organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3,5-Di­bromo-6-methyl­pyridin-2-amine

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Bapatla Engineering College (Autonomous), Acharaya Nagarjuna University Postgraduate Research Centre, Bapatla 522 101, A.P., India, bDepartment of Chemistry, Bapatla College of Arts and Sciences, Bapatla 522 101, A.P., India, cSolid State and Supramolecular Structural Chemistry Laboratory, School of Basic Sciences, IIT Bhubaneswar, Bhubaneswar 751 008, India, and dDepartment of Chemistry, University College of Science, Tumkur University, Tumkur 572103, India
*Correspondence e-mail: pasuchetan@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 16 May 2017; accepted 17 May 2017; online 19 May 2017)

The title mol­ecule, C6H6Br2N2, is almost planar (r.m.s. deviation for the non-H atoms = 0.012 Å). In the crystal, inversion dimers linked by pairs of N—H⋯N hydrogen bonds generate R22(8) loops.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Halogenated organic compounds are known to exhibit diverse biological activities showing anti­cancer (Nussbaumer et al., 2011[Nussbaumer, S., Bonnabry, P., Veuthey, J. L. & Fleury-Souverain, S. (2011). Talanta, 85, 2265-2289.]), anti­viral (De Clercq, 2013[De Clercq, E. (2013). Biochem. Pharmacol. 85, 727-744.]), anti-tuberculosis (Beena & Rawat, 2013[Beena & Rawat, D. S. (2013). Med. Res. Rev. 33, 693-764.]), anti-malarial (Biamonte et al., 2013[Biamonte, M. A., Wanner, J. & Le Roch, K. G. (2013). Bioorg. Med. Chem. Lett. 23, 2829-2843.]), anti­fungal and anti-diabetic (Hector, 2005[Hector, R. F. (2005). Clin. Tech. Small Anim. Pract. 20, 240-249.]) properties. As part of our studies in this area, the crystal structure of the commercially available title compound was determined.

The mol­ecule is almost planar (Fig. 1[link]) with the r.m.s. deviation for the non-H atoms being 0.012 Å. An intra­molecular N—H⋯Br inter­action occurs. In the crystal, inversion dimers linked by pairs of N2—H2⋯N1 hydrogen bonds generate [R_{2}^{2}](8) loops (Fig. 2[link], Table 1[link]). The crystal structure does not feature any other inter­actions, and thus, the supra­molecular architecture displayed is zero dimensional.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯Br1 0.87 (5) 2.68 (5) 3.128 (4) 114 (4)
N2—H2⋯N1i 0.88 (4) 2.19 (4) 3.070 (6) 173 (3)
Symmetry code: (i) -x+1, -y+1, -z+1.
[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Crystal packing of the title compound, displaying N—H⋯N hydrogen-bonded [R_{2}^{2}](8) loops.

Synthesis and crystallization

The title compound was purchased from Avra Synthesis Pvt. Ltd, India, and was used as such. Colourless blocks were grown by recrystallization from methanol solution at room temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C6H6Br2N2
Mr 265.95
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 13.1047 (16), 4.0310 (4), 15.7631 (18)
β (°) 105.720 (4)
V3) 801.54 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 10.04
Crystal size (mm) 0.26 × 0.22 × 0.20
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.085, 0.134
No. of measured, independent and observed [I > 2σ(I)] reflections 10577, 1670, 1461
Rint 0.050
(sin θ/λ)max−1) 0.631
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.108, 1.09
No. of reflections 1670
No. of parameters 101
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.03, −0.86
Computer programs: APEX2, SAINT-Plus and XPREP (Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]a), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]b) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 and SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus and XPREP (Bruker, 2009); program(s) used to solve structure: SHELXT2016 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015b).

3,5-Dibromo-6-methylpyridin-2-amine top
Crystal data top
C6H6Br2N2F(000) = 504
Mr = 265.95Prism
Monoclinic, P21/nDx = 2.204 Mg m3
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 13.1047 (16) ÅCell parameters from 133 reflections
b = 4.0310 (4) Åθ = 2.4–26.7°
c = 15.7631 (18) ŵ = 10.04 mm1
β = 105.720 (4)°T = 296 K
V = 801.54 (16) Å3Block, colourless
Z = 40.26 × 0.22 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
1670 independent reflections
Radiation source: fine-focus sealed tube1461 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
phi and φ scansθmax = 26.7°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1616
Tmin = 0.085, Tmax = 0.134k = 54
10577 measured reflectionsl = 1919
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0701P)2 + 0.463P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.108(Δ/σ)max < 0.001
S = 1.09Δρmax = 1.03 e Å3
1670 reflectionsΔρmin = 0.86 e Å3
101 parametersExtinction correction: SHELXL2016 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.064 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3237 (3)0.5000 (10)0.4445 (2)0.0352 (8)
C20.2125 (3)0.5194 (10)0.4153 (2)0.0343 (8)
C30.1522 (3)0.3994 (10)0.4668 (2)0.0360 (8)
H30.0786370.4107500.4483030.043*
C40.2038 (3)0.2597 (9)0.5477 (3)0.0366 (9)
C50.3126 (3)0.2404 (10)0.5746 (3)0.0377 (9)
C60.3748 (4)0.0910 (15)0.6593 (3)0.0566 (12)
H6A0.4178840.0861300.6474370.085*
H6B0.3271190.0055840.6907490.085*
H6C0.4193610.2574160.6943660.085*
N10.3710 (3)0.3633 (9)0.5226 (2)0.0385 (8)
N20.3883 (3)0.6093 (13)0.3955 (3)0.0517 (10)
BR10.14692 (3)0.70991 (12)0.30385 (3)0.0436 (2)
BR20.11914 (4)0.10117 (13)0.61976 (3)0.0544 (3)
H10.359 (4)0.736 (12)0.351 (3)0.056 (16)*
H20.458 (3)0.609 (15)0.415 (3)0.063 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.026 (2)0.046 (2)0.0313 (18)0.0019 (16)0.0032 (15)0.0038 (16)
C20.029 (2)0.040 (2)0.0304 (18)0.0003 (16)0.0019 (15)0.0044 (15)
C30.0243 (19)0.044 (2)0.038 (2)0.0019 (15)0.0046 (16)0.0047 (17)
C40.037 (2)0.040 (2)0.035 (2)0.0040 (16)0.0123 (17)0.0031 (15)
C50.036 (2)0.045 (2)0.0288 (19)0.0000 (16)0.0029 (16)0.0006 (15)
C60.052 (3)0.074 (3)0.040 (2)0.001 (2)0.004 (2)0.011 (2)
N10.0260 (17)0.056 (2)0.0308 (16)0.0020 (15)0.0031 (13)0.0018 (15)
N20.032 (2)0.085 (3)0.037 (2)0.0064 (19)0.0073 (17)0.0091 (19)
BR10.0351 (3)0.0561 (3)0.0337 (3)0.00406 (17)0.00072 (19)0.00301 (17)
BR20.0524 (4)0.0647 (4)0.0525 (3)0.0082 (2)0.0248 (2)0.0056 (2)
Geometric parameters (Å, º) top
C1—N11.338 (5)C4—BR21.900 (4)
C1—N21.364 (5)C5—N11.358 (5)
C1—C21.407 (5)C5—C61.491 (6)
C2—C31.366 (6)C6—H6A0.9600
C2—BR11.896 (4)C6—H6B0.9600
C3—C41.390 (6)C6—H6C0.9600
C3—H30.9300N2—H10.87 (3)
C4—C51.375 (6)N2—H20.88 (3)
N1—C1—N2116.7 (4)N1—C5—C6115.3 (4)
N1—C1—C2120.3 (3)C4—C5—C6124.6 (4)
N2—C1—C2123.0 (4)C5—C6—H6A109.5
C3—C2—C1120.1 (3)C5—C6—H6B109.5
C3—C2—BR1120.3 (3)H6A—C6—H6B109.5
C1—C2—BR1119.7 (3)C5—C6—H6C109.5
C2—C3—C4118.2 (4)H6A—C6—H6C109.5
C2—C3—H3120.9H6B—C6—H6C109.5
C4—C3—H3120.9C1—N1—C5120.6 (3)
C5—C4—C3120.7 (4)C1—N2—H1117 (4)
C5—C4—BR2121.5 (3)C1—N2—H2123 (4)
C3—C4—BR2117.8 (3)H1—N2—H2118 (5)
N1—C5—C4120.1 (4)
N1—C1—C2—C30.2 (6)C3—C4—C5—N11.1 (6)
N2—C1—C2—C3178.7 (4)BR2—C4—C5—N1178.4 (3)
N1—C1—C2—BR1179.4 (3)C3—C4—C5—C6179.1 (4)
N2—C1—C2—BR10.8 (6)BR2—C4—C5—C61.4 (6)
C1—C2—C3—C40.0 (6)N2—C1—N1—C5178.3 (4)
BR1—C2—C3—C4179.5 (3)C2—C1—N1—C50.3 (6)
C2—C3—C4—C50.6 (6)C4—C5—N1—C10.9 (6)
C2—C3—C4—BR2178.9 (3)C6—C5—N1—C1179.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···Br10.87 (5)2.68 (5)3.128 (4)114 (4)
N2—H2···N1i0.88 (4)2.19 (4)3.070 (6)173 (3)
Symmetry code: (i) x+1, y+1, z+1.
 

Footnotes

These authors contributed equally.

Acknowledgements

The authors acknowledge Professor V. R. Pedireddi, Solid State & Supra­molecular Structural Chemistry Laboratory, School of Basic Sciences, IIT Bhubaneswar, for the data collection.

Funding information

Funding for this research was provided by: University Grants Commission (award No. UGC-MRP: 2015–16).

References

First citationBeena & Rawat, D. S. (2013). Med. Res. Rev. 33, 693–764.  Google Scholar
First citationBiamonte, M. A., Wanner, J. & Le Roch, K. G. (2013). Bioorg. Med. Chem. Lett. 23, 2829–2843.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDe Clercq, E. (2013). Biochem. Pharmacol. 85, 727–744.  CrossRef CAS PubMed Google Scholar
First citationHector, R. F. (2005). Clin. Tech. Small Anim. Pract. 20, 240–249.  CrossRef PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNussbaumer, S., Bonnabry, P., Veuthey, J. L. & Fleury-Souverain, S. (2011). Talanta, 85, 2265–2289.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds