organic compounds
3,5-Dibromo-6-methylpyridin-2-amine
aDepartment of Chemistry, Bapatla Engineering College (Autonomous), Acharaya Nagarjuna University Postgraduate Research Centre, Bapatla 522 101, A.P., India, bDepartment of Chemistry, Bapatla College of Arts and Sciences, Bapatla 522 101, A.P., India, cSolid State and Supramolecular Structural Chemistry Laboratory, School of Basic Sciences, IIT Bhubaneswar, Bhubaneswar 751 008, India, and dDepartment of Chemistry, University College of Science, Tumkur University, Tumkur 572103, India
*Correspondence e-mail: pasuchetan@gmail.com
The title molecule, C6H6Br2N2, is almost planar (r.m.s. deviation for the non-H atoms = 0.012 Å). In the crystal, inversion dimers linked by pairs of N—H⋯N hydrogen bonds generate R22(8) loops.
Keywords: crystal structure; halogenated compounds; N—H⋯N hydrogen bonds; (8) dimers.
CCDC reference: 1532242
Structure description
Halogenated organic compounds are known to exhibit diverse biological activities showing anticancer (Nussbaumer et al., 2011), antiviral (De Clercq, 2013), anti-tuberculosis (Beena & Rawat, 2013), anti-malarial (Biamonte et al., 2013), antifungal and anti-diabetic (Hector, 2005) properties. As part of our studies in this area, the of the commercially available title compound was determined.
The molecule is almost planar (Fig. 1) with the r.m.s. deviation for the non-H atoms being 0.012 Å. An intramolecular N—H⋯Br interaction occurs. In the crystal, inversion dimers linked by pairs of N2—H2⋯N1 hydrogen bonds generate (8) loops (Fig. 2, Table 1). The does not feature any other interactions, and thus, the supramolecular architecture displayed is zero dimensional.
Synthesis and crystallization
The title compound was purchased from Avra Synthesis Pvt. Ltd, India, and was used as such. Colourless blocks were grown by recrystallization from methanol solution at room temperature.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1532242
https://doi.org/10.1107/S2414314617007283/hb4147sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617007283/hb4147Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314617007283/hb4147Isup3.cml
Data collection: APEX2 (Bruker, 2009); cell
APEX2 and SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus and XPREP (Bruker, 2009); program(s) used to solve structure: SHELXT2016 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015b).C6H6Br2N2 | F(000) = 504 |
Mr = 265.95 | Prism |
Monoclinic, P21/n | Dx = 2.204 Mg m−3 |
Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.71073 Å |
a = 13.1047 (16) Å | Cell parameters from 133 reflections |
b = 4.0310 (4) Å | θ = 2.4–26.7° |
c = 15.7631 (18) Å | µ = 10.04 mm−1 |
β = 105.720 (4)° | T = 296 K |
V = 801.54 (16) Å3 | Block, colourless |
Z = 4 | 0.26 × 0.22 × 0.20 mm |
Bruker APEXII CCD diffractometer | 1670 independent reflections |
Radiation source: fine-focus sealed tube | 1461 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.050 |
phi and φ scans | θmax = 26.7°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −16→16 |
Tmin = 0.085, Tmax = 0.134 | k = −5→4 |
10577 measured reflections | l = −19→19 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.038 | w = 1/[σ2(Fo2) + (0.0701P)2 + 0.463P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.108 | (Δ/σ)max < 0.001 |
S = 1.09 | Δρmax = 1.03 e Å−3 |
1670 reflections | Δρmin = −0.86 e Å−3 |
101 parameters | Extinction correction: SHELXL2016 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
2 restraints | Extinction coefficient: 0.064 (4) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3237 (3) | 0.5000 (10) | 0.4445 (2) | 0.0352 (8) | |
C2 | 0.2125 (3) | 0.5194 (10) | 0.4153 (2) | 0.0343 (8) | |
C3 | 0.1522 (3) | 0.3994 (10) | 0.4668 (2) | 0.0360 (8) | |
H3 | 0.078637 | 0.410750 | 0.448303 | 0.043* | |
C4 | 0.2038 (3) | 0.2597 (9) | 0.5477 (3) | 0.0366 (9) | |
C5 | 0.3126 (3) | 0.2404 (10) | 0.5746 (3) | 0.0377 (9) | |
C6 | 0.3748 (4) | 0.0910 (15) | 0.6593 (3) | 0.0566 (12) | |
H6A | 0.417884 | −0.086130 | 0.647437 | 0.085* | |
H6B | 0.327119 | 0.005584 | 0.690749 | 0.085* | |
H6C | 0.419361 | 0.257416 | 0.694366 | 0.085* | |
N1 | 0.3710 (3) | 0.3633 (9) | 0.5226 (2) | 0.0385 (8) | |
N2 | 0.3883 (3) | 0.6093 (13) | 0.3955 (3) | 0.0517 (10) | |
BR1 | 0.14692 (3) | 0.70991 (12) | 0.30385 (3) | 0.0436 (2) | |
BR2 | 0.11914 (4) | 0.10117 (13) | 0.61976 (3) | 0.0544 (3) | |
H1 | 0.359 (4) | 0.736 (12) | 0.351 (3) | 0.056 (16)* | |
H2 | 0.458 (3) | 0.609 (15) | 0.415 (3) | 0.063 (16)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.026 (2) | 0.046 (2) | 0.0313 (18) | −0.0019 (16) | 0.0032 (15) | −0.0038 (16) |
C2 | 0.029 (2) | 0.040 (2) | 0.0304 (18) | 0.0003 (16) | 0.0019 (15) | −0.0044 (15) |
C3 | 0.0243 (19) | 0.044 (2) | 0.038 (2) | −0.0019 (15) | 0.0046 (16) | −0.0047 (17) |
C4 | 0.037 (2) | 0.040 (2) | 0.035 (2) | −0.0040 (16) | 0.0123 (17) | −0.0031 (15) |
C5 | 0.036 (2) | 0.045 (2) | 0.0288 (19) | 0.0000 (16) | 0.0029 (16) | −0.0006 (15) |
C6 | 0.052 (3) | 0.074 (3) | 0.040 (2) | −0.001 (2) | 0.004 (2) | 0.011 (2) |
N1 | 0.0260 (17) | 0.056 (2) | 0.0308 (16) | −0.0020 (15) | 0.0031 (13) | 0.0018 (15) |
N2 | 0.032 (2) | 0.085 (3) | 0.037 (2) | −0.0064 (19) | 0.0073 (17) | 0.0091 (19) |
BR1 | 0.0351 (3) | 0.0561 (3) | 0.0337 (3) | 0.00406 (17) | −0.00072 (19) | 0.00301 (17) |
BR2 | 0.0524 (4) | 0.0647 (4) | 0.0525 (3) | −0.0082 (2) | 0.0248 (2) | 0.0056 (2) |
C1—N1 | 1.338 (5) | C4—BR2 | 1.900 (4) |
C1—N2 | 1.364 (5) | C5—N1 | 1.358 (5) |
C1—C2 | 1.407 (5) | C5—C6 | 1.491 (6) |
C2—C3 | 1.366 (6) | C6—H6A | 0.9600 |
C2—BR1 | 1.896 (4) | C6—H6B | 0.9600 |
C3—C4 | 1.390 (6) | C6—H6C | 0.9600 |
C3—H3 | 0.9300 | N2—H1 | 0.87 (3) |
C4—C5 | 1.375 (6) | N2—H2 | 0.88 (3) |
N1—C1—N2 | 116.7 (4) | N1—C5—C6 | 115.3 (4) |
N1—C1—C2 | 120.3 (3) | C4—C5—C6 | 124.6 (4) |
N2—C1—C2 | 123.0 (4) | C5—C6—H6A | 109.5 |
C3—C2—C1 | 120.1 (3) | C5—C6—H6B | 109.5 |
C3—C2—BR1 | 120.3 (3) | H6A—C6—H6B | 109.5 |
C1—C2—BR1 | 119.7 (3) | C5—C6—H6C | 109.5 |
C2—C3—C4 | 118.2 (4) | H6A—C6—H6C | 109.5 |
C2—C3—H3 | 120.9 | H6B—C6—H6C | 109.5 |
C4—C3—H3 | 120.9 | C1—N1—C5 | 120.6 (3) |
C5—C4—C3 | 120.7 (4) | C1—N2—H1 | 117 (4) |
C5—C4—BR2 | 121.5 (3) | C1—N2—H2 | 123 (4) |
C3—C4—BR2 | 117.8 (3) | H1—N2—H2 | 118 (5) |
N1—C5—C4 | 120.1 (4) | ||
N1—C1—C2—C3 | 0.2 (6) | C3—C4—C5—N1 | 1.1 (6) |
N2—C1—C2—C3 | 178.7 (4) | BR2—C4—C5—N1 | −178.4 (3) |
N1—C1—C2—BR1 | −179.4 (3) | C3—C4—C5—C6 | −179.1 (4) |
N2—C1—C2—BR1 | −0.8 (6) | BR2—C4—C5—C6 | 1.4 (6) |
C1—C2—C3—C4 | 0.0 (6) | N2—C1—N1—C5 | −178.3 (4) |
BR1—C2—C3—C4 | 179.5 (3) | C2—C1—N1—C5 | 0.3 (6) |
C2—C3—C4—C5 | −0.6 (6) | C4—C5—N1—C1 | −0.9 (6) |
C2—C3—C4—BR2 | 178.9 (3) | C6—C5—N1—C1 | 179.3 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1···Br1 | 0.87 (5) | 2.68 (5) | 3.128 (4) | 114 (4) |
N2—H2···N1i | 0.88 (4) | 2.19 (4) | 3.070 (6) | 173 (3) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Footnotes
‡These authors contributed equally.
Acknowledgements
The authors acknowledge Professor V. R. Pedireddi, Solid State & Supramolecular Structural Chemistry Laboratory, School of Basic Sciences, IIT Bhubaneswar, for the data collection.
Funding information
Funding for this research was provided by: University Grants Commissionhttps://doi.org/10.13039/501100001501 (award No. UGC-MRP: 2015–16).
References
Beena & Rawat, D. S. (2013). Med. Res. Rev. 33, 693–764. Google Scholar
Biamonte, M. A., Wanner, J. & Le Roch, K. G. (2013). Bioorg. Med. Chem. Lett. 23, 2829–2843. Web of Science CrossRef CAS PubMed Google Scholar
Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
De Clercq, E. (2013). Biochem. Pharmacol. 85, 727–744. CrossRef CAS PubMed Google Scholar
Hector, R. F. (2005). Clin. Tech. Small Anim. Pract. 20, 240–249. CrossRef PubMed Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Nussbaumer, S., Bonnabry, P., Veuthey, J. L. & Fleury-Souverain, S. (2011). Talanta, 85, 2265–2289. CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.