organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-(2-Hy­dr­oxy-4-meth­­oxy­phen­yl)-N-(2-meth­­oxy­phen­yl)-5-(naphthalen-1-yl)-4,5-di­hydro-1H-pyrazole-1-carbo­thio­amide

CROSSMARK_Color_square_no_text.svg

aDivision of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul 143-701, Republic of Korea, and bDepartment of Applied Chemistry, Dongduk Women's University, Seoul 136-714, Republic of Korea
*Correspondence e-mail: dskoh@dongduk.ac.kr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 7 May 2017; accepted 17 May 2017; online 31 May 2017)

In the title mol­ecule, C28H25N3O3S, the dihedral angles formed by the naphthalene ring system and the benzene rings are 73.03 (13) and 74.04 (11)°. The benzene rings attached to the central pyrazoline ring are almost coplanar, as indicated by the dihedral angle of 2.22 (10)° between them. The C atom of the meth­oxy group of the phenol ring is essentially coplanar with the ring [C—C—O—C = −0.3 (3)°], whereas the C atom of the meth­oxy group of the thio­amide benzene ring is slightly twisted [C—C—O—C = 5.4 (3)°]. An intra­molecular O—H⋯N hydrogen bond generates an S(6) ring motif. In the crystal, pairs of very weak C—H⋯S inter­actions form inversion dimers with an R22(18) motif.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyrazolines show a broad spectrum of biological activities including the dual function of anti­malarial and anti­microbial (Mishra, et al., 2017[Mishra, V. K., Mishra, M., Kashaw, V. & Kashaw, S. K. (2017). Bioorg. Med. Chem. 25, 1949-1962.]), anti­bacterial (Viveka et al., 2015[Viveka, S., Dinesha, Shama, P., Nagaraja, G. K., Ballav, S. & Kerkar, S. (2015). Eur. J. Med. Chem. 101, 442-451.]), anti-inflammatory (Kharbanda, et al., 2014[Kharbanda, C., Alam, M. S., Hamid, H., Javed, K., Bano, B., Dhulap, A., Ali, Y., Nazreen, S. & Haider, S. (2014). Bioorg. Med. Chem. 22, 5804-5812.]) and anti­tumor activities (Bashir et al., 2011[Bashir, R., Ovais, S., Yaseen, S., Hamid, H., Alam, M. S., Samim, M., Singh, S. & Javed, K. (2011). Bioorg. Med. Chem. Lett. 21, 4301-4305.]). In continuation of our studies of new pyrazoline derivatives which may show broad range of biological activities (Jung et al. 2015[Jung, H., Ahn, S., Park, M., Yoon, H., Noh, H. J., Kim, S. Y., Yoo, J. S., Koh, D. & Lim, Y. (2015). Magn. Reson. Chem. 53, 383-390.]), the title compound I was synthesized and its crystal structure was determined. For related structures, see: Abdel-Wahab et al. (2013[Abdel-Wahab, B. F., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o619.]); Koh et al. (2014[Koh, D., Lim, Y. & Lough, A. J. (2014). Acta Cryst. E70, o464.]).

The mol­ecular structure of I is shown in Fig. 1[link]. The benzene ring and naphthalene ring system are attached at the C1 and C3 position of central pyrazoline ring and another benzene ring is attached at N1 by a carbo­thio­amide linkage. The dihedral angles formed by the naphthalene ring system at C3 and the benzene rings at C1 and N1 are 73.03 (13) and 74.04 (11)°, respectively. The benzene rings attached to the pyrazoline ring at C1 and N1 are almost in the same plane [dihedral angle = 2.22 (10)°]. The C atom of the meth­oxy group of the phenol ring is essentially co-planar with the ring [C8—C7—O2—C10 = −0.3 (3)°], whereas the C atom of the meth­oxy group at the thio­amide benzene ring is slightly twisted from the ring plane [C24—C23—O3—C28 = 5.4 (3)°]. An intra­molecular O1—H1O⋯N1 hydrogen bond forms an S(6) ring motif (Table 1[link]). In the crystal, pairs of week C—H⋯S inter­actions form inversion dimers (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.84 1.96 2.6889 (19) 145
C18—H18⋯S1i 0.95 2.96 3.712 (2) 137
Symmetry code: (i) -x+2, -y+1, -z+2.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level
[Figure 2]
Figure 2
A view of an inversion dimer formed by a pair of C—H⋯S inter­actions in the crystal structure of the title compound.

Synthesis and crystallization

By the previously reported method (Jung et al. 2015[Jung, H., Ahn, S., Park, M., Yoon, H., Noh, H. J., Kim, S. Y., Yoo, J. S., Koh, D. & Lim, Y. (2015). Magn. Reson. Chem. 53, 383-390.]), chalcone inter­mediate III was prepared and converted into pyrazoline inter­mediate IV via imine formation followed by Michael addition of hydrazine. The reaction between IV and iso­thio­cyanate V gave the desired pyrazoline carbothi­amide (see Fig. 3[link]).

[Figure 3]
Figure 3
The synthetic procedure for the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C28H25N3O3S
Mr 483.57
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 6.8521 (4), 23.1503 (13), 15.0422 (8)
β (°) 99.365 (1)
V3) 2354.3 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.17
Crystal size (mm) 0.22 × 0.16 × 0.10
 
Data collection
Diffractometer Bruker SMART CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 17230, 5827, 3091
Rint 0.044
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.147, 0.96
No. of reflections 5827
No. of parameters 319
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.24
Computer programs: SMART and SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

3-(2-Hydroxy-4-methoxyphenyl)-N-(2-methoxyphenyl)-5-(naphthalen-1-yl)-4,5-dihydro-1H-pyrazole-1-carbothioamide top
Crystal data top
C28H25N3O3SF(000) = 1016
Mr = 483.57Dx = 1.364 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5750 reflections
a = 6.8521 (4) Åθ = 2.2–27.9°
b = 23.1503 (13) ŵ = 0.17 mm1
c = 15.0422 (8) ÅT = 173 K
β = 99.365 (1)°Block, yellow
V = 2354.3 (2) Å30.22 × 0.16 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
3091 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.044
Graphite monochromatorθmax = 28.3°, θmin = 1.8°
phi and ω scansh = 89
17230 measured reflectionsk = 2330
5827 independent reflectionsl = 2017
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0716P)2]
where P = (Fo2 + 2Fc2)/3
5827 reflections(Δ/σ)max = 0.001
319 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6669 (2)0.68425 (6)0.92398 (10)0.0466 (4)
N20.7136 (2)0.74261 (6)0.93947 (10)0.0443 (4)
C10.8947 (3)0.74602 (8)0.98041 (11)0.0405 (4)
C20.9924 (3)0.68823 (7)0.99689 (12)0.0431 (4)
H2A1.05320.68371.06090.052*
H2B1.09510.68260.95840.052*
C30.8196 (3)0.64595 (8)0.97126 (12)0.0437 (5)
H30.85510.61550.92960.052*
C40.9887 (3)0.80096 (8)1.00541 (12)0.0406 (4)
C50.8889 (3)0.85421 (8)0.99168 (12)0.0448 (5)
O10.69489 (19)0.85814 (6)0.95457 (10)0.0583 (4)
H10.64970.82490.94160.087*
C60.9869 (3)0.90568 (8)1.01527 (13)0.0478 (5)
H60.91750.94131.00640.057*
C71.1853 (3)0.90539 (8)1.05168 (12)0.0457 (5)
C81.2875 (3)0.85359 (8)1.06688 (13)0.0490 (5)
H81.42350.85331.09280.059*
C91.1890 (3)0.80279 (8)1.04382 (12)0.0456 (5)
H91.25940.76751.05430.055*
O21.2692 (2)0.95858 (5)1.06886 (9)0.0563 (4)
C101.4744 (3)0.96092 (9)1.10511 (15)0.0614 (6)
H10A1.49720.94251.16450.092*
H10B1.51731.00131.11090.092*
H10C1.55000.94061.06480.092*
C110.7552 (3)0.61868 (8)1.05338 (13)0.0477 (5)
C120.5914 (3)0.63734 (10)1.08515 (15)0.0646 (6)
H120.51140.66661.05330.078*
C130.5384 (4)0.61442 (16)1.1636 (2)0.1038 (11)
H130.42510.62871.18550.125*
C140.6474 (5)0.57218 (16)1.2083 (2)0.1130 (12)
H140.60820.55651.26110.136*
C150.8173 (4)0.55059 (11)1.17942 (17)0.0820 (9)
C160.8761 (3)0.57470 (8)1.10030 (14)0.0574 (6)
C171.0517 (4)0.55469 (8)1.07327 (16)0.0678 (7)
H171.09420.57091.02170.081*
C181.1624 (5)0.51184 (10)1.1209 (2)0.0945 (10)
H181.27990.49841.10180.113*
C191.1014 (6)0.48799 (11)1.1980 (2)0.1073 (14)
H191.17880.45881.23120.129*
C200.9358 (6)0.50619 (14)1.2246 (2)0.1161 (14)
H200.89580.48871.27590.139*
C210.4949 (3)0.66760 (9)0.87116 (12)0.0486 (5)
S10.43887 (9)0.59834 (2)0.85550 (4)0.0700 (2)
N30.3851 (2)0.71315 (7)0.83677 (11)0.0572 (5)
H3A0.44890.74630.84290.069*
C220.1887 (3)0.71777 (9)0.79305 (12)0.0484 (5)
C230.1202 (3)0.77489 (9)0.78290 (12)0.0491 (5)
C240.0711 (3)0.78644 (9)0.74395 (13)0.0547 (5)
H240.11680.82520.73700.066*
C250.1979 (3)0.74061 (10)0.71471 (14)0.0604 (6)
H250.33080.74820.68800.073*
C260.1321 (3)0.68513 (10)0.72435 (13)0.0584 (6)
H260.22020.65430.70460.070*
C270.0604 (3)0.67287 (9)0.76234 (13)0.0550 (5)
H270.10510.63400.76750.066*
O30.2590 (2)0.81574 (6)0.81542 (9)0.0614 (4)
C280.1973 (3)0.87432 (9)0.81590 (14)0.0618 (6)
H28A0.15870.88780.75380.093*
H28B0.30650.89810.84630.093*
H28C0.08430.87750.84800.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0468 (10)0.0413 (9)0.0474 (9)0.0097 (7)0.0052 (7)0.0015 (7)
N20.0457 (10)0.0427 (9)0.0416 (8)0.0089 (7)0.0018 (7)0.0023 (7)
C10.0398 (11)0.0484 (11)0.0330 (9)0.0060 (8)0.0049 (8)0.0007 (8)
C20.0391 (11)0.0472 (11)0.0425 (10)0.0044 (8)0.0052 (8)0.0030 (8)
C30.0443 (12)0.0426 (10)0.0416 (10)0.0029 (8)0.0011 (8)0.0047 (8)
C40.0375 (10)0.0453 (11)0.0390 (9)0.0053 (8)0.0062 (8)0.0010 (8)
C50.0374 (11)0.0499 (11)0.0462 (11)0.0061 (8)0.0045 (8)0.0007 (9)
O10.0385 (8)0.0512 (8)0.0806 (10)0.0040 (6)0.0037 (7)0.0002 (8)
C60.0466 (12)0.0451 (11)0.0511 (11)0.0032 (8)0.0060 (9)0.0033 (9)
C70.0474 (12)0.0442 (11)0.0455 (11)0.0113 (8)0.0072 (9)0.0056 (8)
C80.0390 (11)0.0533 (12)0.0517 (11)0.0077 (9)0.0016 (9)0.0039 (9)
C90.0418 (11)0.0448 (11)0.0485 (11)0.0020 (8)0.0028 (8)0.0011 (8)
O20.0505 (9)0.0485 (8)0.0671 (9)0.0129 (6)0.0012 (7)0.0081 (7)
C100.0521 (14)0.0600 (13)0.0706 (14)0.0201 (10)0.0055 (11)0.0133 (11)
C110.0416 (11)0.0451 (11)0.0510 (11)0.0138 (9)0.0082 (9)0.0026 (9)
C120.0386 (13)0.0925 (17)0.0606 (14)0.0154 (11)0.0019 (10)0.0154 (12)
C130.0488 (16)0.177 (3)0.0843 (19)0.0222 (18)0.0083 (14)0.044 (2)
C140.068 (2)0.168 (3)0.097 (2)0.049 (2)0.0050 (17)0.068 (2)
C150.0709 (18)0.0750 (17)0.0855 (18)0.0386 (14)0.0308 (14)0.0361 (14)
C160.0543 (13)0.0409 (11)0.0670 (13)0.0190 (10)0.0199 (11)0.0028 (10)
C170.0742 (17)0.0421 (12)0.0733 (14)0.0039 (11)0.0293 (12)0.0160 (11)
C180.105 (2)0.0466 (14)0.108 (2)0.0161 (14)0.0562 (18)0.0294 (15)
C190.125 (3)0.0394 (14)0.124 (3)0.0210 (16)0.082 (2)0.0112 (15)
C200.114 (3)0.080 (2)0.127 (3)0.056 (2)0.061 (2)0.0490 (19)
C210.0492 (12)0.0522 (12)0.0403 (10)0.0096 (9)0.0050 (9)0.0028 (9)
S10.0692 (4)0.0499 (3)0.0790 (4)0.0112 (3)0.0234 (3)0.0076 (3)
N30.0526 (11)0.0499 (10)0.0607 (10)0.0181 (8)0.0158 (8)0.0122 (8)
C220.0467 (12)0.0584 (13)0.0360 (10)0.0129 (9)0.0055 (8)0.0083 (9)
C230.0503 (12)0.0588 (13)0.0358 (10)0.0164 (10)0.0002 (8)0.0081 (9)
C240.0514 (13)0.0651 (13)0.0459 (11)0.0063 (10)0.0028 (9)0.0078 (10)
C250.0412 (12)0.0847 (17)0.0532 (12)0.0121 (11)0.0010 (9)0.0001 (11)
C260.0512 (13)0.0697 (15)0.0507 (12)0.0208 (11)0.0028 (10)0.0012 (11)
C270.0540 (13)0.0604 (13)0.0466 (11)0.0157 (10)0.0042 (9)0.0019 (10)
O30.0631 (10)0.0515 (9)0.0618 (9)0.0154 (7)0.0130 (7)0.0138 (7)
C280.0714 (16)0.0558 (14)0.0570 (13)0.0106 (11)0.0066 (11)0.0007 (10)
Geometric parameters (Å, º) top
N1—C211.365 (2)C13—C141.343 (4)
N1—N21.399 (2)C13—H130.9500
N1—N21.399 (2)C14—C151.400 (4)
N1—C31.464 (2)C14—H140.9500
N2—C11.295 (2)C15—C201.414 (4)
C1—N21.295 (2)C15—C161.430 (3)
C1—C41.448 (2)C16—C171.410 (3)
C1—C21.499 (2)C17—C181.377 (3)
C2—C31.536 (2)C17—H170.9500
C2—H2A0.9900C18—C191.408 (5)
C2—H2B0.9900C18—H180.9500
C3—C111.515 (3)C19—C201.332 (5)
C3—H31.0000C19—H190.9500
C4—C91.400 (2)C20—H200.9500
C4—C51.409 (2)C21—N31.349 (2)
C5—O11.359 (2)C21—S11.657 (2)
C5—C61.385 (2)N3—C221.403 (2)
O1—H10.8400N3—H3A0.8800
C6—C71.380 (3)C22—C271.391 (3)
C6—H60.9500C22—C231.403 (3)
C7—O21.366 (2)C23—C241.372 (3)
C7—C81.389 (3)C23—O31.374 (2)
C8—C91.372 (2)C24—C251.396 (3)
C8—H80.9500C24—H240.9500
C9—H90.9500C25—C261.361 (3)
O2—C101.424 (2)C25—H250.9500
C10—H10A0.9800C26—C271.379 (3)
C10—H10B0.9800C26—H260.9500
C10—H10C0.9800C27—H270.9500
C11—C121.360 (3)O3—C281.421 (2)
C11—C161.425 (3)C28—H28A0.9800
C12—C131.395 (3)C28—H28B0.9800
C12—H120.9500C28—H28C0.9800
C21—N1—N2121.46 (15)C14—C13—C12120.0 (3)
C21—N1—N2121.46 (15)C14—C13—H13120.0
C21—N1—C3126.33 (15)C12—C13—H13120.0
N2—N1—C3112.20 (13)C13—C14—C15121.8 (3)
N2—N1—C3112.20 (13)C13—C14—H14119.1
C1—N2—N1108.27 (14)C15—C14—H14119.1
N2—C1—C4121.93 (16)C14—C15—C20123.5 (3)
N2—C1—C4121.93 (16)C14—C15—C16118.7 (2)
N2—C1—C2113.09 (15)C20—C15—C16117.8 (3)
N2—C1—C2113.09 (15)C17—C16—C11123.1 (2)
C4—C1—C2124.98 (15)C17—C16—C15118.7 (2)
C1—C2—C3102.81 (14)C11—C16—C15118.1 (2)
C1—C2—H2A111.2C18—C17—C16120.7 (3)
C3—C2—H2A111.2C18—C17—H17119.7
C1—C2—H2B111.2C16—C17—H17119.7
C3—C2—H2B111.2C17—C18—C19119.9 (3)
H2A—C2—H2B109.1C17—C18—H18120.0
N1—C3—C11111.62 (16)C19—C18—H18120.0
N1—C3—C2101.35 (14)C20—C19—C18120.4 (3)
C11—C3—C2112.06 (14)C20—C19—H19119.8
N1—C3—H3110.5C18—C19—H19119.8
C11—C3—H3110.5C19—C20—C15122.4 (3)
C2—C3—H3110.5C19—C20—H20118.8
C9—C4—C5116.99 (16)C15—C20—H20118.8
C9—C4—C1119.93 (16)N3—C21—N1112.16 (16)
C5—C4—C1123.08 (16)N3—C21—S1126.88 (14)
O1—C5—C6116.67 (17)N1—C21—S1120.95 (15)
O1—C5—C4122.55 (16)C21—N3—C22132.25 (16)
C6—C5—C4120.77 (17)C21—N3—H3A113.9
C5—O1—H1109.5C22—N3—H3A113.9
C7—C6—C5120.16 (18)C27—C22—N3127.24 (19)
C7—C6—H6119.9C27—C22—C23119.08 (18)
C5—C6—H6119.9N3—C22—C23113.67 (16)
O2—C7—C6115.31 (17)C24—C23—O3125.16 (19)
O2—C7—C8124.18 (17)C24—C23—C22120.62 (18)
C6—C7—C8120.49 (17)O3—C23—C22114.21 (17)
C9—C8—C7118.95 (18)C23—C24—C25119.3 (2)
C9—C8—H8120.5C23—C24—H24120.4
C7—C8—H8120.5C25—C24—H24120.4
C8—C9—C4122.63 (18)C26—C25—C24120.3 (2)
C8—C9—H9118.7C26—C25—H25119.8
C4—C9—H9118.7C24—C25—H25119.8
C7—O2—C10117.75 (16)C25—C26—C27121.11 (19)
O2—C10—H10A109.5C25—C26—H26119.4
O2—C10—H10B109.5C27—C26—H26119.4
H10A—C10—H10B109.5C26—C27—C22119.6 (2)
O2—C10—H10C109.5C26—C27—H27120.2
H10A—C10—H10C109.5C22—C27—H27120.2
H10B—C10—H10C109.5C23—O3—C28118.02 (16)
C12—C11—C16120.0 (2)O3—C28—H28A109.5
C12—C11—C3121.35 (18)O3—C28—H28B109.5
C16—C11—C3118.59 (19)H28A—C28—H28B109.5
C11—C12—C13121.3 (2)O3—C28—H28C109.5
C11—C12—H12119.3H28A—C28—H28C109.5
C13—C12—H12119.3H28B—C28—H28C109.5
C21—N1—N2—N20.00 (19)C2—C3—C11—C1675.0 (2)
C3—N1—N2—N20.0 (2)C16—C11—C12—C130.2 (3)
C21—N1—N2—C1170.99 (17)C3—C11—C12—C13176.4 (2)
N2—N1—N2—C10 (100)C11—C12—C13—C141.5 (4)
C3—N1—N2—C19.8 (2)C12—C13—C14—C151.1 (5)
N1—N2—C1—N20 (100)C13—C14—C15—C20180.0 (3)
N2—N2—C1—C40.0 (9)C13—C14—C15—C160.4 (4)
N1—N2—C1—C4179.45 (15)C12—C11—C16—C17177.63 (18)
N2—N2—C1—C20.0 (8)C3—C11—C16—C170.9 (3)
N1—N2—C1—C20.3 (2)C12—C11—C16—C151.3 (3)
N2—C1—C2—C39.4 (2)C3—C11—C16—C15177.99 (17)
N2—C1—C2—C39.4 (2)C14—C15—C16—C17177.4 (2)
C4—C1—C2—C3171.51 (16)C20—C15—C16—C172.3 (3)
C21—N1—C3—C1174.5 (2)C14—C15—C16—C111.6 (3)
N2—N1—C3—C11104.57 (16)C20—C15—C16—C11178.78 (19)
N2—N1—C3—C11104.57 (16)C11—C16—C17—C18179.67 (18)
C21—N1—C3—C2166.01 (18)C15—C16—C17—C181.4 (3)
N2—N1—C3—C214.88 (18)C16—C17—C18—C190.6 (3)
N2—N1—C3—C214.88 (18)C17—C18—C19—C200.8 (4)
C1—C2—C3—N113.60 (17)C18—C19—C20—C151.7 (4)
C1—C2—C3—C11105.54 (17)C14—C15—C20—C19177.1 (3)
N2—C1—C4—C9175.47 (17)C16—C15—C20—C192.5 (4)
N2—C1—C4—C9175.47 (17)N2—N1—C21—N31.1 (3)
C2—C1—C4—C93.6 (3)N2—N1—C21—N31.1 (3)
N2—C1—C4—C53.4 (3)C3—N1—C21—N3179.84 (17)
N2—C1—C4—C53.4 (3)N2—N1—C21—S1178.43 (13)
C2—C1—C4—C5177.52 (17)N2—N1—C21—S1178.43 (13)
C9—C4—C5—O1179.67 (17)C3—N1—C21—S10.6 (3)
C1—C4—C5—O10.7 (3)N1—C21—N3—C22167.46 (19)
C9—C4—C5—C60.2 (3)S1—C21—N3—C2212.1 (3)
C1—C4—C5—C6178.75 (17)C21—N3—C22—C279.8 (4)
O1—C5—C6—C7178.71 (18)C21—N3—C22—C23168.6 (2)
C4—C5—C6—C70.8 (3)C27—C22—C23—C240.6 (3)
C5—C6—C7—O2177.29 (16)N3—C22—C23—C24177.93 (17)
C5—C6—C7—C81.4 (3)C27—C22—C23—O3179.93 (17)
O2—C7—C8—C9177.58 (17)N3—C22—C23—O31.6 (2)
C6—C7—C8—C91.0 (3)O3—C23—C24—C25179.18 (18)
C7—C8—C9—C40.0 (3)C22—C23—C24—C250.3 (3)
C5—C4—C9—C80.6 (3)C23—C24—C25—C260.3 (3)
C1—C4—C9—C8178.38 (17)C24—C25—C26—C270.5 (3)
C6—C7—O2—C10178.99 (17)C25—C26—C27—C221.3 (3)
C8—C7—O2—C100.3 (3)N3—C22—C27—C26176.93 (18)
N1—C3—C11—C1211.2 (2)C23—C22—C27—C261.4 (3)
C2—C3—C11—C12101.7 (2)C24—C23—O3—C285.4 (3)
N1—C3—C11—C16172.14 (15)C22—C23—O3—C28174.03 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.841.962.6889 (19)145
C18—H18···S1i0.952.963.712 (2)137
Symmetry code: (i) x+2, y+1, z+2.
 

Funding information

Funding for this research was provided by: the Basic Science Research Program (award No. NRF-2016R1D1A1B03931623).

References

First citationAbdel-Wahab, B. F., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o619.  CrossRef IUCr Journals Google Scholar
First citationBashir, R., Ovais, S., Yaseen, S., Hamid, H., Alam, M. S., Samim, M., Singh, S. & Javed, K. (2011). Bioorg. Med. Chem. Lett. 21, 4301–4305.  CrossRef CAS PubMed Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJung, H., Ahn, S., Park, M., Yoon, H., Noh, H. J., Kim, S. Y., Yoo, J. S., Koh, D. & Lim, Y. (2015). Magn. Reson. Chem. 53, 383–390.  CrossRef CAS PubMed Google Scholar
First citationKharbanda, C., Alam, M. S., Hamid, H., Javed, K., Bano, B., Dhulap, A., Ali, Y., Nazreen, S. & Haider, S. (2014). Bioorg. Med. Chem. 22, 5804–5812.  CrossRef CAS PubMed Google Scholar
First citationKoh, D., Lim, Y. & Lough, A. J. (2014). Acta Cryst. E70, o464.  CrossRef IUCr Journals Google Scholar
First citationMishra, V. K., Mishra, M., Kashaw, V. & Kashaw, S. K. (2017). Bioorg. Med. Chem. 25, 1949–1962.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationViveka, S., Dinesha, Shama, P., Nagaraja, G. K., Ballav, S. & Kerkar, S. (2015). Eur. J. Med. Chem. 101, 442–451.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds