cl61179.73 (18)
O41—N4—C4—C59.8 (4)C7—C1—C6—Cl611.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O42i0.952.473.389 (3)163
C5—H5···Cl61ii0.952.943.862 (3)163
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x1/2, y+3/2, z+1.
 

Acknowledgements

We would like to thank the Centre de diffractométrie de l'Université de Rennes 1 for the opportunity to collect the X-ray diffraction data.

References

First citationBoudjada, A., Hernandez, O., Meinnel, J., Mani, M. & Paulus, W. (2001). Acta Cryst. C57, 1106–1108.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHernandez, O., Cousson, A., Plazanet, M., Nierlich, M. & Meinnel, J. (2003). Acta Cryst. C59, o445–o450.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMedjroubi, M. L., Jeannin, O., Fourmigué, M., Boudjada, A. & Meinnel, J. (2016). IUCrData, 1, x160621.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTazi, M., Meinnel, J., Sanquer, M., Nusimovici, M., Tonnard, F. & Carrie, R. (1995). Acta Cryst. B51, 838–847.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds