organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Oxo-2H-chromen-3-yl benzoate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Cristallographie et Physique Moléculaire, UFR SSMT, Université Félix Houphouët-Boigny de Cocody, 22 BP 582 Abidjan 22, Côte d'Ivoire, and bLaboratoire de Chimie Moléculaire et de Matériaux, Equipe de Chimie, Organique et de Phytochimie, Université Ouaga I Pr Joseph KI-ZERBO, 03 BP 7021, Burkina Faso
*Correspondence e-mail: kamborene@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 28 April 2017; accepted 3 May 2017; online 19 May 2017)

In the title compound, C16H10O4, the dihedral angle between the coumarin ring system (r.m.s. deviation = 0.015 Å) and the benzoate group is 83.58 (9)°, which compares to a value of 81.8° obtained from a DFT calculation at the B3LYP/6–311 G(d,p) level. In the crystal, C—O⋯π and C—H⋯π inter­actions and aromatic ππ [CgCg = 3.7214 (14) and 3.7059 (14) Å] stacking generate a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Coumarin-based ion receptors, fluorescent probes, and biological stains have extensive applications in monitoring enzyme activity as well as accurate pharmacological and pharmacokinetic properties in living cells (Chen et al., 2013[Chen, G., Li, H., Lan, R. & Li, J. (2013). Huaxue Tongbao, 76, 1002-1010.]; Guha et al., 2012[Guha, S., Dutta, M. & Das, D. (2012). J. Indian Chem. Soc. 89, 1603-1632.]). As part of our ongoing studies in this area, we now present herein the synthesis and structure of the title compound (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

As expected, the coumarin ring system is almost planar, the maximum deviation from the plane of 0.022 (2) Å is for atom C9. The torsion angles C10—C8—O4—C7 [107.8 (2)°], C8—O4—C7—C6 [−170.95 (15)°] and O4—C7—C6—C1 [176.48 (15)°] are typical of the torsional freedom permitted by the rotation of the benzoate group at position 3. The greatest conformational freedom of the mol­ecule resides, therefore, in the benzoate bridge of compound, composed by C8—O4—C7—C6.

In the crystal, there are C—H⋯π and C—O⋯π contacts present (Table 1[link] and Fig. 2[link]) and also π-π- stacking inter­actions. The H⋯π and O⋯π separations are comparable with those cited by Imai et al. (2008[Imai, Y. N., Inoue, Y., Nakanishi, I. & Kitaura, K. (2008). Protein Sci. 17, 1129-1137.]) from a database analysis, which concluded that such inter­actions were attractive, with inter­action energies of ca 2 kcal mol−1, comparable to those typical of weak hydrogen bonds. These inter­actions result in the formation of zigzag chains propagating along the c-axis direction. The supra­molecular aggregation in the crystal is completed by the presence of slipped parallel ππ inter­actions, forming columns along the c-axis direction. The most significant inter­actions are Cg2⋯Cg2i = 3.7216 (14) Å [inter-planar distance = 3.4024 (9) Å, slippage = 1.508 Å, where Cg2 is the centroid of the C1/C2/C4–C6 ring; symmetry code: (i) −x, 1 − y, 1 − z] and Cg2⋯Cg2ii = 3.7058 (14) Å [inter-planar distance = 3.4309 (9) Å, slippage = 1.401 Å, symmetry code: (ii) 1 − x, 1 − y, 1 − z].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cg3i 1.00 (2) 2.94 (2) 3.841 (2) 150.5 (2)
C9—O1⋯Cg1ii 1.20 (1) 3.15 (1) 3.464 (2) 95 (1)
Symmetry codes: (i) x, y, z+1; (ii) -x+1, -y+1, -z.
[Figure 2]
Figure 2
Packing diagram of the title compound, viewed along the b axis.

Synthesis and crystallization

In a 100 ml flask with a water condenser were introduced successively 25 ml of dried diethyl ether, 6.17 mmol of benzoyl chloride and 3.2 ml of dried tri­ethyl­amine. While stirring strongly, 6.17 mmol of chroman-2,3-dione were added in small portions. The reaction mixture was left under agitation for 2 h at room temperature and then refluxed for 2 h. The mixture was poured in a separating funnel containing 40 ml of chloro­form and washed with diluted hydro­chloric acid solution until the pH was 2-3. The organic layer was extracted, washed with water to neutrality, dried over MgSO4 and the solvent removed. The resulting precipitate (crude product) was filtered off with suction, washed with petroleum ether and recrystallized from a solvent mixture of chloro­form–hexane (1:3, v/v). Yellow crystals of the title compound were obtained in a yield of 84%; m.p. 423–426 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Two reflections were omitted owing to bad agreement.

Table 2
Experimental details

Crystal data
Chemical formula C16H10O4
Mr 266.24
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 298
a, b, c (Å) 6.9243 (6), 7.7262 (8), 11.8168 (6)
α, β, γ (°) 84.550 (6), 81.852 (6), 83.023 (8)
V3) 619.22 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.34 × 0.12 × 0.06
 
Data collection
Diffractometer Agilent Supernova Dual diffractometer with an Atlas detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.])
Tmin, Tmax 0.499, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7628, 2283, 1724
Rint 0.039
(sin θ/λ)max−1) 0.608
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.159, 1.04
No. of reflections 2283
No. of parameters 221
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.22, −0.28
Computer programs: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]), SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

2-Oxo-2H-chromen-3-yl benzoate top
Crystal data top
C16H10O4Z = 2
Mr = 266.24F(000) = 276
Triclinic, P1Dx = 1.428 Mg m3
a = 6.9243 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.7262 (8) ÅCell parameters from 2675 reflections
c = 11.8168 (6) Åθ = 5.8–69.2°
α = 84.550 (6)°µ = 0.10 mm1
β = 81.852 (6)°T = 298 K
γ = 83.023 (8)°Prism, yellow
V = 619.22 (9) Å30.34 × 0.12 × 0.06 mm
Data collection top
Agilent Supernova Dual
diffractometer with an Atlas detector
2283 independent reflections
Radiation source: sealed X-ray tube1724 reflections with I > 2σ(I)
Detector resolution: 5.3048 pixels mm-1Rint = 0.039
ω scansθmax = 25.6°, θmin = 1.8°
Absorption correction: multi-scan
(Crysalis PRO; Agilent, 2011)
h = 88
Tmin = 0.499, Tmax = 1.000k = 99
7628 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051All H-atom parameters refined
wR(F2) = 0.159 w = 1/[σ2(Fo2) + (0.0998P)2 + 0.0263P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2283 reflectionsΔρmax = 0.22 e Å3
221 parametersΔρmin = 0.28 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms were refined using a riding model, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic, and C—H = 0.99 Å and Uiso(H) = 1.2Ueq(C) for the methylene H atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H100.994 (4)0.658 (3)0.393 (2)0.068 (6)*
H40.825 (4)0.121 (4)0.016 (3)0.093 (8)*
H30.789 (3)0.243 (3)0.168 (2)0.076 (7)*
H10.711 (3)0.728 (3)0.0468 (19)0.063 (6)*
H50.790 (3)0.285 (3)0.171 (2)0.068 (6)*
H20.731 (3)0.548 (3)0.202 (2)0.071 (7)*
H130.401 (4)0.916 (3)0.688 (2)0.073 (6)*
H161.079 (4)0.800 (3)0.565 (2)0.073 (7)*
H150.977 (4)0.946 (3)0.732 (2)0.083 (7)*
H140.634 (3)1.000 (3)0.791 (2)0.070 (6)*
O20.46650 (18)0.75322 (17)0.51161 (11)0.0538 (4)
O40.7627 (2)0.54314 (18)0.27349 (11)0.0618 (4)
O10.3793 (2)0.6280 (2)0.36899 (13)0.0666 (4)
C80.7208 (3)0.6366 (2)0.37014 (15)0.0543 (5)
C110.8071 (3)0.7664 (2)0.52978 (16)0.0518 (5)
O30.6978 (2)0.79125 (18)0.16416 (12)0.0661 (4)
C60.7503 (2)0.5198 (2)0.07680 (15)0.0496 (4)
C90.5118 (3)0.6699 (2)0.41218 (16)0.0532 (5)
C120.6084 (3)0.8027 (2)0.56933 (15)0.0495 (4)
C130.5431 (3)0.8890 (2)0.66733 (16)0.0570 (5)
C100.8604 (3)0.6801 (3)0.42525 (17)0.0561 (5)
C70.7320 (3)0.6361 (2)0.17134 (15)0.0522 (4)
C10.7338 (3)0.5970 (3)0.03279 (17)0.0553 (5)
C50.7800 (3)0.3397 (3)0.0954 (2)0.0618 (5)
C30.7787 (3)0.3156 (3)0.1056 (2)0.0686 (6)
C160.9429 (3)0.8200 (3)0.5925 (2)0.0639 (5)
C20.7489 (3)0.4928 (3)0.12395 (18)0.0636 (5)
C150.8781 (4)0.9067 (3)0.6904 (2)0.0676 (6)
C40.7933 (3)0.2371 (3)0.0027 (2)0.0718 (6)
C140.6802 (4)0.9404 (3)0.72688 (18)0.0650 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0468 (7)0.0646 (8)0.0492 (7)0.0038 (5)0.0054 (5)0.0045 (6)
O40.0752 (9)0.0610 (8)0.0452 (7)0.0067 (6)0.0063 (6)0.0045 (6)
O10.0644 (9)0.0749 (9)0.0638 (9)0.0119 (7)0.0162 (7)0.0064 (7)
C80.0605 (11)0.0560 (10)0.0428 (9)0.0012 (8)0.0036 (8)0.0004 (7)
C110.0512 (10)0.0528 (9)0.0500 (10)0.0037 (7)0.0073 (8)0.0024 (7)
O30.0836 (10)0.0595 (8)0.0517 (8)0.0027 (7)0.0062 (7)0.0043 (6)
C60.0390 (8)0.0595 (10)0.0498 (10)0.0045 (7)0.0047 (7)0.0052 (8)
C90.0579 (11)0.0524 (9)0.0478 (10)0.0040 (8)0.0078 (8)0.0025 (8)
C120.0527 (10)0.0478 (9)0.0467 (9)0.0050 (7)0.0075 (8)0.0040 (7)
C130.0605 (12)0.0576 (10)0.0505 (10)0.0026 (8)0.0033 (9)0.0026 (8)
C100.0484 (10)0.0640 (11)0.0513 (10)0.0006 (8)0.0000 (8)0.0003 (8)
C70.0478 (9)0.0599 (11)0.0459 (9)0.0007 (7)0.0022 (7)0.0015 (8)
C10.0512 (10)0.0630 (11)0.0520 (10)0.0079 (8)0.0064 (8)0.0046 (8)
C50.0575 (11)0.0640 (11)0.0630 (12)0.0052 (8)0.0077 (9)0.0019 (9)
C30.0591 (12)0.0822 (14)0.0702 (14)0.0132 (10)0.0087 (10)0.0273 (12)
C160.0545 (11)0.0672 (12)0.0698 (13)0.0037 (9)0.0120 (10)0.0018 (10)
C20.0588 (11)0.0835 (14)0.0515 (11)0.0140 (10)0.0076 (9)0.0113 (10)
C150.0754 (14)0.0645 (12)0.0673 (13)0.0085 (10)0.0254 (11)0.0033 (10)
C40.0674 (13)0.0594 (12)0.0905 (17)0.0071 (9)0.0110 (11)0.0156 (11)
C140.0832 (15)0.0563 (11)0.0547 (11)0.0026 (9)0.0102 (10)0.0061 (9)
Geometric parameters (Å, º) top
O2—C91.372 (2)C13—H130.98 (3)
O2—C121.381 (2)C10—H100.95 (2)
O4—C71.374 (2)C1—C21.390 (3)
O4—C81.386 (2)C1—H11.01 (2)
O1—C91.202 (2)C5—C41.398 (3)
C8—C101.331 (3)C5—H50.96 (2)
C8—C91.462 (3)C3—C21.361 (3)
C11—C121.392 (3)C3—C41.375 (4)
C11—C161.398 (3)C3—H30.96 (2)
C11—C101.440 (3)C16—C151.384 (3)
O3—C71.191 (2)C16—H160.95 (3)
C6—C51.383 (3)C2—H20.99 (2)
C6—C11.387 (3)C15—C141.378 (3)
C6—C71.481 (3)C15—H150.99 (3)
C12—C131.384 (3)C4—H40.90 (3)
C13—C141.374 (3)C14—H140.92 (2)
C9—O2—C12122.54 (14)O4—C7—C6111.59 (15)
C7—O4—C8115.88 (14)C6—C1—C2119.8 (2)
C10—C8—O4122.46 (17)C6—C1—H1120.5 (12)
C10—C8—C9122.72 (17)C2—C1—H1119.7 (13)
O4—C8—C9114.61 (17)C6—C5—C4119.3 (2)
C12—C11—C16117.93 (18)C6—C5—H5120.7 (13)
C12—C11—C10118.13 (17)C4—C5—H5120.0 (13)
C16—C11—C10123.92 (18)C2—C3—C4120.8 (2)
C5—C6—C1120.07 (18)C2—C3—H3120.4 (14)
C5—C6—C7122.07 (18)C4—C3—H3118.8 (14)
C1—C6—C7117.85 (17)C15—C16—C11120.0 (2)
O1—C9—O2118.14 (17)C15—C16—H16121.2 (14)
O1—C9—C8125.95 (18)C11—C16—H16118.8 (14)
O2—C9—C8115.89 (17)C3—C2—C1120.1 (2)
O2—C12—C13116.78 (16)C3—C2—H2120.4 (13)
O2—C12—C11120.95 (16)C1—C2—H2119.5 (13)
C13—C12—C11122.27 (18)C14—C15—C16120.4 (2)
C14—C13—C12118.38 (19)C14—C15—H15121.3 (15)
C14—C13—H13123.6 (14)C16—C15—H15118.3 (15)
C12—C13—H13117.9 (14)C3—C4—C5119.9 (2)
C8—C10—C11119.75 (17)C3—C4—H4122.2 (19)
C8—C10—H10119.1 (14)C5—C4—H4117.5 (19)
C11—C10—H10121.1 (14)C13—C14—C15120.99 (19)
O3—C7—O4121.79 (17)C13—C14—H14117.2 (15)
O3—C7—C6126.62 (18)C15—C14—H14121.8 (15)
C7—O4—C8—C10107.8 (2)C8—O4—C7—O39.9 (3)
C7—O4—C8—C977.3 (2)C8—O4—C7—C6170.95 (15)
C12—O2—C9—O1178.33 (15)C5—C6—C7—O3176.40 (19)
C12—O2—C9—C80.2 (3)C1—C6—C7—O32.6 (3)
C10—C8—C9—O1176.93 (19)C5—C6—C7—O44.5 (2)
O4—C8—C9—O12.0 (3)C1—C6—C7—O4176.48 (15)
C10—C8—C9—O21.4 (3)C5—C6—C1—C20.6 (3)
O4—C8—C9—O2176.31 (15)C7—C6—C1—C2179.64 (16)
C9—O2—C12—C13178.71 (15)C1—C6—C5—C40.1 (3)
C9—O2—C12—C111.4 (3)C7—C6—C5—C4179.10 (18)
C16—C11—C12—O2179.87 (16)C12—C11—C16—C150.2 (3)
C10—C11—C12—O21.7 (3)C10—C11—C16—C15178.12 (19)
C16—C11—C12—C130.0 (3)C4—C3—C2—C10.3 (3)
C10—C11—C12—C13178.40 (17)C6—C1—C2—C30.4 (3)
O2—C12—C13—C14179.91 (16)C11—C16—C15—C140.2 (3)
C11—C12—C13—C140.2 (3)C2—C3—C4—C50.8 (3)
O4—C8—C10—C11175.59 (16)C6—C5—C4—C30.6 (3)
C9—C8—C10—C111.1 (3)C12—C13—C14—C150.2 (3)
C12—C11—C10—C80.5 (3)C16—C15—C14—C130.0 (3)
C16—C11—C10—C8178.80 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg3i1.00 (2)2.94 (2)3.841 (2)150.5 (2)
C9—O1···Cg1ii1.20 (1)3.15 (1)3.464 (2)95 (1)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z.
 

Acknowledgements

The authors thank the spectropole service of sciences (Aix-Marseille, France) for the use of the diffractometer and the NMR and MS spectrometers.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationChen, G., Li, H., Lan, R. & Li, J. (2013). Huaxue Tongbao, 76, 1002–1010.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGuha, S., Dutta, M. & Das, D. (2012). J. Indian Chem. Soc. 89, 1603–1632.  CAS Google Scholar
First citationImai, Y. N., Inoue, Y., Nakanishi, I. & Kitaura, K. (2008). Protein Sci. 17, 1129–1137.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds